
Authentication and Encryption 

How do these two concepts mix 



The basic concepts 

• Encryption 

Ensures confidentiality of 
the transmitted 
information. 

Does not ensure integrity 
or identity. 

(Sometimes, identity 
proofs may be outright 
undesirable. See: TOR). 

• Authentication 

Ensures identity and, 
usually, integrity of the 
transmitted information. 

Does not interfere with 
the transmitted 
information itself. 

May be short-time 
(session) or long-time 
(digital signature). 



Usual mode of employment 

• During a typical Alice-2-Bob key exchange, a 
common shared secret S is established and 
separate keys negotiated for encryption and 
authentication. 

• An authentication tag is computed for the 
plaintext and possibly some extra data, then the 
plaintext is encrypted, and the authentication tag 
appended to the ciphertext. 

• Examples: SSL/TLS, PGP, SRTP, OTR. 

 

 



Authenticated Encryption 

• We want to have it all. 

• As usual, such a state is hard to reach. 

• One of the answers: OCB (Offset Codebook 
Mode). 

– Developed since 2001 as „OCB1“. 

– The current version is „OCB3“ (2011). 

– Adds iterative „offset“ to a classical ECB. 

 



OCB – basic properties 

• Very good performance (about same as CTR) 
– Mainly by careful design, which limits many calls to the underlying block 

cipher. 
– For the runtime of CTR, we get two effects: 

• Encryption 
• Authentication. 
 

• Parallel processing of subsequent messages possible and easy. 
 
• Effective for authentication of fixed headers. 
 
• Basically the very simple ECB and so-called „offset“. 

 
 
 
 



OCB3 – inputs (1) 

• A block cipher BC of block length 128 bits. 

– KEYLENGTH k in bits (128, 192, 256…) 

– ENCIPHER(K,P) … the encryption procedure 

– DECIPHER(K,C) … the inverse (decryption) 
procedure 

Both the ENCIPHER and DECIPHER procedures 
operate on 128-bit blocks. 

 

 



OCB3 – inputs (2) 

• K … the key string of KEYLENGTH bits, 

• M … the message to be encrypted, 

• N … the nonce, a 96-bit string, 

• A … the associated data, a string which need to 
be authenticated, but not encrypted. 

Note that A may be an empty string. 

Nevertheless, in real world it often isn’t. For 
example, A may be headers or routing information. 



The overall design scheme 



The „Offset“ 

• Core element of the design. Denoted by Δ. 

• Let every 128-bit binary string represent an 
element of GF(128). 
– Addition: simple XOR. 

– Multiplication: if a suitable polynomial is used, we 
have easy multiplication by x. 

– Additionally, if we choose a primitive polynomial, 
then x is generator of the group and thus the 
length of the cycle r, rx, rx2, rx3 … is maximal for 
every nonzero r. 

 



Performance 

• A 128-bit Gray code is used to permutate the 
set r, rx, rx2, rx3 …  

• With use of the Gray code, iterating the offset 
is extremely computationally easy: 

– At the beginning of the encryption process, pre-
compute a table of values L0, L1, L2 … L127. 

– Then, just iterate Δ by XOR-ing the current value 
of Δ with a suitable L. 



OCB3 – component functions 

• Init(): does not depend on the message, only 
on N. Done before the actual encryption. 

• Inc(): an “offset iteration” operation. Does not 
depend on plaintext or ciphertext. 

• Checksum(): a simple binary addition of all 
plaintext message blocks. 

• Auth(): the final authentication tag 
computation, including the associated data A. 



The Init() function 

• Depends on N and K, but not M. 
• Performed before start of the encryption process of a 

new message M (when the counter N is usually 
incremented). 

• If nonce N is counter, then Init() only uses block cipher 
once per 64 invocations. 
– For multiple messages in a session, saves up to 63 block 

cipher operations. Massive performance improvement, 
esp. for shorter messages. 

• Produces the initial offset value Δ and the tables  L0, L1, 
L2 … L127. 
– Li are produced by bit shifts and binary additions – fast. 



Init() inside: 

• Concatenate 0x00000001 || N (128 bits). 

• Mask out the lower 6 bits, remember them as 
„Bottom“. The masked-out value is „Top“ 

• Calculate Ktop = ENCIPHER(K, Top). 
– Note that for N a counter, Ktop changes only once 

per 64 values of N. 

• Stretch Ktop to 256 bits: Stretch = Ktop || 
(Ktop⊕(Ktop<<8)) 

• The initial Δ is equal to Stretch << Bottom. 
 

 



The Inc() function. 

• Advances the offset, using a Gray code 
permutation. 

• Performed before every block encryption.  

• Δ = Δ xor Lj , where j = NTZ(i) 
• NTZ = number of trailing zeros. 

• Very fast. 128-bit XORing is often directly 
supported in modern processor instruction 
sets. 

 



The Checksum() and Auth() functions 

• Checksum = M1 xor M2 xor … xor Mm.  

• A simple XOR of the entire set of blocks, easy 
to compute. 

• Auth involves the associated data (A). 

• A simple hash, which produces 0 (= a 128-bit 
zero vector) for empty string. 

• Uses the same Init() and Inc() as the 
encryption process. 

 

 



Auth scheme 



Performance II. 

• Let us denote the length of M in blocks as m, 
the length of A in blocks as a. 

• On average, the scheme uses m + a + 1.016 
block cipher invocations. 

• If A is constant throughout session, the Auth 
value needs to be computed just once. 

• Unwieldy algorithms such as 128-bit addition 
are avoided. 



Security 

• By adding the offset both to the plaintext before 
encryption, and to the ciphertext after 
encryption, it can be shown that the scheme is 
resistant to chosen-plaintext and chosen-
ciphertext attack. 

• The concept of tweakable blockcipher with the 
above properties can be generalized. 

• Proven in:  
– Krovetz, Rogaway: The Software Performance of 

Authenticated-Encryption Modes (2011) 


