
The ”H-coefficients” Technique in a Nutshell

Miloslav Homer

Jarńı škola katedry algebry

April 5, 2017

Table of Contents

1 Introduction

2 The Path to H-Coefficients

3 Lower Bounding the Ratio

Introduction

Real Oracles

Let Z = {P, C,K, E ,D} be a cryptosystem.

An oracle is an object that takes queries and responds to
them.

We can construct a family of oracles corresponding to this
cryptosystem in a following fashion:

Pick a key K ∈ K
(Encryption) Oracle R corresponding to this key on query P
returns EK (P).

Define decryption oracles similarly and note we can also define
a combination oracle.

We denote the family of them as ΩReal .

Real Oracles

Let Z = {P, C,K, E ,D} be a cryptosystem.

An oracle is an object that takes queries and responds to
them.

We can construct a family of oracles corresponding to this
cryptosystem in a following fashion:

Pick a key K ∈ K
(Encryption) Oracle R corresponding to this key on query P
returns EK (P).

Define decryption oracles similarly and note we can also define
a combination oracle.

We denote the family of them as ΩReal .

Real Oracles

Let Z = {P, C,K, E ,D} be a cryptosystem.

An oracle is an object that takes queries and responds to
them.

We can construct a family of oracles corresponding to this
cryptosystem in a following fashion:

Pick a key K ∈ K
(Encryption) Oracle R corresponding to this key on query P
returns EK (P).

Define decryption oracles similarly and note we can also define
a combination oracle.

We denote the family of them as ΩReal .

Real Oracles

Let Z = {P, C,K, E ,D} be a cryptosystem.

An oracle is an object that takes queries and responds to
them.

We can construct a family of oracles corresponding to this
cryptosystem in a following fashion:

Pick a key K ∈ K

(Encryption) Oracle R corresponding to this key on query P
returns EK (P).

Define decryption oracles similarly and note we can also define
a combination oracle.

We denote the family of them as ΩReal .

Real Oracles

Let Z = {P, C,K, E ,D} be a cryptosystem.

An oracle is an object that takes queries and responds to
them.

We can construct a family of oracles corresponding to this
cryptosystem in a following fashion:

Pick a key K ∈ K
(Encryption) Oracle R corresponding to this key on query P
returns EK (P).

Define decryption oracles similarly and note we can also define
a combination oracle.

We denote the family of them as ΩReal .

Real Oracles

Let Z = {P, C,K, E ,D} be a cryptosystem.

An oracle is an object that takes queries and responds to
them.

We can construct a family of oracles corresponding to this
cryptosystem in a following fashion:

Pick a key K ∈ K
(Encryption) Oracle R corresponding to this key on query P
returns EK (P).

Define decryption oracles similarly and note we can also define
a combination oracle.

We denote the family of them as ΩReal .

Real Oracles

Let Z = {P, C,K, E ,D} be a cryptosystem.

An oracle is an object that takes queries and responds to
them.

We can construct a family of oracles corresponding to this
cryptosystem in a following fashion:

Pick a key K ∈ K
(Encryption) Oracle R corresponding to this key on query P
returns EK (P).

Define decryption oracles similarly and note we can also define
a combination oracle.

We denote the family of them as ΩReal .

Random Oracles

In general, an (encryption, decryption) random oracle
compatible with cryptosystem Z is a random function from P
to C (or C to P).

This may vary depending on the properties of Z, for example
when examining block ciphers we require oracles to be random
permutations.

We denote the family of these as ΩRandom.

Random Oracles

In general, an (encryption, decryption) random oracle
compatible with cryptosystem Z is a random function from P
to C (or C to P).

This may vary depending on the properties of Z, for example
when examining block ciphers we require oracles to be random
permutations.

We denote the family of these as ΩRandom.

Random Oracles

In general, an (encryption, decryption) random oracle
compatible with cryptosystem Z is a random function from P
to C (or C to P).

This may vary depending on the properties of Z, for example
when examining block ciphers we require oracles to be random
permutations.

We denote the family of these as ΩRandom.

Distinguisher

Let D be a deterministic distinguisher, i.e. a deterministic
algorithm which has an oracle R on input.

The experiment will be conducted in following fashion:

A coin is flipped. If heads a random element of ΩReal is chosen
as R, else chose R as element of ΩRandom.
D is given access to oracle R.
D interacts (queries queries, do other computations) with R.
D outputs a bit - 1 denoting that R ∈ ΩReal , 0 otherwise.

Distinguisher

Let D be a deterministic distinguisher, i.e. a deterministic
algorithm which has an oracle R on input.

The experiment will be conducted in following fashion:

A coin is flipped. If heads a random element of ΩReal is chosen
as R, else chose R as element of ΩRandom.
D is given access to oracle R.
D interacts (queries queries, do other computations) with R.
D outputs a bit - 1 denoting that R ∈ ΩReal , 0 otherwise.

Distinguisher

Let D be a deterministic distinguisher, i.e. a deterministic
algorithm which has an oracle R on input.

The experiment will be conducted in following fashion:

A coin is flipped. If heads a random element of ΩReal is chosen
as R, else chose R as element of ΩRandom.

D is given access to oracle R.
D interacts (queries queries, do other computations) with R.
D outputs a bit - 1 denoting that R ∈ ΩReal , 0 otherwise.

Distinguisher

Let D be a deterministic distinguisher, i.e. a deterministic
algorithm which has an oracle R on input.

The experiment will be conducted in following fashion:

A coin is flipped. If heads a random element of ΩReal is chosen
as R, else chose R as element of ΩRandom.
D is given access to oracle R.

D interacts (queries queries, do other computations) with R.
D outputs a bit - 1 denoting that R ∈ ΩReal , 0 otherwise.

Distinguisher

Let D be a deterministic distinguisher, i.e. a deterministic
algorithm which has an oracle R on input.

The experiment will be conducted in following fashion:

A coin is flipped. If heads a random element of ΩReal is chosen
as R, else chose R as element of ΩRandom.
D is given access to oracle R.
D interacts (queries queries, do other computations) with R.

D outputs a bit - 1 denoting that R ∈ ΩReal , 0 otherwise.

Distinguisher

Let D be a deterministic distinguisher, i.e. a deterministic
algorithm which has an oracle R on input.

The experiment will be conducted in following fashion:

A coin is flipped. If heads a random element of ΩReal is chosen
as R, else chose R as element of ΩRandom.
D is given access to oracle R.
D interacts (queries queries, do other computations) with R.
D outputs a bit - 1 denoting that R ∈ ΩReal , 0 otherwise.

Advantage

Define advantage of distinguisher D on cryptosystem Z:

AdvZ (D) = Pr
[
R ∈ ΩReal & DR = 1

]
−Pr

[
R ∈ ΩRandom & DR = 1

]
.

We can also define resource bounded advantage, allowing D
to only make q queries.

We are really interested in resource bounded advantage
independent on distinguishers, which can be defined like this:

AdvZq = max
D

AdvZq (D).

Advantage

Define advantage of distinguisher D on cryptosystem Z:

AdvZ (D) = Pr
[
R ∈ ΩReal & DR = 1

]
−Pr

[
R ∈ ΩRandom & DR = 1

]
.

We can also define resource bounded advantage, allowing D
to only make q queries.

We are really interested in resource bounded advantage
independent on distinguishers, which can be defined like this:

AdvZq = max
D

AdvZq (D).

Advantage

Define advantage of distinguisher D on cryptosystem Z:

AdvZ (D) = Pr
[
R ∈ ΩReal & DR = 1

]
−Pr

[
R ∈ ΩRandom & DR = 1

]
.

We can also define resource bounded advantage, allowing D
to only make q queries.

We are really interested in resource bounded advantage
independent on distinguishers, which can be defined like this:

AdvZq = max
D

AdvZq (D).

The Path to H-Coefficients

Views

From now on a distinguisher D and number of queries q is
fixed.

Define view as set of queries and responses for R that D
made during the experiment.

A typical view ν therefore looks like this:

ν = {(Pi ,Ci) | i ≤ q} .

We don’t care about the order of these queries.

We assume that D doesn’t repeat queries – this implies that
for all i 6= j it holds that Pi 6= Pj or Ci 6= Cj .

Denote the set of all views V .

Views

From now on a distinguisher D and number of queries q is
fixed.

Define view as set of queries and responses for R that D
made during the experiment.

A typical view ν therefore looks like this:

ν = {(Pi ,Ci) | i ≤ q} .

We don’t care about the order of these queries.

We assume that D doesn’t repeat queries – this implies that
for all i 6= j it holds that Pi 6= Pj or Ci 6= Cj .

Denote the set of all views V .

Views

From now on a distinguisher D and number of queries q is
fixed.

Define view as set of queries and responses for R that D
made during the experiment.

A typical view ν therefore looks like this:

ν = {(Pi ,Ci) | i ≤ q} .

We don’t care about the order of these queries.

We assume that D doesn’t repeat queries – this implies that
for all i 6= j it holds that Pi 6= Pj or Ci 6= Cj .

Denote the set of all views V .

Views

From now on a distinguisher D and number of queries q is
fixed.

Define view as set of queries and responses for R that D
made during the experiment.

A typical view ν therefore looks like this:

ν = {(Pi ,Ci) | i ≤ q} .

We don’t care about the order of these queries.

We assume that D doesn’t repeat queries – this implies that
for all i 6= j it holds that Pi 6= Pj or Ci 6= Cj .

Denote the set of all views V .

Views

From now on a distinguisher D and number of queries q is
fixed.

Define view as set of queries and responses for R that D
made during the experiment.

A typical view ν therefore looks like this:

ν = {(Pi ,Ci) | i ≤ q} .

We don’t care about the order of these queries.

We assume that D doesn’t repeat queries – this implies that
for all i 6= j it holds that Pi 6= Pj or Ci 6= Cj .

Denote the set of all views V .

Views

From now on a distinguisher D and number of queries q is
fixed.

Define view as set of queries and responses for R that D
made during the experiment.

A typical view ν therefore looks like this:

ν = {(Pi ,Ci) | i ≤ q} .

We don’t care about the order of these queries.

We assume that D doesn’t repeat queries – this implies that
for all i 6= j it holds that Pi 6= Pj or Ci 6= Cj .

Denote the set of all views V .

Probability distributions

Denote X the probability distribution on views induced by
Real oracles

we therefore ask: given distinguisher D and view ν how
probable it is that D produced view ν after interaction with a
random element from ΩReal?

Denote this probability Pr [X = ν].

Similarly denote Y the probability distribution on views
induced by Random oracles.

Probability distributions

Denote X the probability distribution on views induced by
Real oracles

we therefore ask: given distinguisher D and view ν how
probable it is that D produced view ν after interaction with a
random element from ΩReal?

Denote this probability Pr [X = ν].

Similarly denote Y the probability distribution on views
induced by Random oracles.

Probability distributions

Denote X the probability distribution on views induced by
Real oracles

we therefore ask: given distinguisher D and view ν how
probable it is that D produced view ν after interaction with a
random element from ΩReal?

Denote this probability Pr [X = ν].

Similarly denote Y the probability distribution on views
induced by Random oracles.

Probability distributions

Denote X the probability distribution on views induced by
Real oracles

we therefore ask: given distinguisher D and view ν how
probable it is that D produced view ν after interaction with a
random element from ΩReal?

Denote this probability Pr [X = ν].

Similarly denote Y the probability distribution on views
induced by Random oracles.

Obtainable views

A view ν is obtainable if Pr [X = ν] > 0.

From now on we only consider obtainable views, i.e. such ν
that at least one of Pr [X = ν] ,Pr [Y = ν] is nonzero.

Therefore V is now the set of all obtainable views

Obtainable views

A view ν is obtainable if Pr [X = ν] > 0.

From now on we only consider obtainable views, i.e. such ν
that at least one of Pr [X = ν] ,Pr [Y = ν] is nonzero.

Therefore V is now the set of all obtainable views

Obtainable views

A view ν is obtainable if Pr [X = ν] > 0.

From now on we only consider obtainable views, i.e. such ν
that at least one of Pr [X = ν] ,Pr [Y = ν] is nonzero.

Therefore V is now the set of all obtainable views

Statistical Distance

Denote ∆(X ,Y) the statistical distance (also called total
variation):

∆(X ,Y) =
1

2

∑
ν∈V
|Pr [X = ν]− Pr [Y = ν]| ,

=
∑

ν : Pr[Y=ν]>Pr[X=ν]

Pr [Y = ν]− Pr [X = ν] ,

=
∑

ν : Pr[X=ν]>Pr[Y=ν]

Pr [X = ν]− Pr [Y = ν] .

Upper-Bounding Advantage

For fixed deterministic distinguisher D we have:

∆(X ,Y) ≥ Adv(D).

Since D is deterministic, D’s decision is based only on view
that it produces during experiment.

That implies D’s advantage can be rewritten as:

Pr [D(X) = 1]− Pr [D(Y) = 1] .

Upper-Bounding Advantage

For fixed deterministic distinguisher D we have:

∆(X ,Y) ≥ Adv(D).

Since D is deterministic, D’s decision is based only on view
that it produces during experiment.

That implies D’s advantage can be rewritten as:

Pr [D(X) = 1]− Pr [D(Y) = 1] .

Upper-Bounding Advantage

For fixed deterministic distinguisher D we have:

∆(X ,Y) ≥ Adv(D).

Since D is deterministic, D’s decision is based only on view
that it produces during experiment.

That implies D’s advantage can be rewritten as:

Pr [D(X) = 1]− Pr [D(Y) = 1] .

The Ratio

Now let’s transform statistical distance into something more
useful.

∆(X ,Y) =
∑

ν : Pr[Y=ν]>Pr[X=ν]

Pr [Y = ν]− Pr [X = ν]

=
∑

ν : Pr[Y=ν]>Pr[X=ν]

Pr [Y = ν]

(
1− Pr [X = ν]

Pr [Y = ν]

)

=
∑
ν∈V

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))
= 1− Eν∈Y

[
min

(
1,

Pr [X = ν]

Pr [Y = ν]

)]

The Ratio

Now let’s transform statistical distance into something more
useful.

∆(X ,Y) =
∑

ν : Pr[Y=ν]>Pr[X=ν]

Pr [Y = ν]− Pr [X = ν]

=
∑

ν : Pr[Y=ν]>Pr[X=ν]

Pr [Y = ν]

(
1− Pr [X = ν]

Pr [Y = ν]

)

=
∑
ν∈V

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))
= 1− Eν∈Y

[
min

(
1,

Pr [X = ν]

Pr [Y = ν]

)]

The Ratio

Now let’s transform statistical distance into something more
useful.

∆(X ,Y) =
∑

ν : Pr[Y=ν]>Pr[X=ν]

Pr [Y = ν]− Pr [X = ν]

=
∑

ν : Pr[Y=ν]>Pr[X=ν]

Pr [Y = ν]

(
1− Pr [X = ν]

Pr [Y = ν]

)

=
∑
ν∈V

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))

= 1− Eν∈Y
[

min

(
1,

Pr [X = ν]

Pr [Y = ν]

)]

The Ratio

Now let’s transform statistical distance into something more
useful.

∆(X ,Y) =
∑

ν : Pr[Y=ν]>Pr[X=ν]

Pr [Y = ν]− Pr [X = ν]

=
∑

ν : Pr[Y=ν]>Pr[X=ν]

Pr [Y = ν]

(
1− Pr [X = ν]

Pr [Y = ν]

)

=
∑
ν∈V

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))
= 1− Eν∈Y

[
min

(
1,

Pr [X = ν]

Pr [Y = ν]

)]

Good and Bad Views

Let V = V1 ∪ V2 be such that V1,V2 are disjoint.

We then examine:

ν ∈ Vi ⇒
Pr [X = ν]

Pr [Y = ν]
≥ 1− εi .

We are free to define classes V1,V2 as we like.

It is very useful to have one big class for which is the ratio
close to one (those would be called ”good” iews) and a
smaller class for which the ratio is large (call these the ”bad”
views”).

Good and Bad Views

Let V = V1 ∪ V2 be such that V1,V2 are disjoint.

We then examine:

ν ∈ Vi ⇒
Pr [X = ν]

Pr [Y = ν]
≥ 1− εi .

We are free to define classes V1,V2 as we like.

It is very useful to have one big class for which is the ratio
close to one (those would be called ”good” iews) and a
smaller class for which the ratio is large (call these the ”bad”
views”).

Good and Bad Views

Let V = V1 ∪ V2 be such that V1,V2 are disjoint.

We then examine:

ν ∈ Vi ⇒
Pr [X = ν]

Pr [Y = ν]
≥ 1− εi .

We are free to define classes V1,V2 as we like.

It is very useful to have one big class for which is the ratio
close to one (those would be called ”good” iews) and a
smaller class for which the ratio is large (call these the ”bad”
views”).

Good and Bad Views

Let V = V1 ∪ V2 be such that V1,V2 are disjoint.

We then examine:

ν ∈ Vi ⇒
Pr [X = ν]

Pr [Y = ν]
≥ 1− εi .

We are free to define classes V1,V2 as we like.

It is very useful to have one big class for which is the ratio
close to one (those would be called ”good” iews) and a
smaller class for which the ratio is large (call these the ”bad”
views”).

Epsilons

Then the following holds:

1− Eν∈Y
[

min

(
1,

Pr [X = ν]

Pr [Y = ν]

)]

=
∑
ν∈V

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))
=
∑
ν∈V1

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))
+
∑
ν∈V2

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))

Epsilons

Then the following holds:

1− Eν∈Y
[

min

(
1,

Pr [X = ν]

Pr [Y = ν]

)]
=
∑
ν∈V

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))

=
∑
ν∈V1

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))
+
∑
ν∈V2

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))

Epsilons

Then the following holds:

1− Eν∈Y
[

min

(
1,

Pr [X = ν]

Pr [Y = ν]

)]
=
∑
ν∈V

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))
=
∑
ν∈V1

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))
+
∑
ν∈V2

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))

Epsilons

And combined with (for ν ∈ Vi):

min

(
1,

Pr [X = ν]

Pr [Y = ν]

)
≥ 1− εi ,

we get∑
ν∈Vi

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))
≥ Pr [Y ∈ Vi] (1−εi),

and finally

Eν∈Y [. . .] ≥ Pr [Y ∈ V1] (1− ε1) + Pr [Y ∈ V2] (1− ε2).

Epsilons

And combined with (for ν ∈ Vi):

min

(
1,

Pr [X = ν]

Pr [Y = ν]

)
≥ 1− εi ,

we get∑
ν∈Vi

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))
≥ Pr [Y ∈ Vi] (1−εi),

and finally

Eν∈Y [. . .] ≥ Pr [Y ∈ V1] (1− ε1) + Pr [Y ∈ V2] (1− ε2).

Epsilons

And combined with (for ν ∈ Vi):

min

(
1,

Pr [X = ν]

Pr [Y = ν]

)
≥ 1− εi ,

we get∑
ν∈Vi

Pr [Y = ν]

(
1−min

(
1,

Pr [X = ν]

Pr [Y = ν]

))
≥ Pr [Y ∈ Vi] (1−εi),

and finally

Eν∈Y [. . .] ≥ Pr [Y ∈ V1] (1− ε1) + Pr [Y ∈ V2] (1− ε2).

Good and Bad Views part 2

Then we can conclude proposition 5, because:

∆(X ,Y) = 1− Eν∈Y
[

min

(
1,

Pr [X = ν]

Pr [Y = ν]

)]
,

≥ 1− (Pr [Y ∈ V1] (1− ε1) + Pr [Y ∈ V2] (1− ε2)) ,

= Pr [Y ∈ V1] ε1 + Pr [Y ∈ V2] ε2.

Good and Bad Views part 2

Then we can conclude proposition 5, because:

∆(X ,Y) = 1− Eν∈Y
[

min

(
1,

Pr [X = ν]

Pr [Y = ν]

)]
,

≥ 1− (Pr [Y ∈ V1] (1− ε1) + Pr [Y ∈ V2] (1− ε2)) ,

= Pr [Y ∈ V1] ε1 + Pr [Y ∈ V2] ε2.

Good and Bad Views part 2

Then we can conclude proposition 5, because:

∆(X ,Y) = 1− Eν∈Y
[

min

(
1,

Pr [X = ν]

Pr [Y = ν]

)]
,

≥ 1− (Pr [Y ∈ V1] (1− ε1) + Pr [Y ∈ V2] (1− ε2)) ,

= Pr [Y ∈ V1] ε1 + Pr [Y ∈ V2] ε2.

The Main Result

If we now conclude that V1 is ”large” therefore Pr [Y ∈ V1] is
approx 1 and that ε2 is also close to one we immediately
obtain the main result:

Adv(D) ≤ ∆(X ,Y) ≤ ε1 + Pr [Y ∈ V2] .

It translates to: Advantage is upper-bounded by probability of
”bad” views in ideal world plus the distance between the ratio
and one.

The Main Result

If we now conclude that V1 is ”large” therefore Pr [Y ∈ V1] is
approx 1 and that ε2 is also close to one we immediately
obtain the main result:

Adv(D) ≤ ∆(X ,Y) ≤ ε1 + Pr [Y ∈ V2] .

It translates to: Advantage is upper-bounded by probability of
”bad” views in ideal world plus the distance between the ratio
and one.

Lower Bounding the Ratio

View Compatibility

We call view ν compatible with oracle R if for any (P,C) ∈ ν
it holds that R(P) = C .

Given view ν denote compΩ(ν) set of oracles of Ω that are
compatible with view ν.

This does not imply that if ν is compatible with R that D
produces view ν when interacting with R.

However it implies that when D produced ν compatible with
R then when D interacts with R it produces ν as well.

View Compatibility

We call view ν compatible with oracle R if for any (P,C) ∈ ν
it holds that R(P) = C .

Given view ν denote compΩ(ν) set of oracles of Ω that are
compatible with view ν.

This does not imply that if ν is compatible with R that D
produces view ν when interacting with R.

However it implies that when D produced ν compatible with
R then when D interacts with R it produces ν as well.

View Compatibility

We call view ν compatible with oracle R if for any (P,C) ∈ ν
it holds that R(P) = C .

Given view ν denote compΩ(ν) set of oracles of Ω that are
compatible with view ν.

This does not imply that if ν is compatible with R that D
produces view ν when interacting with R.

However it implies that when D produced ν compatible with
R then when D interacts with R it produces ν as well.

View Compatibility

We call view ν compatible with oracle R if for any (P,C) ∈ ν
it holds that R(P) = C .

Given view ν denote compΩ(ν) set of oracles of Ω that are
compatible with view ν.

This does not imply that if ν is compatible with R that D
produces view ν when interacting with R.

However it implies that when D produced ν compatible with
R then when D interacts with R it produces ν as well.

View Compatibility - Illustration

Let D interact with oracle R1 producing view
ν = {(Pi ,Ci)|i ≤ q}.

Say ν is compatible with R2 then let D interact with R2

The first query D makes is the same as when interacting with
R1

The response from R2 is also the same, since it is compatible
with ν

By induction D produces the same view when interacting with
R2

View Compatibility - Illustration

Let D interact with oracle R1 producing view
ν = {(Pi ,Ci)|i ≤ q}.
Say ν is compatible with R2 then let D interact with R2

The first query D makes is the same as when interacting with
R1

The response from R2 is also the same, since it is compatible
with ν

By induction D produces the same view when interacting with
R2

View Compatibility - Illustration

Let D interact with oracle R1 producing view
ν = {(Pi ,Ci)|i ≤ q}.
Say ν is compatible with R2 then let D interact with R2

The first query D makes is the same as when interacting with
R1

The response from R2 is also the same, since it is compatible
with ν

By induction D produces the same view when interacting with
R2

View Compatibility - Illustration

Let D interact with oracle R1 producing view
ν = {(Pi ,Ci)|i ≤ q}.
Say ν is compatible with R2 then let D interact with R2

The first query D makes is the same as when interacting with
R1

The response from R2 is also the same, since it is compatible
with ν

By induction D produces the same view when interacting with
R2

View Compatibility - Illustration

Let D interact with oracle R1 producing view
ν = {(Pi ,Ci)|i ≤ q}.
Say ν is compatible with R2 then let D interact with R2

The first query D makes is the same as when interacting with
R1

The response from R2 is also the same, since it is compatible
with ν

By induction D produces the same view when interacting with
R2

Central Insight

Given view ν:

Pr [X = ν] =

∣∣compΩReal
(ν)
∣∣

|ΩReal |
and Pr [Y = ν] =

∣∣compΩRandom
(ν)
∣∣

|ΩRandom|
.

Consequences

Right from the definition of compatibility and the central insight
we get:

1 The order in which queries appear in a view ν does not affect
the probability of ν occuring, only the set of queries does.

2 If two different deterministic distinguishers can obtain ν with
nonzero probability they would obtain ν with equal probability
(even if the order of queries differs).

Consequences

Right from the definition of compatibility and the central insight
we get:

1 The order in which queries appear in a view ν does not affect
the probability of ν occuring, only the set of queries does.

2 If two different deterministic distinguishers can obtain ν with
nonzero probability they would obtain ν with equal probability
(even if the order of queries differs).

Reformulate the ratio

We can therefore transform the ratio:

Pr [X = ν]

Pr [Y = ν]
=
|ΩRandom|

∣∣compΩReal

∣∣
|ΩReal |

∣∣compΩRandom

∣∣

Thank you for your attention.
Do you have any questions?

	Introduction
	The Path to H-Coefficients
	Lower Bounding the Ratio

