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Intro

Our setting: V is a vector space, T is a linear operator.
We want to decompose T, in order to understand it.

What is a good decomposition of a an operator?
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Good decomposition — an example

Operator T is diagonalisable if there exist a basis such that T
is represented by a diagonal matrix.
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Operator T is diagonalisable if there exist a basis such that T
Intro is represented by a diagonal matrix.

m We can then easily compute rank, determinant, range,
kernel ...

m We can readily identify some “natural” subspaces on
which T is well-behaved — the characteristic spaces.

m However, not every T is diagonalisable.
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Characteristic polynomial of the operator T is the polynomial
det(A — xI), where A is a matrix that represents T.

Characteristic
and minimal
polynomial
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e Characteristic polynomial of the operator T is the polynomial
det(A — xI), where A is a matrix that represents T.

Characteristic
and minimal

d minin Root ¢ of the characteristic polynomial is called characteristic
polynomia . .
value, and its corresponding space — the kernel of the

mapping A — ¢l — is called characteristic space.
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: Characteristic polynomial of the operator T is the polynomial

det(A — xI), where A is a matrix that represents T.

Characteristic

and minimal Root ¢ of the characteristic polynomial is called characteristic
polynomia . .

value, and its corresponding space — the kernel of the
mapping A — ¢l — is called characteristic space.

Characteristic spaces are independent and invariant — which is
pretty cool.



Primary and

Cyclic Decom-

position
Theorems,
Part |

Vojta Tima

Characteristic
and minimal
polynomial

Characteristic polynomial — example




Minimal polynomial

Primary and
Cyclic Decom-
position
Theorems,
Part |

A polynomial p is called annihilating if p(T) = 0.

Vojta Tima
Annihilating polynomials form an ideal, and there is a unique
monic generator — minimal polynomial M of T.
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Annihilating polynomials form an ideal, and there is a unique
monic generator — minimal polynomial M of T.

Characteristic
and minimal

polynomial Minimal polynomial always exists, and divides the characteristic
polynomial (the Cayley-Hamilton theorem).
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A polynomial p is called annihilating if p(T) = 0.

Vojta Tima
Annihilating polynomials form an ideal, and there is a unique
monic generator — minimal polynomial M of T.

Characteristic
and minimal

polynomial Minimal polynomial always exists, and divides the characteristic
polynomial (the Cayley-Hamilton theorem).

Operator T is diagonalisable iff M is a product of distinct
monomials.

Operator T is triangulable iff M is a product of monomials
(i.e., we are in a algebraically closed field).
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Characteristic O 1 0 1

and mini.mal ]_ O 1 0 3 _ 3 _ —

polynomial 01 0 1 here A> = 4A, thus (x 4x)(A)=0
1010

= My € {x(x+2),x(x —2),(x +2)(x — 2),x(x + 2)(x — 2)}
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Subspaces Wi, ..., W are independent if whenever we have
aj € W such that )" a; =0, then a; = 0.

Direct sum
decomposition
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Subspaces Wi, ..., W are independent if whenever we have
aj € W such that )" a; =0, then a; = 0.

For independent subspaces the space W spanned by all W; is
bl called direct sum of the subspaces W; and is denoted by @@ W;.
Example: characteristic spaces, skew-symmetric matrices.
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A projection is a mapping E such that E? = E.

Direct sum
decomposition
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A projection is a mapping E such that E? = E.
Some properties:
. m acRng(E) <= Ea=a,
irect sum
decomposition u V — Rng(E) st ker(E)’

m E is diagonalisable.
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m £E =0.

But, the converse also holds! Whenever we have such mappings
E;, the subspaces Rng(E;) form a direct sum decomposition.

Direct sum
decomposition

Proof.
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But, the converse also holds! Whenever we have such mappings
E;, the subspaces Rng(E;) form a direct sum decomposition.

Direct sum
decomposition

Proof.
From | = )" E; we have that Rng(E;) spans V.



Projections and direct sums

Primary and Whenever we have direct sum decomposition into W;, we also

Cyclic Decom-

position have mappings E; such that
Fart| m Fa=) FEa(thatis, | =) E),
Vojta Tiima . EI.2 _ E,-,
m £E =0.

But, the converse also holds! Whenever we have such mappings
E;, the subspaces Rng(E;) form a direct sum decomposition.

Direct sum
decomposition

Proof.

From | = )" E; we have that Rng(E;) spans V. Let a= )" a;,
assume a; = E;b;. Then

Eja= Z Ejai = Z EiE:b; = Ejb; = a;.
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A necessary and sufficient condition for W;'s to be invariant
under T is that E;T = TE; (for every i).

Direct sum
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Proposition

A necessary and sufficient condition for W;'s to be invariant
under T is that E;T = TE; (for every i).

Direct sum
decomposition

Proof.

Let T commute, a € W;. Then
Ta= TEja= E;Ta = Ta € Rng(E;).
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Proposition

A necessary and sufficient condition for W;'s to be invariant
under T is that E;T = TE; (for every i).

Direct sum
decomposition

Proof.

Let T commute, a € W;. Then

Ta= TEja= E;Ta = Ta € Rng(E;).

Let W; be invariant. Take a=>_ E;a, Ta= ) TE;a,
TE,-a = E,‘b,’.
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Part |
Vojta Ttma and that the restrictions of T are in some elementary form.

Proposition

A necessary and sufficient condition for W;'s to be invariant
under T is that E;T = TE; (for every i).

Direct sum
decomposition

Proof.

Let T commute, a € W;. Then

Ta= TEja= E;Ta = Ta € Rng(E;).

Let W; be invariant. Take a=>_ E;a, Ta= ) TE;a,

TE;a = E;b;. Then E;TE;a = E;E;b;, thus

EjTa = Ejb; = TEja. O
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0 -1 0

1 0 0,
Direct sum 0 O 2
decomposition

its characteristic and minimal polynomial are (x — 2)(x? + 1),
thus it is not diagonalisable.
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0 -1 0

1 0 0,
Direct sum 0 O 2
decomposition

its characteristic and minimal polynomial are (x — 2)(x? + 1),
thus it is not diagonalisable.

But! Ker((T2+ 1)) and Ker((T — 2/)) together span V,
hooray!
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Let p=T]; p;" be the minimal polynomial of T, where p; are
distinct irreducible monic polynomials; and let
W; = Ker(p[(T)). Then

m @, W, is a direct sum decomposition of V,

Direct sum

dleamasiden m W;’s are invariant under T,

m the minimal polynomial for restriction of T on W; is p!'.
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s Let p=T]; p;" be the minimal polynomial of T, where p; are
distinct irreducible monic polynomials; and let
W; = Ker(p[(T)). Then

m @, W, is a direct sum decomposition of V,

Direct sum

dleamasiden m W;’s are invariant under T,

m the minimal polynomial for restriction of T on W; is p!'.

Proof idea: we shall reach the W;'s by constructing projections
— by finding polynomials h; such that h;(T) is | on W; and 0
on VVj;g,'.
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Jj
Z; figi=1.

Direct sum
decomposition
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Let fi = p/p; = H#,-pjrj. Thus there are g;'s such that
Z; figi = 1.

We set E; = h; = figj. As p divides f;f;, we have E;E; = 0.
From primality we have Y E; =/, and thus the E;'s are
Direct sum projections and give rise to a direct sum decomposition.

decomposition

Vojta Tima
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Let fi = p/p; = H#,-pjrj. Thus there are g;'s such that
Z; figi = 1.

We set E; = h; = figj. As p divides f;f;, we have E;E; = 0.
From primality we have Y E; =/, and thus the E;'s are
projections and give rise to a direct sum decomposition.

Take a € Rng(E;), then
P (T)a = A T)Esa = o (T TIai(Tha =0,

Vojta Tima

Direct sum
decomposition
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o Let fi = p/p; = H#,-pjrj. Thus there are g;'s such that

Z; figi = 1.

We set E; = h; = figj. As p divides f;f;, we have E;E; = 0.

From primality we have Y E; =/, and thus the E;'s are

projections and give rise to a direct sum decomposition.

Take a € Rng(E;), then

pi(T)a = pi(T)Eia = pl(T)f(T)g(T)a=0.

Take a € W, then p;' divides f;gj, thus Eja =0 and Eja = a.

Vojta Tima

Direct sum
decomposition
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R et f—p/p = % Thus th ’s such th
et fi =p/p; —H#,-pj . Thus there are g;'s such that
Z; figi = 1.
We set E; = h; = figj. As p divides f;f;, we have E;E; = 0.
From primality we have Y E; =/, and thus the E;'s are
projections and give rise to a direct sum decomposition.

Take a € Rng(E;), then
P (T)a = A T)Esa = o (T TIai(Tha =0,

Take a € W, then p;' divides f;gj, thus Eja =0 and Eja = a.

Let g be such that g(T;) = 0. Then g(T)fi(T) =0, thus p;'f;
divides gf;. O]

Vojta Tima

Direct sum
decomposition
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Let v be a finite-dimensional vector in V, by Z(v) = Z(v, T)
ve denote the cyclic subspace generated by v — it is the
smallest T-invariant subspace containing v, that is,

Z(v) = span{v, Tv, T?v,...} = {f(T)v: f(X) € F[X]}.

Olin's
lemmata

Again, the minimal polynomial f,(X) such that £,(T)v =0 is
called the T-annihilator of v.
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polynomial of restriction of T to Z(v) is f,(T).

Olin's
lemmata
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{v, Tv,..., T4&#(X)=11 is 3 basis of Z(v). The minimal
polynomial of restriction of T to Z(v) is f,(T).

Let p(X) be an irreducible factor of f,(X) of degree d.
The set {v, Tv,..., T9"!v} is linearly independent, and

e Z(v) =span{v, Tv,..., T4 v} @ Z(p(T)v).
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ol e Z(v) ={f(T)v: deg f(X) < deg ,(X)} and
{v, Tv,..., T4&#(X)=11 is 3 basis of Z(v). The minimal
polynomial of restriction of T to Z(v) is f,(T).

Let p(X) be an irreducible factor of f,(X) of degree d.
The set {v, Tv,..., T9"!v} is linearly independent, and

e Z(v) =span{v, Tv,..., T v} @ Z(p(T)v).

e If £,(X) and f,(X) are relatively prime,

Z(u+v)=2Z(v)® Z(u) and f,1,(X) = fu(X)f,(X).
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Take w € Z(u) N Z(v), then for some h(X) and g(X) we have
w = h(T)v=g(T)u, thus ,(T)w = £,(T)h(T)v =0 and
similarly f,(T)w = 0.

Vojta Tima

Olin's

lemmata
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w = h(T)v=g(T)u, thus ,(T)w = £,(T)h(T)v =0 and
similarly f,(T)w = 0. Therefore, f,(X) divides both f,(X) and
fw(X) = Z(v)+ Z(u) = Z(v) & Z(u).

Olin's
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Vojta Tima Take w € Z(u) N Z(v), then for some h(X) and g(X) we have
w = h(T)v=g(T)u, thus ,(T)w = £,(T)h(T)v =0 and
similarly f,(T)w = 0. Therefore, f,(X) divides both f,(X) and
fw(X) = Z(v)+ Z(u) = Z(v) & Z(u).

Since v+ u € Z(v) @ Z(u), we have Z(v + u) C Z(v) @ Z(u).

Olin's

lemmata
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Vojta Tima Take w € Z(u) N Z(v), then for some h(X) and g(X) we have
w = h(T)v=g(T)u, thus ,(T)w = £,(T)h(T)v =0 and
similarly f,(T)w = 0. Therefore, f,(X) divides both f,(X) and
fw(X) = Z(v)+ Z(u) = Z(v) ® Z(u).
Since v+ u € Z(v) @ Z(u), we have Z(v + u) C Z(v) @ Z(u).

Olin's There are a(X) and b(X) so that 1 = a(X)f,(X) + b(X)fu(X).
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Vojta Tima Take w € Z(u) N Z(v), then for some h(X) and g(X) we have
w = h(T)v=g(T)u, thus ,(T)w = £,(T)h(T)v =0 and
similarly f,(T)w = 0. Therefore, f,(X) divides both f,(X) and
fw(X) = Z(v)+ Z(u) = Z(v) & Z(u).
Since v+ u € Z(v) ® Z(u), we have Z(v + u) C Z(v) ® Z(u).

Olin's There are a(X) and b(X) so that 1 = a(X)f,(X) + b(X)fu(X).
Then,

lemmata

v=a(T),(T)v+ b(T)u(T)v=>b(T),(T)(u+v).
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