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Preliminaries
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symbol (successor) and 0 is a constant symbol.
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Preliminaries

e Numerical language: (S,0) where S is a unary function
symbol (successor) and 0 is a constant symbol.

e Numeral n is defined as S™(0).
e Language of arithmetic: (S, +,-,0,<).
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Preliminaries

Robinson arithmetic (denoted @) is a theory in the language of
arithmetic (we also use the symbol ¢ =") with the following
axioms:

Q 0+# S(x),

Q@ =z 70— (Jy)(z=5)),

@ S(x) =5 »z=y

Q@ zrz+0=uz,

Q@ z+S(y) =S(z+y),

Q@ z-0=0,

@z Sy =x-y+u,

Qr<y+ (F)(z+z=y).
Standard model of Robinson arithmetic is N' = (N, S, +, -, 0, <).
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Preliminaries

e We can assign a natural number to each formula (it is
called Godel’s number) so it makes sense to write ().
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function is computable.
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Preliminaries

e We can assign a natural number to each formula (it is
called Godel’s number) so it makes sense to write ().

We call a (total) function f : N* — N computable if there
exists a ¥q-formula §(T, y) that defines the function f.

A set is computable (or recursive) if its characteristic
function is computable.

A function F': N — N is represented in a numerical theory
T by a formula ¢ if

TEoe(al,...,ony) < y=F(al,...,ap)

for all aq,...,a, € N.
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Diagonal lemma

Let T' be an extension of the theory @ and let p(vg) be a formula
of T. Then there exists a sentence ¢* such that T ¢* <> p(¢*).
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Diagonal lemma

Let T' be an extension of the theory @ and let p(vg) be a formula
of T. Then there exists a sentence ¢* such that T ¢* <> p(¢*).

Proof.
Let D(z) = Sub(z, Vr(0), Num(z)) be a function that for each
formula a(x) returns a(a).

CANTOR’S DIAGONAL METHOD - PART II




Diagonal lemma

Let T' be an extension of the theory @ and let p(vg) be a formula
of T. Then there exists a sentence ¢* such that T ¢* <> p(¢*).

Proof.
Let D(z) = Sub(z, Vr(0), Num(z)) be a function that for each

formula a(x) returns a(a). D is computable. Let §(vg,v1) be a
formula representing D in Q). Then

Q F (Yu1)(8(B,v1) « v1 = B(B))

for each formula S(vg). Define

Y(vo) <> (Fv1)(6(vo,v1) & p(v1)).
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Diagonal lemma

Let T' be an extension of the theory @ and let p(vg) be a formula
of T. Then there exists a sentence ¢* such that T ¢* <> p(¢*).

Proof.

Let D(z) = Sub(z, Vr(0), Num(z)) be a function that for each
formula a(x) returns a(a). D is computable. Let §(vg,v1) be a
formula representing D in Q). Then

Q F (Yu1)(8(B,v1) « v1 = B(B))

for each formula S(vg). Define
P(vo) ¢ (Fv1)(6(vo, v1) & p(v1)).

Then T' - ¥(B) <+ ¢(B(B)) and we can choose ¢* as (). O
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Theory T proves:

" o () & (F01)(6(, 01) & p(v1)) &
© (Fui) (01 = D) & p(v1)) < (D)) <
< () < (¢’
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Formula 7(z) of a numerical theory T is a definition of truth in
T if for each sentence ¢ of T' the following statement holds:
TE @ 7(p).
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Formula 7(z) of a numerical theory T is a definition of truth in
T if for each sentence ¢ of T' the following statement holds:
TE @ 7(p).

Theory T is consistent if there is no formula ¢ such that T I ¢
and T F —p.
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Formula 7(z) of a numerical theory T is a definition of truth in
T if for each sentence ¢ of T' the following statement holds:
TE @ 7(p).

Definition
Theory T is consistent if there is no formula ¢ such that T I ¢
and T F —p.

| A

Definition
A set X of natural numbers is arithmetical if there is a formula

©(n) in the language of arithmetic such that each number n is
in X iff p(n) holds in the standard model of arithmetic.

\
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Formula 7(z) of a numerical theory T is a definition of truth in
T if for each sentence ¢ of T' the following statement holds:
TE @ 7(p).

Definition
Theory T is consistent if there is no formula ¢ such that T I ¢
and T F —p.

| A

Definition

A set X of natural numbers is arithmetical if there is a formula
©(n) in the language of arithmetic such that each number n is
in X iff p(n) holds in the standard model of arithmetic.

| A

Definition

Let L be a language and M an L-structure. Then
Th(M) = {p : ¢ is a sentence in L and M = ¢}.

A
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Theorem

@ There is no definition of truth in a consistent extension of
the theory Q.

@ Th(N) is not an arithmetical set.

v

A\
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Theorem

@ There is no definition of truth in a consistent extension of
the theory Q.

@ Th(N) is not an arithmetical set.

| A

Proof.

1) For a formula 7(x) in the language of T', there exists a
sentence ¢ such that 7' ¢ < =7(p). Thus, 7 cannot be a
definition of truth in 7'

A\
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Theorem

@ There is no definition of truth in a consistent extension of
the theory Q.

@ Th(N) is not an arithmetical set.

| A

Proof

1) For a formula 7(x) in the language of T', there exists a
sentence ¢ such that 7' ¢ < =7(p). Thus, 7 cannot be a
definition of truth in 7'

2) Let T = Th(N) and let 7(x) be a formula defining Th(N).
Then, for each sentence ¢ in the language of arithmetic, we have
THospeT o NET(p) < 7(p) €T. This means that

TF ¢ < 7(p), ie. 7is a definiton of truth in 7' — a
contradiction with 1). O

N
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A theory is recursively axiomatized if its set of axioms is
recursive.
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A theory is recursively axiomatized if its set of axioms is
recursive.

Prfr(x,y) is a formula that holds iff “y is a proof of x in T7.
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A theory is recursively axiomatized if its set of axioms is
recursive.

Prfr(x,y) is a formula that holds iff “y is a proof of x in T7.

Q is Yi-complete, i.e.

QFo(my,...,mp) &N Epmy,...,m

for a ¥1-formula p and my, ..., my € N.
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Godel’s first theorem

Theorem

Let T be a consistent and recursively axiomatized extension of
the theory Q. Then there exists a Il;-sentence in the language of
arithmetic which is true in N and unprovable in T.
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Godel’s first theorem

Theorem

Let T be a consistent and recursively axiomatized extension of
the theory Q. Then there exists a Il;-sentence in the language of
arithmetic which is true in N and unprovable in T.

Precisely: Let ©(x,y) be a X1-formula that defines Prip and let
v be a sentence such that Q v < —(3y)O(v,y). Then T ¥ v
and N = v.
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Godel’s first theorem

Theorem

Let T be a consistent and recursively axiomatized extension of
the theory Q. Then there exists a Il;-sentence in the language of
arithmetic which is true in N and unprovable in T.

Precisely: Let ©(x,y) be a X1-formula that defines Prip and let
v be a sentence such that Q v < —(3y)O(v,y). Then T ¥ v
and N = v.

Proof.

Suppose T+ v. Then Prfp(v, d) holds for some d € N, i.e.
QF (Fy)O(v,y) (from Xi-completeness). However,
T+ =(3y)O(v,y), which is a contradiction.
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Godel’s first theorem

Theorem

Let T be a consistent and recursively axiomatized extension of
the theory Q. Then there exists a Il;-sentence in the language of
arithmetic which is true in N and unprovable in T.

Precisely: Let ©(x,y) be a X1-formula that defines Prip and let
v be a sentence such that Q v < —(3y)O(v,y). Then T ¥ v
and N = v.

Proof.

Suppose T+ v. Then Prfp(v, d) holds for some d € N, i.e.

QF (Fy)O(v,y) (from X;-completeness). However,

T+ =(3y)O(v,y), which is a contradiction.

Let us prove N |= v. Suppose N = —w. Then N = O(v, d) for
some d € N. Thus, Q F O(v,d) so Prfr(v,d) holds, i.e. T+ v
and we obtain a contradiction. []
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Definition

Thy is the set of all sentences that are provable in T'.
nThr is the set of all sentences such that their negation is
provable in T'.
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Definition

Thy is the set of all sentences that are provable in T'.
nThr is the set of all sentences such that their negation is
provable in T'.

Definition

A theory is decidable if Thy is recursive.
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Definition

Thy is the set of all sentences that are provable in T'.
nThr is the set of all sentences such that their negation is
provable in T'.

Definition

A theory is decidable if Thy is recursive.

A theory T is complete if T' is consistent and for each sentence ¢
either T =@ or T = —p.
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Aj-inseparability

Theorem

Let T be a consistent numerical theory and let every Aq-subset
of N be represented in T' by some formula.
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Aj-inseparability

Theorem

Let T be a consistent numerical theory and let every Aq-subset
of N be represented in T' by some formula.
@ Suppose P C N separates Thy and nThy, i.e. P contains
one of the sets and is disjoint from the other one. Let
Ep = {{a,b) € N?; P(Sub(a, Vr(0), Num(b)))} be a relation.
Then for each Aj-set A C N, there exists a € N such that
A= EP [a]
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Aj-inseparability

Theorem

Let T be a consistent numerical theory and let every Aq-subset
of N be represented in T' by some formula.
@ Suppose P C N separates Thy and nThy, i.e. P contains
one of the sets and is disjoint from the other one. Let
Ep = {{a,b) € N?; P(Sub(a, Vr(0), Num(b)))} be a relation.
Then for each Aj-set A C N, there exists a € N such that
A= EP [a]
@ Thy and nThy cannot be separated by any Aq-set. In
particular, T is undecidable.
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Aj-inseparability

Proof.

1) Thy and nThy are disjoint because T is consistent. Denote
Sub(a, Vr(0), Num(b)) by Sb(a,b). Then

Ep = {{a,b) € N%; P(Sb(a,b))}. Let P C N be a set separating
Thy and nTh7; because of symmetry, we may suppose that
Thy C P. For a Aj-set A C N there exists a formula a with one
free variable Vr(0) such that

be A = Thp(Sb(a,b)) = P(Sh(a,b)),
bg A = nThr(Sb(a,b)) = —P(Sb(a,b)).

Therefore, b € A < Ep(a,b), i.e. Epla] = A.
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Aj-inseparability

Proof.

1) Thy and nThy are disjoint because T is consistent. Denote
Sub(a, Vr(0), Num(b)) by Sb(a,b). Then

Ep = {{a,b) € N%; P(Sb(a,b))}. Let P C N be a set separating
Thy and nTh7; because of symmetry, we may suppose that
Thy C P. For a Aj-set A C N there exists a formula a with one
free variable Vr(0) such that

be A = Thp(Sb(a,b)) = P(Sh(a,b)),
bg A = nThr(Sb(a,b)) = —P(Sb(a,b)).

Therefore, b € A < Ep(a,b), i.e. Epla] = A.

2) If a Aj-set P C N separates Thy and nThy, then also
A={a€N; -Ep(a,a)} is a Aj-set. From 1), there exists a € N
such that A = Ep[a]. Then we have

—FEp(a,a) < a € A< Ep(a,a) — a contradiction. O
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Undecidability

Let T be a consistent extension of the theory Q. Then T is
undecidable. Moreover, if T is recursively axiomatized, then T is
not complete.
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Undecidability

Corollary

Let T be a consistent extension of the theory Q. Then T is
undecidable. Moreover, if T is recursively axiomatized, then T is
not complete.

Proof.

Direct consequence of the previous theorem and the fact that
every Aj-relation can be represented in (Q by a Xq-formula. [J

| 5\

v
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Ultrafilters

An ultrafilter over a set X is a set Z C P(X) such that

Q@ if Ac % and AC B then B € %,

Q if A,Be % then ANB € %,

Q@ 0&Z %, and

@ for each subset A C X, exactly one of A, X \ A isin Z.
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Ultrafilters

An ultrafilter over a set X is a set Z C P(X) such that

Q@ if Ac % and AC B then B € %,

Q if A,Be % then ANB € %,

Q@ 0&Z %, and

@ for each subset A C X, exactly one of A, X \ A isin Z.

Definition

Let % be an ultrafilter over I. For two elements f, g of the
cartesian product [[;.; A;, we define an equivalence by f =4 g
iff {i el: f(i)=g(i)} € %. We denote the equivalence class of
f by fa,. The ultraproduct is then defined as

[[Ai/% ={fu:Fe]] A}

el i€l

Jiri Sykora CANTOR’S DIAGONAL METHOD - PART II



1.0§’s theorem

Let L be a first-order language, I a non-empty set and
(A; : ¢ € I) a family of non-empty L-structures. Let ¢(Z) be a
formula of L and @ a tuple of elements of the product [[; A;.

We define the Boolean value of ¢(@), denoted ||¢(a)]|, to be the

set {i € I: A; = ¢(a(i))}.
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1.0§’s theorem

Definition

Let L be a first-order language, I a non-empty set and

(A; i € I) a family of non-empty L-structures. Let ¢(T) be a
formula of L and @ a tuple of elements of the product [[; A;.
We define the Boolean value of ¢(@), denoted ||¢(a)]|, to be the

set {i € I: A; = ¢(a(i))}.

Theorem

Let L be a first-order language, (A;:i € I) a non-empty family
of non-empty L-structures and % an ultrafilter over I. Then for
any formula ¢(Z) of L and tuple a of elements of [[; Ai,

[T40% Ed@n)  ifandontyif o@] €.
1
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Ultrapowers

Definition

We call the ultraproduct [[; A;/% the ultrapower of A modulo
% if A; = A for each i € I. We denote the ultrapower by A’ /% .
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Ultrapowers

We call the ultraproduct [[; A;/% the ultrapower of A modulo
% if A; = A for each i € I. We denote the ultrapower by A’ /% .

Definition
The diagonal map e : A — Al /% is defined by e(b) = a4 where
a(i)=>bforall i € I.
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Ultrapowers

Definition

We call the ultraproduct [[; A;/% the ultrapower of A modulo
% if A; = A for each i € I. We denote the ultrapower by A’ /% .

Definition
The diagonal map e : A — Al /% is defined by e(b) = a4 where
a(i)=>bforall i € I.

Corollary

| \

If AL)% is an ultrapower of A, then the diagonal map
e: A— AL/ is an elementary embedding.
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Non-standard model of arithmetic

Definition

An ultrafilter % over X is principal if there exists x € X such
that = {AC X :x € A}
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Non-standard model of arithmetic

An ultrafilter % over X is principal if there exists x € X such
that = {AC X :x € A}

Remark

If % is a principal ultrafilter, then the ultraproduct [[; A;/% s
1somorphic to one of the A;.
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Non-standard model of arithmetic

Definition

An ultrafilter % over X is principal if there exists x € X such
that = {AC X :x € A}

Remark
If % is a principal ultrafilter, then the ultraproduct [[; A;/% s
1somorphic to one of the A;.

| \

Corollary

There is a model A of the theory of natural numbers and a € A
such that A |=a > n for every natural number n.
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Non-standard model of arithmetic

Definition

An ultrafilter % over X is principal if there exists x € X such
that = {AC X :x € A}

Remark
If % is a principal ultrafilter, then the ultraproduct [[; A;/% s
1somorphic to one of the A;.

Corollary

There is a model A of the theory of natural numbers and a € A
such that A |=a > n for every natural number n.

Proof.

Let % be a non-principal ultrafilter over N. Then A = NY/% is
a model of the theory of natural numbers. Take a = by where
b(i) =i for each i € N. O
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Thank you for your attention!
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