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Non-rational basis

Definition
Let β > 1 an irrational number. The set of β-integers with a
finite representation is

Zβ = {±x |x ∈ R, x ≥ 0, (x)β = xkxk−1 . . . x0•} .

The set of all finite numbers with basis β will be defined as

Fin(β) =
⋃
n∈N

1
βnZβ.
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Greedy β expansion

Let’s have β > 1 and x ∈ R, x > 0.

1 Find maximal k ∈ Z such as βk ≤ x .
2 Put xk = b x

βk c.
3 x := x − xkβ

k

Repeat until the value x is equal 0.
The result is x = xkβ

k + xk+1β
k+1 + xk+2β

k+2 + . . ..
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Example

Let us have the golden ratio β = 1+
√

5
2 .

The digits of our system will be 0 and 1 because bβc = 1.
Observe that:

(1)β = 1•
(2)β = 10 • 01
(3)β = 11 • 01
(4)β = 101 • 01
(5)β = 110 • 1001
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Addition

Lemma
If β /∈ Z then Zβ + Zβ 6⊂ Zβ.

Zβ = {±x |x ∈ R, x ≥ 0, (x)β = xkxk−1 . . . x0•} .

(1)β + (1)β = (2)β

1 •+1• = 10 • 01
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Algebraic integer

Definition
Algebraic integer α is a root of some monic P(x) ∈ Z[x ].
The degree of α is a the degree of its minimal polynomial.
The other roots of P(x) are called the conjugates of α.
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Frougny and Solomyak’s theorem

Theorem (Frougny and Solomyak)

Let β > 1 be such that Fin(β) + Fin(β) ⊂ Fin(β). Then β is an
algebraic integer and all of its conjugates have absolute value
less than 1.

1 ∈ Fin(β)⇒ Z+ ⊆ Fin(β).
Consider the expansion of x = bβc+ 1.
We get that β is an algebraic integer.
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Definition of the Pisot number

Definition
If β > 1 is a root of a rational polynomial P(x) whose all other
roots have absolute value less than 1, then β is called a Pisot
number.

Adéla Skoková Numeration systems irrational basis



Irrational Basis
Pisot numbers and tiling

Definition of Tiling

Definition
Tiling of a space Rn is given by finite set D of tiles, which can fill
the space without gaps and overlapping.
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Finite chains

Let R be the set of all finite binary sequences.

Definition
A set T•w of positive integers with finite chains after •, for every
w ∈ R we can note it in a following manner

T•w = {x ≥ 0|(x)β = xkxk−1 . . . x0 • w} .

In particular, if w is an empty sequence, then T• = Zβ ∩ [0,∞) .
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Tiling

Let γ be a root of P(x) conjugate to β.
Then the fields Q(β) and Q(γ) are isomorphic via some σ.
σ changes basis from β > 1 to γ, the norm of γ is less than
1, and is an identity on Q.
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Tiling

For basis γ is (T•)′ = {x ′ = σ(x)|x ≥ 0, x ∈ Zβ} bounded
in C.
A closure of this set is called a central tile D• belonging to
Pisot number β.
D•w = {x ′ = σ(x)|x ∈ T•w} is a tile given by w ∈ R
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Tiling

This tiling has following properties:

Any tile D•w is a copy of one of tiles D•, D•1 or D•11.
Any tile multiplied by 1

γ could be composed of tiles D•, D•1
and D•11.
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Tiling

For a case •w = x , where (x)β = •w we have
T•0w = T• + •0w ,
T•10w = T•1 + •00w and
T•110w = T•11 + •000w
D•0w is a shifted copy of D•,
D•10w is a shifted copy of D•1 and
D•110w is a shifted copy of D•11
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Tiling - instructions by scaling

A set 1
βT• contains only numbers with maximally one

cipher following •
1
βT• = T• ∪ T•1
1
γD• = D• ∪ D•1

It gives instructions for tilling all plane by scaling by factor 1
γ .

Pisot number of degree d gives tiling for a space Rd−1.
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Pisot unit

Pisot unit is a Pisot number which minimal polynomial has an
absolute coefficient ±1.

Theorem (Tiling)

Let β > 1 be a Pisot unit of degree d ≥ 2. Then sets D•w form
tiling of a space Rd−1 if and only if Fin(β) + Fin(β) ⊂ Fin(β).
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Fractal 1 from hal.archives-ouvertes.fr/docs

T
.(101̄0)ω

T
.(0101̄)ω

T
.(01̄01)ω

T
.(1̄010)ω

T
.1̄(101̄0)ω

T
.0(0101̄)ω

T
.0(01̄01)ω

T
.1(1̄010)ω

T
.01̄(101̄0)ω

T
.11̄(101̄0)ω

T
.1̄0(0101̄)ω

T
.10(01̄01)ω

T
.1̄1(1̄010)ω

T
.01(1̄010)ω

T
.101̄(101̄0)ω

T
.1̄11̄(101̄0)ω

T
.11̄0(0101̄)ω

T
.1̄10(01̄01)ω

T
.11̄1(1̄010)ω

T
.1̄01(1̄010)ω

T
.1̄101̄(101̄0)ω

T
.11̄11̄(101̄0)ω

T
.1̄11̄1(1̄010)ω

T
.11̄01(1̄010)ω

T
.011̄11̄(101̄0)ω

T
.01̄11̄1(1̄010)ω

T
.(1̄010)ω

T
.(101̄0)ω

T
.(01̄01)ω

T
.(0101̄)ω

T
.1(1̄010)ω

T
.1̄(101̄0)ω

T
.1̄1(1̄010)ω

T
.11̄(101̄0)ω

T
.01̄1(1̄010)ω

T
.11̄1(1̄010)ω

T
.1̄11̄(101̄0)ω

T
.011̄(101̄0)ω

T
.1̄11̄1(1̄010)ω

T
.11̄11̄(101̄0)ω

T
.01̄11̄1(1̄010)ω

T
.11̄11̄1(1̄010)ω

T
.1̄11̄11̄(101̄0)ω

T
.011̄11̄(101̄0)ω

T
.101̄11̄1(1̄010)ω

T
.1̄11̄11̄1(1̄010)ω

T
.011̄11̄1(1̄010)ω

T
.01̄11̄11̄(101̄0)ω

T
.11̄11̄11̄(101̄0)ω

T
.1̄011̄11̄(101̄0)ω

T
.1̄101̄11̄1(1̄010)ω

T
.0101̄11̄1(1̄010)ω

T
.1̄011̄11̄1(1̄010)ω

T
.101̄11̄11̄(101̄0)ω

T
.01̄011̄11̄(101̄0)ω

T
.11̄011̄11̄(101̄0)ω

Figure: Tilings from the symmetric β-transformation, β3 = 2β2 − β + 1
(left) and β3 = β2 + 1 (right).
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Fractal 2 from hal.archives-ouvertes.fr/docs

T
.(11̄0)ω

T
.(1̄01)ω

T
.(011̄)ω

T
.1̄(11̄0)ω

T
.0(1̄01)ω

T
.0(011̄)ω

T
.11̄(11̄0)ω

T
.01̄(11̄0)ω

T
.10(1̄01)ω

T
.00(1̄01)ω

T
.1̄0(011̄)ω

T
.101̄(11̄0)ω

T
.001̄(11̄0)ω

T
.1̄10(1̄01)ω

T
.11̄0(011̄)ω

T
.0010(1̄01)ω

T
.11̄10(1̄01)ω

T
.1̄11̄10(1̄01)ω

T
.(1̄10)ω

T
.(101̄)ω

T
.(01̄1)ω

T
.1(1̄10)ω

T
.0(101̄)ω

T
.0(01̄1)ω

T
.1̄1(1̄10)ω

T
.01(1̄10)ω

T
.1̄0(101̄)ω

T
.00(101̄)ω

T
.10(01̄1)ω

T
.1̄01(1̄10)ω

T
.001(1̄10)ω

T
.11̄0(101̄)ω

T
.1̄10(01̄1)ω

T
.001̄0(101̄)ω

T
.1̄11̄0(101̄)ω

T
.11̄11̄0(101̄)ω

Figure: Double tiling from the symmetric β-transformation,
β3 = β2 + β + 1.
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Epilogue

Thank for your attention.
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