
Authentication and Encryption

How do these two concepts mix

The basic concepts

• Encryption

Ensures confidentiality of
the transmitted
information.

Does not ensure integrity
or identity.

(Sometimes, identity
proofs may be outright
undesirable. See: TOR).

• Authentication

Ensures identity and,
usually, integrity of the
transmitted information.

Does not interfere with
the transmitted
information itself.

May be short-time
(session) or long-time
(digital signature).

Usual mode of employment

• During a typical Alice-2-Bob key exchange, a
common shared secret S is established and
separate keys negotiated for encryption and
authentication.

• An authentication tag is computed for the
plaintext and possibly some extra data, then the
plaintext is encrypted, and the authentication tag
appended to the ciphertext.

• Examples: SSL/TLS, PGP, SRTP, OTR.

Authenticated Encryption

• We want to have it all.

• As usual, such a state is hard to reach.

• One of the answers: OCB (Offset Codebook
Mode).

– Developed since 2001 as „OCB1“.

– The current version is „OCB3“ (2011).

– Adds iterative „offset“ to a classical ECB.

OCB – basic properties

• Very good performance (about same as CTR)
– Mainly by careful design, which limits many calls to the underlying block

cipher.
– For the runtime of CTR, we get two effects:

• Encryption
• Authentication.

• Parallel processing of subsequent messages possible and easy.

• Effective for authentication of fixed headers.

• Basically the very simple ECB and so-called „offset“.

OCB3 – inputs (1)

• A block cipher BC of block length 128 bits.

– KEYLENGTH k in bits (128, 192, 256…)

– ENCIPHER(K,P) … the encryption procedure

– DECIPHER(K,C) … the inverse (decryption)
procedure

Both the ENCIPHER and DECIPHER procedures
operate on 128-bit blocks.

OCB3 – inputs (2)

• K … the key string of KEYLENGTH bits,

• M … the message to be encrypted,

• N … the nonce, a 96-bit string,

• A … the associated data, a string which need to
be authenticated, but not encrypted.

Note that A may be an empty string.

Nevertheless, in real world it often isn’t. For
example, A may be headers or routing information.

The overall design scheme

The „Offset“

• Core element of the design. Denoted by Δ.

• Let every 128-bit binary string represent an
element of GF(128).
– Addition: simple XOR.

– Multiplication: if a suitable polynomial is used, we
have easy multiplication by x.

– Additionally, if we choose a primitive polynomial,
then x is generator of the group and thus the
length of the cycle r, rx, rx2, rx3 … is maximal for
every nonzero r.

Performance

• A 128-bit Gray code is used to permutate the
set r, rx, rx2, rx3 …

• With use of the Gray code, iterating the offset
is extremely computationally easy:

– At the beginning of the encryption process, pre-
compute a table of values L0, L1, L2 … L127.

– Then, just iterate Δ by XOR-ing the current value
of Δ with a suitable L.

OCB3 – component functions

• Init(): does not depend on the message, only
on N. Done before the actual encryption.

• Inc(): an “offset iteration” operation. Does not
depend on plaintext or ciphertext.

• Checksum(): a simple binary addition of all
plaintext message blocks.

• Auth(): the final authentication tag
computation, including the associated data A.

The Init() function

• Depends on N and K, but not M.
• Performed before start of the encryption process of a

new message M (when the counter N is usually
incremented).

• If nonce N is counter, then Init() only uses block cipher
once per 64 invocations.
– For multiple messages in a session, saves up to 63 block

cipher operations. Massive performance improvement,
esp. for shorter messages.

• Produces the initial offset value Δ and the tables L0, L1,
L2 … L127.
– Li are produced by bit shifts and binary additions – fast.

Init() inside:

• Concatenate 0x00000001 || N (128 bits).

• Mask out the lower 6 bits, remember them as
„Bottom“. The masked-out value is „Top“

• Calculate Ktop = ENCIPHER(K, Top).
– Note that for N a counter, Ktop changes only once

per 64 values of N.

• Stretch Ktop to 256 bits: Stretch = Ktop ||
(Ktop⊕(Ktop<<8))

• The initial Δ is equal to Stretch << Bottom.

The Inc() function.

• Advances the offset, using a Gray code
permutation.

• Performed before every block encryption.

• Δ = Δ xor Lj , where j = NTZ(i)
• NTZ = number of trailing zeros.

• Very fast. 128-bit XORing is often directly
supported in modern processor instruction
sets.

The Checksum() and Auth() functions

• Checksum = M1 xor M2 xor … xor Mm.

• A simple XOR of the entire set of blocks, easy
to compute.

• Auth involves the associated data (A).

• A simple hash, which produces 0 (= a 128-bit
zero vector) for empty string.

• Uses the same Init() and Inc() as the
encryption process.

Auth scheme

Performance II.

• Let us denote the length of M in blocks as m,
the length of A in blocks as a.

• On average, the scheme uses m + a + 1.016
block cipher invocations.

• If A is constant throughout session, the Auth
value needs to be computed just once.

• Unwieldy algorithms such as 128-bit addition
are avoided.

Security

• By adding the offset both to the plaintext before
encryption, and to the ciphertext after
encryption, it can be shown that the scheme is
resistant to chosen-plaintext and chosen-
ciphertext attack.

• The concept of tweakable blockcipher with the
above properties can be generalized.

• Proven in:
– Krovetz, Rogaway: The Software Performance of

Authenticated-Encryption Modes (2011)

