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Jaroslav Šeděnka Dual AES



Overview

1 Galois Field GF (28)

2 Description of AES

3 What operations do you need to compute AES?

4 Dual AES

5 What can you do with dual AES?
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Galois Field GF (28)

Consider the field GF (2) = {0, 1}.

For any irreducible polynomial p(x) ∈ GF (2)[x ], we can construct
the factorring GF (28) := GF (2)[x ]/(p(x)).

Then, GF (28) is up to isomorphism the unique finite field with 28

elements. Trivially, GF (28) is a vector space over GF (2).

The multiplicative group of GF (28) is cyclic.
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Operations in the GF (28)

Addition

a(x)⊕ b(x) = (a7 ⊕ b7)x7 + (a6 ⊕ b6)x6 + ... + (a0 ⊕ b0), where
the a⊕ b denotes XOR of bits a, b.

For example 10100110⊕ 10000011 = 00100101.
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Operations in the GF (28)

Multiplication

a(x) • b(x) = a(x)b(x) mod (x8 + x4 + x3 + x + 1)

10100110 • 10000011 = 01110110

(x7 + x5 + x2 + x) • (x7 + x + 1) =
(x14 + x12 + x9 + x7 + x8 + x6 + x3 + x2 + x7 + x5 + x2 + x)
mod (x8 + x4 + x3 + x + 1) = x6 + x5 + x4 + x2 + x
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Operations in the GF (28)

Multiplicative inverse

a(x)−1 modulo (x8 + x4 + x3 + x + 1) can be computed using
Extended Euclidean Algorithm.

Inverse of 10100110 is ...
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Squaring in GF (28)

Proposition

The function f (x) = x2 is GF (2)-linear in GF (28).

Proof.

The only scalar multiples are 0, 1.
Let a, b ∈ GF (28). The characteristic of GF (28) is 2, thus
(a⊕ b)2 = a2 ⊕ 2ab ⊕ b2 = a2 ⊕ b2.

So, there exists matrix Q with boolean coefficients, such that
Qx = x2. Also, the matrix Q is invertible.
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Advanced Encryption Standard (AES)

symmetric block cipher

current NIST standard

proposed in 1999 by J. Daemen and V. Rijmen (Rijndael)

substitution-permutation network

block size is fixed (128 bits), key size is variable (128, 194 or
256 bits)

in this lecture, the AES-128 will be described
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AES State Array

Data representation:

intermediate data block is stored in a 4x4
array of bytes

Each byte si ,j is interpreted as an element
of
GF (28) = GF (2)[x ]/(x8 +x4 +x3 +x + 1)

Example: byte 10100110 is represented as
x7 + x5 + x2 + x

Also, 10100110 can be written as {A6}
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AES Algorithm overview

10 round of AES are
performed

initial and final rounds are
slightly different
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AES SubBytes

Byte-wise substitution:

take the multiplicative
inverse bi ,j = a−1i ,j in GF (28)

apply an affine
transformation
b′i ,j = Abi ,j + c
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AES SubBytes
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AES ShiftRows
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AES MixColumns

b(y) = a(y)⊗ c(y) mod y4 + 1

as polynomials in GF (28)[y ].

c(y) =
{03}y3 + {01}y2 + {01}y + {02}
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AES AddRoundKey

Whole state array is XORed with
expanded Round key.

Jaroslav Šeděnka Dual AES



What operations do you need to compute AES?

GF (28) operations

addition x ⊕ y

XOR with a constant x ⊕ c

multiplication x • y
multiplication by a constant x • c
raise to any power in GF (28), including to power −1

Non-GF (28) operations

permutation of n-tuples

GF (2)-linear transformation

table lookup

Let’s call these EGF (28) operations.
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Dual cipher

Definition: Dual Ciphers

Two ciphers E ,E ′ are called dual ciphers, if there exist invertible
functions f (·), g(·) and h(·) such that for each plaintext P and key
K

f (EK (P)) = E ′g(K)(h(P))
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Square cipher

Definition: Square Cipher

Given a cipher E that uses only EGF (28) operations, we define the
cipher E 2 by modifying the constants of E this way:

whenever there is XOR with c in E , there is XOR with c2 in
E 2

whenever there is multiplication by c in E , there is
multiplication by c2 in E 2

whenever there is multiplication by matrix A in E , there is
multiplication by QAQ−1 in E 2

whenever there is table lookup S(x) in E , there is QS(Q−1x)
in E 2.
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Square AES

Theorem

For any cipher E using only operations in EGF (28), the ciphers E
and E 2 are dual ciphers.

Proof

We need to show the ”duality” for all operations in EGF (28), that
is, (EK (P))2 = E 2

K2(P2) for all P,K . Note that by (EK (P))2 we
mean byte-wise squaring.

addition: (x ⊕ y)2 = x2 ⊕ y2 is exactly the linearity of
squaring in GF (28).

multiplication: (x • y)2 = x2 • y2

exponentiation: (xk)2 = (x2)k

permutation of n-tuples is trivial
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Square AES

Proof.

linear transformation: (Ax)2 = QAQ−1x2 = QAx = (Ax)2

table lookup: S(x)2 = QS(Q−1x).

By structural induction, (EK (P))2 = E 2
K2(P2).

In a similar way, any invertible linear transformation can be used to
create dual ciphers. Mainly, change of irreducible polynomial p(x)
used to construct the Galois Field is also linear.
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What can you do with dual ciphers?

Different dual variants of a cipher may be faster for
encryption/decryption

When the attacker has partial or total access to the
encryption process, change of bases during the computatiton
can increase security

The property of cipher being nontrivialy dual to itself can be
abused for cryptoanalysis
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Thank you for your attention

Questions, comments?
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