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What is a crystal?
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What is a crystal?

o crystal structure = pattern + lattice
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(Quasi)Crystals in physics

What is a crystal?

o crystal structure = pattern + lattice

o lattice = periodicity, symmetry
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(Quasi)Crystals in physics

Crystallographic Restriction Theorem
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(Quasi)Crystals in physics

Crystallographic Restriction Theorem

o Laue, Bragg: "not all symmetries are admissible"
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(Quasi)Crystals in physics

Crystallographic Restriction Theorem

o Laue, Bragg: "not all symmetries are admissible"

o the only possible orders of rotations are 1,2,3,4 and 6 =
"Crystallographic Restriction Theorem"
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(Quasi)Crystals in physics

examples:

- S i |

- PN 4
(Source: http://writescience.wordpress.com/2012/11/10/a-
personal-voyage/)
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(Quasi)Crystals in

3.jpg
(Source: web Scientific American)
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2.jpg
(Source: web Scientific American)
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(Quasi)Crystals in physics

Crystallographic Restriction Theorem, the proof




(Quasi)Crystals in physics

Quasicrystals

Schechtmann [1982] "Metallic phase with long range orientation
order and no transitional symmetry"
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(Quasi)Crystals in physics

Quasicrystals

Schechtmann [1982] "Metallic phase with long range orientation
order and no transitional symmetry"

o alloys with five(!)-fold rotational symmetry
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(Quasi)Crystals in physics

Quasicrystals

Schechtmann [1982] "Metallic phase with long range orientation
order and no transitional symmetry"

o alloys with five(!)-fold rotational symmetry

o named quasicrystals
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(Quasi)Crystals in physics

Dan Shechtman
Nobel Prize in
Chemistry 2011

for the discovery of quasicrystals
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(Quasi)Crystals in physics

Quasicrystal modelling sets, properties
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Quasicrystal modelling sets, properties

o the set ¥ C R is a Delone set, i.e.
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Quasicrystal modelling sets, properties

o the set ¥ C RY is a Delone set, i.e.

O (uniform discretness) there exists r; > 0 s.t. each ball of radius
r1 contains at most one element of ¥
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(Quasi)Crystals in physics

Quasicrystal modelling sets, properties

o the set ¥ C RY is a Delone set, i.e.
O (uniform discretness) there exists r; > 0 s.t. each ball of radius
ry contains at most one element of X
Q (uniform density) there exists r» > 0 s.t. each ball of radius r,
contains at least one element of *
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(Quasi)Crystals in physics

Quasicrystal modelling sets, properties

o the set ¥ C RY is a Delone set, i.e.

O (uniform discretness) there exists r; > 0 s.t. each ball of radius
r1 contains at most one element of ¥

Q (uniform density) there exists r» > 0 s.t. each ball of radius r,
contains at least one element of &

o the set ¥ C RY is a Meyer set, i.e.
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Quasicrystal modelling sets, properties

o the set ¥ C RY is a Delone set, i.e.
O (uniform discretness) there exists r; > 0 s.t. each ball of radius
r1 contains at most one element of ¥
Q (uniform density) there exists r» > 0 s.t. each ball of radius r,
contains at least one element of &
o the set ¥ C RY is a Meyer set, i.e.
o Y — Y C X+ F for some finite set F
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(Quasi)Crystals in physics

Quasicrystal modelling sets, properties

o the set ¥ C RY is a Delone set, i.e.
O (uniform discretness) there exists r; > 0 s.t. each ball of radius
r1 contains at most one element of ¥
Q (uniform density) there exists r» > 0 s.t. each ball of radius r,
contains at least one element of &
o the set ¥ C RY is a Meyer set, i.e.

o Y — Y C X+ F for some finite set F
o equivalently X is Meyer iff ¥ and ¥ — X are Delone
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(Quasi)Crystals in physics

Quasicrystal modelling sets, properties

o the set ¥ C RY is a Delone set, i.e.
O (uniform discretness) there exists r; > 0 s.t. each ball of radius
r1 contains at most one element of ¥
Q (uniform density) there exists r» > 0 s.t. each ball of radius r,
contains at least one element of &
o the set ¥ C RY is a Meyer set, i.e.

o Y — Y C X+ F for some finite set F
o equivalently X is Meyer iff ¥ and ¥ — X are Delone
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Cut & Project sets

Cut & Project sets, a first exaple

o a C&P set R? with 10-fold symmetry:

e s0s s so csoe as o o . o ae e s eses ss s se s
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Cut & Project sets, a first exaple

o a C&P set R? with 10-fold symmetry:

e s0s s so csoe as o o . o ae e s eses ss s se s
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Cut & Project sets

Cut & Project sets, a first exaple

o a C&P set R? with 10-fold symmetry:

o % 1] %’&'@ 'A,“&' %‘&@
" & a &K
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Cut & Project sets

Cut & Project sets in general
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Cut & Project sets

Cut & Project sets in general

Q X ={x1,...,xg} C R a full rank lattice

Pepa Dvorak Quasicrystals



Cut & Project sets

Cut & Project sets in general

Q X ={x1,...,xg} C R a full rank lattice
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Cut & Project sets in general

Q X ={x1,...,xg} C R a full rank lattice
Q write RY = Vid W,
O projections "R > Vi, m  RY =V,

Pepa Dvorak Quasicrystals



Cut & Project sets

Cut & Project sets in general

Q X ={x1,...,xg} C R a full rank lattice
Q write RY = Vid W,
O projections "R > Vi, m  RY =V,

Q conditions: 7m; monic on L, 7 (L) dense in V;
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Cut & Project sets

Cut & Project sets in general

Q X ={x1,...,xg} C R a full rank lattice

O write R = Vi & Vs

O projections "R > Vi, m  RY =V,

Q conditions: 7m; monic on L, 7 (L) dense in V;

O schematically:

Vi « 2RI T2\,

I

L
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Cut & Project sets

Cut & Project sets in general

Q X ={x1,...,xg} C R a full rank lattice

O write R = Vi & Vs

O projections "R > Vi, m  RY =V,

Q conditions: 7m; monic on L, 7 (L) dense in V;
(5

schematically:

Vi « 2RI T2\,

I

L

Q acceptance window: a bounded set Q2 C V,
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Cut & Project sets

Cut & Project sets in general

Q X ={x1,...,xg} C R a full rank lattice

O write R = Vi & Vs

O projections "R > Vi, m  RY =V,

Q conditions: 7m; monic on L, 7 (L) dense in V;

O schematically:

Vi « 2RI T2\,

I

L

Q acceptance window: a bounded set Q2 C V,
Q@ C&P-set X (Q) :={mi (x) |x € L and m (x) € Q}
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Cut & Project sets

Cut & Project sets in general, properties

0o X () +tZ X (Q)forany te W
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Cut & Project sets

Cut & Project sets in general, properties

0o X () +tZ X (Q)forany te W
o if the interior of Q is non-empty, then ¥ (Q) is a Meyer set
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Cut & Project sets

one-dimensional Cut & Project sets
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Cut & Project sets

one-dimensional Cut & Project sets

o lattice L = 72
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Cut & Project sets

one-dimensional Cut & Project sets

o lattice L = 72
o subspaces Vi 1y =ex, Vo iy =nx, € # 1, €, n irrational
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Cut & Project sets

one-dimensional Cut & Project sets

o lattice L = 72
o subspaces Vi 1y =ex, Vo iy =nx, € # 1, €, n irrational

1 1
@ set X3 == —— (1,5), X2 1= (1777)

- —€
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Cut & Project sets

one-dimensional Cut & Project sets

o lattice L = 72
o subspaces Vi 1y =ex, Vo iy =nx, € # 1, €, n irrational

1 1
@ set X3 == —— (1,5), X2 1= (1777)

— —€
o then (p,q) = (g — pn)x1 + (p — g€) x2
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Cut & Project sets

one-dimensional Cut & Project sets

o lattice L = 72

o subspaces Vi 1y =ex, Vo iy =nx, € # 1, €, n irrational
1 1

o set x; .= —— (1,¢), xo:= ——(1,7)
— —€

(]

then (p,q) = (¢ — pn)x1 + (p — g) x2
the images of projections are

(7]

Zle)={a+bec|a,beZ}

Znl={a+bnla,beZ}
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Cut & Project sets

one-dimensional Cut & Project sets

Pepa Dvorak Quasicrystals



Cut & Project sets

one-dimensional Cut & Project sets

Definition
Let €, n be distinct irrational real numbers and 2 C R be a
bounded interval. The set

Y(Q):={a+bn|a,beZ,a+ be € Q} CZn|

is a one-dimensional cut&project set with parameters 7, ¢, Q.
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Cut & Project sets

one-dimensional Cut & Project sets, properties |.
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Cut & Project sets

one-dimensional Cut & Project sets, properties |.

o We can prove
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Cut & Project sets

one-dimensional Cut & Project sets, properties |.

o We can prove

For each . ,, (2) there exist positive numbers A1, Ay € Z[n]
depending only on n, ¢, |Q| such that the distances between
adjacent points of Y., () take values in {A1, Ay, A1 + Ay}
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Cut & Project sets

one-dimensional Cut & Project sets, properties |.

o We can prove

For each . ,, (2) there exist positive numbers A1, Ay € Z[n]
depending only on n, ¢, |Q| such that the distances between
adjacent points of Y., () take values in {A1, Ay, A1 + Ay}

@ and
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Cut & Project sets

one-dimensional Cut & Project sets, properties |.

o We can prove

For each . ,, (2) there exist positive numbers A1, Ay € Z[n]
depending only on n, ¢, |Q| such that the distances between
adjacent points of Y., () take values in {A1, Ay, A1 + Ay}

@ and

Theorem
For each ¥ ,, (2) we have the following identities
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Cut & Project sets

one-dimensional Cut & Project sets, properties |.

o We can prove

For each . ,, (2) there exist positive numbers A1, Ay € Z[n]
depending only on n, ¢, |Q| such that the distances between
adjacent points of Y., () take values in {A1, Ay, A1 + Ay}

@ and

Theorem
For each ¥ ,, (2) we have the following identities

° Zs,n (Q) = z1+s,1+17 (Q)
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Cut & Project sets

one-dimensional Cut & Project sets, properties |.

o We can prove

For each . ,, (2) there exist positive numbers A1, Ay € Z[n]
depending only on n, ¢, |Q| such that the distances between
adjacent points of Y., () take values in {A1, Ay, A1 + Ay}

@ and

Theorem

For each ¥ ,, (2) we have the following identities
(] ZE,"'I (Q) = 21+5’1+T, (Q)
o Toy(@) =T, (-Q)
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Cut & Project sets

one-dimensional Cut & Project sets, properties |.

o We can prove

For each . ,, (2) there exist positive numbers A1, Ay € Z[n]
depending only on n, ¢, |Q| such that the distances between
adjacent points of Y., () take values in {A1, Ay, A1 + Ay}

@ and

Theorem
For each ¥ ,, (2) we have the following identities

*] ZE,"'I (Q) = 21+5’1+T, (Q)
o Y., (Q)=%_._,(-Q)
° Yoy (Q) =T 1 (1Q)

e
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Cut & Project sets

one-dimensional Cut & Project sets, properties |.

o We can prove

For each . ,, (2) there exist positive numbers A1, Ay € Z[n]
depending only on n, ¢, |Q| such that the distances between
adjacent points of Y., () take values in {A1, Ay, A1 + Ay}

@ and

Theorem

For each ¥ ,, (2) we have the following identities
(] ZE,"'I (Q) = 21+5’1+T, (Q)
o Toy(@) =T, (-Q)
° Yoy (Q) =T 1 (1Q)

e

eat+tbn+X.,(Q)=%.,Q+a+bn)
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Cut & Project sets

one-dimensional Cut & Project sets, properties Il.
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Cut & Project sets

one-dimensional Cut & Project sets, properties Il.

For each n # €, there exist 7, , Q satysfying

£c(~-1,0),7>0,max(14+5 -2) < |Q| <1 (1)
such that ., (Q) = s¥z5 (Q) for some s € R.

Theorem

A C&P sequence ¥, (Q2) is self-similar (i.e. vX., () C L., ()
for some v > 1) iff € is a quadratic number, ¢ is its algebraic
conjugate and the closure of Q0 contains the origin.

| \

Pepa Dvorak Quasicrystals



Cut & Project sets

one-dimensional Cut & Project sets and "words"
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Cut & Project sets

one-dimensional Cut & Project sets and "words"

o If Q is semi-open interval, then there are only two types of
distances
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Cut & Project sets

one-dimensional Cut & Project sets and "words"

o If Q is semi-open interval, then there are only two types of
distances

@ Y., () can be constructed from a starting point by adding
the respective distances
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Cut & Project sets

one-dimensional Cut & Project sets and "words"

o If Q is semi-open interval, then there are only two types of
distances

@ Y., () can be constructed from a starting point by adding
the respective distances

o sequence of distances ~ sequence of letters = a word u. , (Q)

Pepa Dvorak Quasicrystals



C&P words

C&P words
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C&P words

C&P words

o Given a C&P set X, (2). If A1, Az, Ay + Ay are the three
types of distances between the adjacent points of X, (), a
bidirectional word u;, (2) in the alphabet A, B, C u., (Q2) is a

A If Xn+1 — Xp = A1
C&P word iff uy = ¢ B if xpi1 — xn = A1 + Ao
C if Xp11 — Xn = Do.
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C&P words

C&P words

o Given a C&P set X, (2). If A1, Az, Ay + Ay are the three
types of distances between the adjacent points of X, (), a
bidirectional word u;, (2) in the alphabet A, B, C u., (Q2) is a

A If Xn+1 — Xp = A1
C&P word iff uy = ¢ B if xpi1 — xn = A1 + Ao
C if Xp11 — Xn = Do.

o if m1,e1,Q1 and 1,2,y satisfy the condition (1), then
Uey m (Ql) = Uey (Q2)
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C&P words

C&P words

o Given a C&P set X, (2). If A1, Az, Ay + Ay are the three
types of distances between the adjacent points of X, (), a
bidirectional word u;, (2) in the alphabet A, B, C u., (Q2) is a

A if Xpp1 — xp = A
C&P word iff uy = ¢ B if xpi1 — xn = A1 + Ao
C if Xp11 — Xn = Do.
o if m1,e1,Q1 and 1,2,y satisfy the condition (1), then
Uer,m (Ql) = Uey (Q2)
o if n,e,Q satisfy the condition (1), then
Uey (Q) = u_1-ey (—Q)
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C&P words

words, properties |.
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C&P words

words, properties |.

o let u=...u_su_juguiu>... be a bidirectional infinite word
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C&P words

words, properties |.

o let u=...u_su_juguiu>... be a bidirectional infinite word

o let L, = {u,-u,-+1 Uiy ... Uiyp—1 | I € Z}
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C&P words

words, properties |.

o let u=...u_su_juguiu>... be a bidirectional infinite word
o let L, = {u,-u,-+1 Uiy ... Uiyp—1 | I € Z}
o the language of u'is L := J,cn Ln
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C&P words

words, properties |.

o let u=...u_su_juguiu>... be a bidirectional infinite word
o let L, ={ujvip1Uita.. Uitn-_1|i € Z}

o the language of u'is L := J,cn Ln

o the complexity of uis C,, := #L,
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C&P words

words, properties |.

let v =...u_ou_quguius... be a bidirectional infinite word
let £, ={uitit1Uiy2 ... Uitn-1|i € Z}

the language of u'is L := J,cn Ln

the complexity of uis C, := #L,

e 6 6 o o

if C, = n+ 1, then the word is sturmian
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C&P words

C&P words, properties
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C&P words

C&P words, properties

o We have
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C&P words

C&P words, properties

o We have

Let ue, n, (1) be a C&P word with Q = [c,c + (), then
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C&P words

C&P words, properties

o We have

Let ue, n, (1) be a C&P word with Q = [c,c + (), then
Q if¢ ¢ ZJe], then for each n € N we have C, = 2n+1
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C&P words

C&P words, properties

o We have

Let ue, n, (1) be a C&P word with Q = [c,c + (), then
Q if¢ ¢ ZJe], then for each n € N we have C, = 2n+1
Q if¢ € ZJe], then for each n € N we have C, < n+ const
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C&P words

C&P words, properties

o We have

Let ue, n, (1) be a C&P word with Q = [c,c + (), then
Q if¢ ¢ ZJe], then for each n € N we have C, = 2n+1
Q if¢ € ZJe], then for each n € N we have C, < n+ const

Q ife,n,Q satisfy condition (1), then the corresponding word u ,, (2)
is sturmian iff { =1

y
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C&P words

C&P words, properties

o We have

Let ue, n, (1) be a C&P word with Q = [c,c + (), then
Q if¢ ¢ ZJe], then for each n € N we have C, = 2n+1

Q if¢ € ZJe], then for each n € N we have C, < n+ const

Q ife,n,Q satisfy condition (1), then the corresponding word u ,, (2)
is sturmian iff { =1

y

If £ € Z|e], then there exists a sturmian word

V=...V_ov_1¥ViVs... In alphabet 0,1 and finite words Wy, W
in the alphabet A, B, C such that

u517771 (Ql) = WV_2 WV_I WVQ Wvl WV2 coo
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C&P words

C&P words
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C&P words

C&P words

o the mirror of a word w = wyws ... w, is the word
W = WpWnp_1...W]
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C&P words

C&P words

o the mirror of a word w = wyws ... w, is the word
W = WpWnp_1...W]
o a word w is palindrome, if w =w
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C&P words

C&P words

o the mirror of a word w = wyws ... w, is the word
W = WpWnp_1...W]

o a word w is palindrome, if w =w

o the palindormic complexity of a word u is

Pon=H#{weL,|w=w}
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C&P words

C&P words

o the mirror of a word w = wyws ... w, is the word
W = WpWnp_1...W]

o a word w is palindrome, if w =w

o the palindormic complexity of a word u is
Po=#{weLl,|w=w}

@ in general, for a non-periodic word we have P, < %C,,_h#
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C&P words

C&P words

o the mirror of a word w = wyws ... w, is the word
W = WpWnp_1...W]

o a word w is palindrome, if w =w

o the palindormic complexity of a word u is
Po=#{weLl,|w=w}

@ in general, for a non-periodic word we have P, < %C,,_h#
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C&P words

C&P words

o the mirror of a word w = wyws ... w, is the word
W = WpWnp_1...W]

o a word w is palindrome, if w =w

o the palindormic complexity of a word u is
Po=#{weLl,|w=w}

@ in general, for a non-periodic word we have P, < %C,,_h#

Theorem

For C&P words with Q = [c,c + {) and n, e, satisfying the
condition (1), the palindromic complexity is:

1 for n even
Pn= (2 fornodd and £ =1

3 for n odd and ¢ < 1.
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C&P words

C&P sequences and uncommon numeration systems
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C&P words

C&P sequences and uncommon numeration systems

o [-integers are elements of Zs =
{:l: Zf:o xiBi| Zf:o xiB' is a B — expansion of some x > 0}
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C&P words

C&P sequences and uncommon numeration systems

o [-integers are elements of Zs =
{:l: Zf:o xiBi| Zf:o xiB' is a B — expansion of some x > 0}

@ We can prove the following:

Pepa Dvorak Quasicrystals



C&P words

C&P sequences and uncommon numeration systems

o [-integers are elements of Zs =
{:l: Zf:o xiBi| Zf:o xiB' is a B — expansion of some x > 0}

@ We can prove the following:

The positive part of the set Zg coincides with the positive part of a
C&P set X, () iff B is a quadratic Pisot unit.
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C&P words

Thank you.
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