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Definition of Quaternion Algebra

Let F is a field, char F 6= 2. A quaternion algebra A over F is a
four-dimensional F -space with basis 1, i , j , k . Multiplication on A
is defined by following rules:

i2 = a, j2 = b, ij = −ji = k ,

where a,b ∈ F ∗. We will denote this quaternion algebra by ( a,b
F ).
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Hamilton quaternions

H =

(
−1,−1

R

)
Let x = 1 + i + 2j , y = −3 + 2i − j − k , then

x + y = (1 + i + 2j) + (−3 + 2i − j − k) =
= −2 + 3i + j − k

x · y = (1 + i + 2j) · (−3 + 2i − j − k) =
= −3− 3i − 6j − 6k

y · x = (−3 + 2i − j − k) · (1 + i + 2j) =
= −3 + i − 8j + 4k
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History of Hamilton quaternions

William Rowan Hamilton(1805-1865)

Irish mathemetician, physicist and astronomer
inventor of quaternions
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Lemma

Let A =
(

a,b
F

)
.

1
(

a,b
F

)
∼=

(
ax2,by2

F

)
for any a,b, x , y ∈ F ∗

2 The center of A is F (i.e., A is central)
3 A has no proper two-sided ideal (i.e., A is simple).
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Norm and trace

Definition
Let A0 be subspace of quaternion algebra A spanned by i , j , k .
Then elements of A0 are called the pure quaternions in A.

Each element x of quaternion algebra A has a unique
decomposition as x = a + α, where a ∈ F and α ∈ A0. We can
define conjugate x of x by x = a− α.

Definition
For x ∈ A the reduced norm and reduced trace are defined as
follows n(x) = xx and tr(x) = x + x .
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Examples

Let A =
(
−1,5
Q

)
, x = 1

5 + i − j − k , then

tr(x) = (
1
5
+ i − j − k) + (−1

5
− i + j + k) =

2
5

n(x) = (
1
5
+ i − j − k) · (−1

5
− i + j + k) = −224

25

This quaternion algebra has zero divisors, e.g. 1 + 2i + k .

Hamilton quaternions are division algebra.
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Examples

Quaternion algebra (−a,a
F ) is not division algebra, element a + k is

zero divisor.

For any field we have
(

1,1
F

)
∼= Mat2×2(F ). Isomorphism is given

by

1 7→
(

1 0
0 1

)
, i 7→

(
1 0
0 −1

)
, j 7→

(
0 1
1 0

)
.
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Classification

Skolem-Noether Theorem
Let A is a simple central algebra over F and B is a simple algebra
over F . If ϕ,ψ : B → A are homomorphisms, then exists an
invertible element c ∈ A such that ϕ(b) = c−1ψ(b)c for all b ∈ B.

Lemma

If A =
(

a,b
F

)
is quaternion algebra over F , then A is either

division algebra or A is isomorphic to Mat2×2(F (
√

a)).
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Example

Any quaternion algebra
(

a,b
F

)
is subalgebra of Mat2×2(F (

√
a)).

We consider mapping

1 7→
(

1 0
0 1

)
, i 7→

(
i 0
0 −i

)
, j 7→

(
0 b
1 0

)
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Every four-dimensional simple central algebra over F of
characteristic 6= 2 is a quaternion algebra.
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Proof
Let A be four-dimensional simple central algebra over F . If A is
isomorphic to Mat2×2(F ), it is quaternion algebra, so by lemma
we can assume then A is a division algebra. For w 6∈ Z (A),
subalgebra F (w) is commutative, thus F (w) is field.
Because A is central, F (w) 6= A. Consider u ∈ A \ F (w).
Elements 1,u,w ,uw are independent over F , thus form basis of
A. Thus

w2 = a0 + a1w + a2u + a3uw , ai ∈ F .

Since u 6∈ F (w), w2 = a0 + a1w . Thus F (w) is quadratic
extension of F . Choose y ∈ F (w) \ F such that y2 = a ∈ F , so
F (w) = F (y).
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The automorphism on F (y) induced by y 7→ −y be induced by
conjugation by invertible z ∈ A (by Skolem-Noether Theorem),
thus zyz−1 = −y . Since 1, y , z, yz are independed over F , clearly
z 6∈ F (y). Since z2yz−2 = y so that z2 ∈ Z (A) (i.e., z2 = b ∈ F ).
So {1, y , z, yz} is basis of A and A ∼=

(
a,b
F

)
.
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Theorem

For A = ( a,b
F ), the following are equivalent:

1 A ∼= Mat2×2(F (
√

a)).
2 A is not a division algebra.
3 A is isotropic as a quadratic space with the norm form.
4 A0 is isotropic as a quadratic space with the norm form.
5 The quadratic form ax2 + by2 = 1 has solution in F .
6 If E = F (

√
b), then a ∈ NE|F (E).
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Proof – part 1

1⇔ 2 We have isomorphism

1 7→
(

1 0
0 1

)
, i 7→

(
i 0
0 −i

)
, j 7→

(
0 b
1 0

)
The ring of matrices is not division ring, thus A is not division
ring too.

2⇔ 3 It follows since x ∈ A× ⇔ n(x) ∈ F×.
3⇒ 4 Let 0 6= x = a0 + a1i + a2j + a3k ∈ A,n(x) = 0. If tr(x) = 0,

we are done. Otherwise, we can assume a1 6= 0. Then
n(x) = 0⇒ a2

0 − ba2
2 = a(a2

1 − ba2
3). We consider

y = b(a0a3 + a1a2)i + a(a2
1 − a2

3)j + (a0a1 + ba2a3)k , using
brutal power gives n(y) = 0. For contradiction we assume A0
is anisotropic. Thus y = 0 and −aa2

1 + aba2
3 = 0. Thus

n(a1i + a3k) = 0, and if A0 is anisotropic, a1 = 0 and we get
contradiction.

Lenka Introduction to Quaternion Algebras



Introduction to
Quaternion
Algebras

Lenka

Basic
definitions

Classification

SAGE

Proof – part 2

4⇒ 5 Let 0 6= x ∈ A0, x = a1i + a2j + a3k ,n(x) = 0, thus at least
two of a1,a2,a3 are non-zero. If a3 6= 0, then

a
(

a2a
a3

)2
+ b

(
a1

ba3

)2
= 1 and 5) holds. Otherwise

a
( 1+2a

2a

)2
+ b

(
a2(1−a)

2aa1

)2
= 1 and we are done.

5⇒ 6 Let ax2
0 + by2

0 = 1. If x0 = 0, then
√

b ∈ F and result is

obvious. If x 6= 0 then n
(

1
x0

+
√

by0
x0

)
= a.

6⇒ 2 Let
√

b = c ∈ F then j2 = b = c2. So (c − j)(c + j) = 0 and A
has zero divisors. Now let

√
b 6∈ F , then there exist

x1, y1 ∈ F , such that a = x2
1 − by2

1 . Then n(x1 + i + y1j) = 0
and A has non-zero non-invertible element.
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SAGE

open-source mathematics software
implemented in Python
online www.sagemath.org
packages for number theory
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SAGE and Quaternion Algebras

most of functions are implemented for algebras over infinite
fields
working with elements (plus, times, norm, trace)
classification of quaternion algebras
discriminants, orders, . . .
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Thank you for your attention.
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