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N
Motivation

Theorem

Let R be a principle ideals domain, M finitely generated R-module. Then
M is isomorphic to a sum

M~R ®R/(p{*)® - & R/(p2m)

where r € Ny, p1, ..., pm irreducible elements (not necessarily different)
and a1, ...,am € N,
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Unavoidable definitions

Definition

Set of all infinite sequences Zg‘), together with operations of summing and
multiplying defined as follows

(ai)Z0 + (b))Z0 = (ai + bi)i0,

(a1)Z0 - (bi)Z0 = (Z ajbi—j)io,
j=0

is called the ring of formal power series over the ring Z, or A.

Definition (2)
Polynomial P € Z,[T] is called distinguished if
P=T"4+a, 1T 14+ ag, where ag,...,an_1 € (p).
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|
Properties of A

We will need to know, that A is
@ noetherian,

@ unique factorization domain (irreducible elements are p and all
irreducible distinguished polynomial),

e its prime ideals are only of following form: {0}, (p), (p, T) a ideals
(P), where P is an irreducible distinguished polynomial and (p, T) is
the only maximal ideal.
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|
Pseudoisomorphism

Definition (10)

We call two A-modules M, M’ pseudoisomorphic, denote M ~ M’, if there
is a homomorphism ¢ : M — M’ with a finite kernel and cokernel.

Obviously it is reflexive, it is NOT symetric (counterexample (p, T) ~ A,
but A 2 (p, T))

Lemma (12)
Let M, M', M" be modules such that M ~ M', M" ~ M". Then M ~ M" .

v

Lemma (13)

Let M, M', N, N’ be A-modules such that M ~ M’, N ~ N’. Then
MON~MpN.
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Some useful lemmas

Lemma (14)

Let R be a noetherian commutative ring, M finitely generated R-module.
Then every submodule N C M s finitely generated.

Lemma (9)

Let M be a finitely generated A-module and f,g € N\ are relatively prime.
If the ideal (f,g) annihilates M, then M is finite.

Lemma (11)

Assume that f, g € N\ are relatively prime. Then

© the natural homomorphism N\/(fg) — N/(f) @ N/(g) is an injection
with finite kernel

@ there exists an injective homomorphism N/(f) & N/(g) — N/(fg)
with a finite cokernel.

v
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N
Notation

Every finitely generated A-module M =2 A"/N. The submodule N C A" is

also finitely generated by (A11,...,A1n)s -y (Amis-- s Amn) € A" (Ais
noetherian). We will denote r(M) = (Ajj) mxn-
On the other hand we will denote

m(R) =A"/((A11,---,A1n), -, (Am1,- .-, Amn)) for each m x n matrix
R - (AU)an

Lemma (15)

Let A, B be matrices over the ring N\. Then
AlO -~
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Structure theorem

Theorem (16)

Let M be a finitely generated A-module. Then

M~ N @ (DFy A (p™) © (BJ_y M(P)). where 1. s, t, i, m; € Z are

J
non-negative integers and P; are irreducible distinguished polynomials.

v

Proof.

Let R = r(M). we will later show 6 operations which can change R to R’
so that

m(R) ~ m(R’)
or, in the case of operation 5

m(R) ~ m(R') & A/(p).

v
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Structure theorem

We will also show that R can be changed to R’ of the form

DS T |
0O X O ... ... ... 0
0 0 A O 0],
0O O 0 0
0 O .
0O O 0O ... 0

using finitely many of these operations, where A; are distinguished
polynomials.
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Structure theorem

Denote M" = m(R’). Pseudoisomorphism is transitive and is preserved by
sums, we have

Mo~ Mo @M PT) =

j=1

= A"/(()\l,O,...,0),...,(O,...,)\t,...,0))@@/\/(,3"1)’
j=1

where @7_; A/(p") comes from using operation 6. Moreover, by lemma
15

A" /((A1,0,...,0),...,(0, ... A, .., 0)) = A E EHA/(N),
i=1
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Structure theorem

Let Ay = [[5, Pf'. By lemma 11

A/(Hpe'> (N (P) & -+ @ (M(PE))-

Do the same for the rest of \; and we are done.
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Allowed operations

Operation 1.
Operation 2.

Operation 3.

Operation 4.

Operation 5.

Operation 6.

We may interchange two rows (columns).

We may add a multiple of a row (column) to another row
(column).

We may multiply a row (column) by A € A*.

If R contains a row (A1, pA2,...,pAn), p1 A1, then we may
change R to R’ which contains a row (A1, A2,...,\,) and all
elements of the first column except for A\; are multiplied by p.
If all elements in the first column of R are divisible by p*
and if there is a row (pXA1, p¥XAa, ..., p¥N,), p 1 A1, then we
may change R to R’ which contains a row (A1, A2, ..., \p)
and otherwise is the same as R.

If R contains a row (p¥A1, p¥)\2, ..., p*\,) and

(A1, AX2, ..., AN,) is also a relation for some A € A, p{ A
then we may change R to R’ which contains a row

(A1, A2,...,A,) and otherwise is the same as R.
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|
Operations 1-3

Operation 1. We may interchange two rows (columns).

Operation 2. We may add a multiple of a row (column) to another row
(column).

Operation 3. We may multiply a row (column) by A\ € A%,

Proof.

These row operations does not change the generated submodule and the
matrix changed by column operations coresponds to a module, that is
isomorphic to the module that corresponds to the original matrix by
following isomorphisms

@ (interchange ith and jth column)
ex+N +— e+ N prok#ij,
e+ N — e+N,
e+ N — e+ N.
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|
Operations 1-3

@ (add A-times jth column to ith column)

ex+N — e+ N pro k #j,
e+ N — e+ Xef+ N

e (multiply ith column by X)

ex+N — e+ N prok#i,
e+ N — Xel+ N,
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|
Operation 4

Operation 4. If R contains a row (A1, pA2, ..., pAp), p1 A1, then we may
change R to R’ which contains a row (A1, A2, ..., \,) and all
elements of the first column except for A\; are multiplied by p.

A1 pPA2 - pA, A Ao -+ Ap
o111 Q12 - Olp pa1r Q12 - Qip

m . ~m .
Om1 Op2 - Omp POm1 COp2 -+ Omp
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Operation 4
Proof.
Let M = m(R) =A"/N and My = m(R;y) = A" /Ny, where

A1 pr2 - pAp O

an a2 - oap 0

Ri=| °
aml an2 amn 0
1 0 0 -—p
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Operation 4

Using operations 1-3 and lemma, we know that

0 pr2 -+ pAn pM1
0 a2 -+ oa1p poin A1 A e A,
pailr o2 - g
m(R1) = m ~m !
0 anp -+ amn P&m1 .
0 X tee An A1 P&m1 COp2 -+ Omnp
1 0 --- 0 0
Claim: M ~ M;.

Let ¢ : A" — M; be a homomorphism given as

o((xay--5xn)) = (X1, -y Xn, 0) + Ny.

Jana Medkova Lambda-modules 14.4.2013 17 / 33



|
Operation 4

Element (x1,...,x,) € Ker(¢p) if there are a1,...,am, b,c € A such that

(X].’"'7Xn70) = al()\17pA2""7p)\n70)+."—‘I—am(aml?"'?amn?O)_‘_
+ b(1,0,...,0,—p) + c(0, A2, ..., Apy A1).

Therefore cA\; = bp and p | c nad b = )\1%.

(Xla s 7Xn70) = al(Al>p)‘27 s 7p)\n70) + -+ am(05m17 s 7amn70) +
C
+ ;(>ﬂvp>\27 .. ')p)\nvo)v

therefore (x1,...,x,) € N and ¢ is injective.
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Operation 4

On the other hand the cokernel is annihilated by (p, A1), because for
(X1, yXnt1) €M
p(xt, ..., Xnp1) + N1 =
= (px1,.- -, PXpr1) + (Xnt1,0,...,0, =pxpy1) + Ny =
= (px1 + Xpt1,-- -5 PXn, 0) + Ny € Im(p),
Ar(xt, ..y Xng1) + Ny =
= (Ax1,. s Axnt1) — (0, Xnt1 A2, -+ ) Xnt1An, Xnp1 A1) + Np =
= (A1x1, A1X2 — Xn41A2y - - -y A1Xn — Xnt1An, 0) + N1 € Im(P).

and is by lemma 9 finite.
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Operation 5

Operation 5. If all elements in the first column of R are divisible by p*
and if there is a row (pXA1, p¥Xa, ..., p¥\,), p 1 AL, then we

may change R to R’ which contains a row (A1, A2, ..., \p)
and otherwise is the same as K.
pk)\l pk)\2 tee pk/\n >\1 )\2 e )\n
k k
p o111 Q12 - Qip p 11 Q12 - Qip
m ~m | & M (p").
pkaml Op2 r Omp

k
P m1 Gp2  ccr Omp

14.4.2013 20 /33

Jana Medkova Lambda-modules



Operation 5
Proof.
Let M = m(R) =A"/N and My = m(R;y) = A" /Ny, where
pPKA PR - PR, 0
pfalr o1z - 1m0
Rl = :
pkaml Ap2 -+ Qmp 0
0 Ao o Ap A1
pk 0 0 _pk

Jana Medkova Lambda-modules 14.4.2013 21 /33



.
Operation 5

Using operations 1-3 and lemma 15, we know that

0 pkA2 -+ PR, PR
0 a2 -+ oa1p pran k)\l e Ap
0 : ~m p ?vn Q1n EB/\/(pk).
0 Qp2 - Omp pkaml .
0 A2 te An A1 pkaml vt Omp
pk 0 ... 0 0

Claim: M ~ M. Let ¢ : A" — M; be a homomorphism given as

o((x1y ...y xn)) = (X1, ..., Xn, 0) + Ny.
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Operation 5

Element (x1,...,x,) € Ker(y) if there are a1, ..., am, b, c € A such that

(Xla"'7Xn70) - 31(pk/\17---apk)\n70)+"'+3m(Pkam17---704mn70)+
+ b(pk707 SRR Oa _pk) =+ C(07 )\27 s 7)\n7 )\1)7

Therefore cA\; = bp* and p* | c nad b = Alﬁ.

(X17"‘7Xn70) - al(Pk/\la--~apk)\n70)+“'+am(Pkam17-~7ammO)+
C
+ ﬁ(pk)\la pk)\Zv R 7pkAn7 0)7

therefore (x1,...,x,,0) € N and ¢ is injective.
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Operation 5

On the other hand the cokernel is annihilated by (p, A1), because for
(X1, yXnt1) €M
p(xt, ..., Xnp1) + N1 =
= (px1,.- -, PXpr1) + (Xnt1,0,...,0, =pxpy1) + Ny =
= (px1 + Xpt1,-- -5 PXn, 0) + Ny € Im(p),
Ar(xt, ..y Xng1) + Ny =
= (Ax1,. s Axnt1) — (0, Xnt1 A2, -+ ) Xnt1An, Xnp1 A1) + Np =
= (A1x1, A1X2 — Xn41A2y - - -y A1Xn — Xnt1An, 0) + N1 € Im(P).

and is by lemma 9 finite.
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.
Operation 6

Operation 6. If R contains a row (p*\1, p¥Xa, ..., p¥\,) and
(A1, A2, ..., AN,) is also a relation for some A € A, pt A
then we may change R to R’ which contains a row

(A1, A2,...,An) and otherwise is the same as R.
k k K
p)‘l P)\2 p)\n )\1 )\2 )\n
Q11 Q12 st Qup Q11 Q12 ot Qg
m ~m
am1 Qp2  + QOmp am1 Qp2 -+ Omp
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Operation 6

Proof.

Let M = m(R) = A"/N, My = A"/Ny, where Ny = N + (Aq, ..., An)A.

7((x1, -5 %) + N) = (x1, ..., Xp) + Ni.

This is clearly a surjective homomorpshism so the cokernel is finite.
The kernel is

Ker(m) = (N4 (A1y -, A)A) /N 22 (A, .., AN/ (As - -, An)A N N).

The kernel is clearly annihilated by (), p*)

ML, dn) = (A, ) € (AL, A)ANN
Py dn) = (PFAL . PM ) € (AL, AANN.

and therefore finite by lemma 9.

v
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The last useful lemma

Lemma (17)

Using the six operations, every matrix R over N can be changed to a
diagonal matrix, which has only zeros or distinguished polynomials on the
diagonal.

Proof.

Define Weierstrass degree of element as follows: if x # 0, then x = p"PU
(see Theorem 3)

deg,, (x) = o0 jestlize x = 0 nebo n > 0;
BwX) = deg(P) jestlize n = 0.
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The last useful lemma

For R define deg‘(,f,()(R): Take all matrices (&};)mxn that can be a result of
applying finitely many of operations 1-6 on R that do not change (but
may use) the first k — 1 rows of R. We have min(deg,,(a};) | i > k,j > k)
for all these matrices. Then take deg&lf)(R) minimum of these minimums.
Assume the matrix is of form

D1 O
A B)’

where
A1 O 0
0 A 0
Drfl — )
0 ... ... A_1r-1

where deg!)(R) = deg(\;7) and r > 1.
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The last useful lemma

A1 O 0 0 0
0 oo 0 0
: " : 0 0
0 e A1 0 0 ,
a1 e .. a1, r—1 b171 e b17,,_r_|_1
dm—r+1,1  +-+  -+- @m—r4lr-1 bmfr+1 o bmfr+1,nfr+1
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The last useful lemma

We will show that:
@ if B # 0 then using operations 1-6 we can change the matrix to a

matrix, which is of form
D, 0
Al B/ 9

@ if B=0then A=0.
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The last useful lemma

Assume B # 0. Then deg(.,;)(R) < oo (otherwise we can use this
procedure)

@ we use operation 4, until A is divisible by greater power of p then B.
@ we use operation 5 on the row containing element divisible by lowest
power of p.
Let us assume that at by 1 is distinguished polynomial and

deg(b11) = deg(mf)(R) < 00. We can divide the rest of elements on the rth
row with remainder (theorem 1) and subtract a suitable multiple of rth
column from the rest of columns so all elements on rth row are
polynomials of degree less then deg(b;,1). Do the same for all A;;,
1<i<r—1sodeg(ay;)<deg(\i)proi<r—1.
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The last useful lemma

Assume by s # 0 for some s and it is divisible by lower power of p then by ;
for all t. Now use the procedure

@ use operation 4 until A is divisible by larger power of p then by s
@ use operation 4 on rth row with respect to by 1 until p{ bys,
which gives us contradiction.

Assume aj s # 0 for some s and it is divisible by lower power of p then ay ;
for all t. Use operation 4 with respect to element by ;. Thus we get

contradiction with deg(.,f)(R) = deg(\s,s) > deg(ay,s) = deg,,(a1,s)-
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The last useful lemma

Now let B = 0. By subtracting a suitable multiple of ith row, 1 < r —1,
we can have all a;; polynomials and deg(a; ;) < deg(};;). The all a;; are
divisible by p else we get contradiction. Assume a;; # 0 for some i/, and
it is divisible by lowest power of p on its row, suppose pX. Denote

A =TT/={ Aii. Surely ptX. Now

° ()\j;"kl,...,)\a” e N,
a;, aj r—
o(kpkl,...,pk L) e N.
If we then use operation 6, we get contradiction.
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