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Alphabets and Words

Definition
Let Σ be a finite, nonempty set called an alphabet. The elements of Σ
are referred to as letters.

Σk := {0, 1, . . . , k − 1}
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Let Σ be a finite, nonempty set called an alphabet. The elements of Σ
are referred to as letters.

Σk := {0, 1, . . . , k − 1}



Alphabets and Words

Definition

I a finite word over an alphabet Σ is any finite sequence of letters
from Σ

I if w is a finite word, then its length (the number of symbols it
contains) is denoted by |w |

I the empty word will be denoted by ε

I by Σ∗ we understand the set of all finite words over Σ.

I an infinite word is a map from N0 to Σ
if w is an infinite word we often write w = w0w1w2 . . . where each
wi ∈ Σ.

I y is a subword or factor of a word w if there exist words x , z
w = xyz

I x is a prefix of word w if there exists y such that w = xy

Example

Σ∗2 = {ε, 0, 1, 01, 10, 001, 010, . . .}
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Morphisms

Definition
Let Σ be an alphabet. A map ϕ : Σ∗ −→ Σ∗ is called a morphism if ϕ
satisfies ϕ(xy) = ϕ(x)ϕ(y) ∀x , y ∈ Σ∗.

If there exists a constant k such that |ϕ(a)| = k ∀a ∈ Σ, we say ϕ is
k-uniform. A 1-uniform morphism is called a coding.

Example - It is time to introduce the celebrity

The Thue-Morse morphism is a morphism
µ : Σ∗2 −→ Σ∗2 where µ(0) = 01 and µ(1) = 10.

Let ϕ : Σ∗ −→ Σ∗ be a morphism. A finite or infinite word satisfying
ϕ(w) = w is said to be a fixed point of ϕ.
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Morphisms
Definition
If there exists a ∈ Σ such that ϕ(a) = ax for some x ∈ Σ∗ such that ϕi (x) 6= ε
∀i ∈ N0 we say ϕ is prolongable on a. In this case, the sequence of words
a, ϕ(a), ϕ2(a), . . . converges, in the limit, to the infinite word

−→
ϕω(a) := axϕ(x)ϕ2(x)ϕ3(x) . . .

which is a fixed point of ϕ.

Example
Since µ(0) = 01 and µ(1) = 10 we have that µ is prolongable on both 0 and 1, hence:

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

µ4(0) = 0110100110010110

. . .

t =
−→
µω(0) = 011010011001011010010110 . . .
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Morphisms

Observation
Let k ≥ 2, Σ an alphabet, ϕ : Σ∗ −→ Σ∗ a k-uniform morphism and
w = w0w1w2 . . . an infinite word over the alphabet Σ.
Then w = ϕ(w)⇔ ϕ is prolongable on w0 and w = ϕω(w0).

Proof.
⇐ w = w0xϕ(x)ϕ2(x) . . .
⇒ we have:

w = w0w1w2 . . .

= ϕ(w0)ϕ(w1)ϕ(w2) . . .

∀i ∈ N0: ϕi (w0) is a prefix of w
Hence w = ϕω(w0).



Numeration System Notation

Definition
Let n ∈ {0, 1, 2, . . .}, k ≥ 2 an integer.

I By (n)k we understand the unique base-k expansion of n.

I More formally: (n)k = atat−1 . . . a1a0 such that n =
∑t

i=0 aik
i with

at 6= 0.

Let k ≥ 2 be an integer, w ∈ Σk = {0, 1, . . . , k − 1};
w = atat−1 . . . a1a0.

I Then we define [w ]k :=
∑t

i=0 aik
i .

Example

(42)2 = 101010
[1110]2 = 13 = [00001110]2
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Deterministic Finite Automata with Output



More formally

Definition
A deterministic finite automaton with output, or DFAO is a 6-tuple
M = (Q,Σ, δ, q0,∆, τ) where

Q is a finite set of states
Σ is the finite input alphabet
δ : Q× Σ→ Q is the transition function
q0 ∈ Q is the initial state and
∆ is the finite output alphabet
τ : Q → ∆ is the output function.

Moreover, when the input alphabet Σ = Σk for an integer k ≥ 2, we call a DFAO a
k-DFAO.

Notation
qia := δ(qi , a), a ∈ Σ
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k-automatic sequeces

Definition
We say the sequence (an)n≥0 over a finite alphabet ∆ is k-automatic if
there exists a k-DFAO M = (Q,Σk , δ, q0,∆, τ) such that an = τ(q0w))
for all n ≥ 0 and all w with [w ]k = n.

Example - yet another definition of the Thue-Morse word

t = (tn)n≥0 is defined as:
tn = 0 if the number of 1’s in (n)2 is even
tn = 1 if the number of 1’s in (n)2 is odd
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k-automatic sequeces

Example

t = (tn)n≥0 is defined as:
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Parents and Children

Suppose we have a fixed point a of a k-uniform morphism ϕ : Σ∗ → Σ∗.

a = a0a1a2a3 . . .

= ϕ(a0)ϕ(a1)ϕ(a2)ϕ(a3) . . .

Observation
ϕ(ai ) = akiaki+1aki+1 . . . aki+k−1 ∀i ∈ N0

Definition
p ∈ N0 is a parent of q if the element of a at position q arises as an image of the
element at position p under the morphism ϕ. We say q is a child of p and we put
p := par(q).

Or Differently
|ϕ(a0 . . . ap| ≤ q < |ϕ(a0 . . . ap|

Properties
- children of p: kp, kp + 1, . . . kp + k + 1
- p = q div k
- q = par(q) + (q mod k)
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Cobham’s Theorem

Theorem (Cobham’s Theorem)

Let k ≥ 2. Then a sequence u = (un)n≥0 is k-automatic if and only if it
is the image, under a coding, of a fixed point of a k-uniform morphism.

Proof
⇐ We have u = τ(a) for some coding τ : Σ→ ∆ and a = ϕ(a) for a
k-uniform morphism ϕ : Σ∗ → Σ∗, a = a0a1a2 . . ..

We will construct a k-DFAO M = (Q,Σk , δ, q0,∆, τ) such that:
q0(n)k = an ∀n ∈ N0.
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Proof
Formal construction of k-DFAO M = (Q,Σk , δ, q0,∆, τ)

Q := Σ, q0 := a0 and δ : Q× Σk → Q is defined as: δ(q, b) := the b-th
letter of ϕ(q). By induction we will show that δ(q0, (n)k) = wn.

- n = 0 :
- n > 0 : Suppose n = ntnt−1 . . . n1n0 where n = kn′ + n0. Then:

q0(n)k = q0(ntnt−1 . . . n0)

= (q0, ntnt−1 . . . n1)n0

= (q0(n′)k)n0

= wn′n0

= the n0
′th symbol of ϕ(wn′)

= wkn′+n0

= wn
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Proof
⇒

M = (Q,Σk , δ, q0,Q, id) produces an automatic sequence a = (an)n≥0

a0 = q00
a0 = q01

...
ai = q0(i)k

...
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M = (Q,Σk , δ, q0,Q, id) produces an automatic sequence a = (an)n≥0

a0 = q00
a0 = q01

...
ai = q0(i)k

...

ϕ(q) := q0 q1 . . . qk − 1 ∀q ∈ Q
It suffices to show that: ϕ(ai ) = akiaki+1 . . . aki+k−1 ∀i
Since then: ϕ(a0a1 . . . ai ) = a0a1 . . . akiaki+1 . . . aki+k−1 ∀i

ϕ(ai ) = ϕ(q0(i)k)

= q0(i)k0 q0(i)k1 . . . q0(i)kk − 1

= q0(ki)k q0(ki + 1)k . . . q0(ki + k − 1)k

= akiaki+1 . . . aki+k−1

τ(ϕ(a)) = τ(a) = τ(q00)τ(q01)τ(q02) . . .



Corollary

The two definitions of the Thue-Morse word are equivalent.
t = (tn)n≥0 is defined as:
tn = 0 if the number of 1’s in (n)2 is even
tn = 1 if the number of 1’s in (n)2 is odd

t =
−→
µω(0) where µ(0) = 01, µ(1) = 10



Example

Rudin-Shapiro sequence r = (rn)n≥0 is defined by the following:
- rn = 1 if the number of (possibly overlapping) occurences of the block
11 in (n)2 is even
- rn = −1 otherwise
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ϕ(a) = a0 a1 = ab
ϕ(b) = b0 b1 = ac
ϕ(c) = c0 c1 = db
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ϕω(a)) = abacabdbabacdcac · · ·
τ(ϕω(a))) =1 1 1 -1 1 1 -1 1 1 1 1 -1 -1 -1 1 -1· · ·
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Any Questions?
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