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Preliminaries

Numerical language: 〈S, 0〉 where S is a unary function
symbol (successor) and 0 is a constant symbol.
Numeral n is defined as Sn(0).
Language of arithmetic: 〈S,+, ·, 0,≤〉.
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Preliminaries

Robinson arithmetic (denoted Q) is a theory in the language of
arithmetic (we also use the symbol “ =”) with the following
axioms:

1 0 6= S(x),
2 x 6= 0→ (∃y)(x = S(y)),
3 S(x) = S(y)→ x = y,
4 x+ 0 = x,
5 x+ S(y) = S(x+ y),
6 x · 0 = 0,
7 x · S(y) = x · y + x,
8 x ≤ y ↔ (∃z)(z + x = y).

Standard model of Robinson arithmetic is N = 〈N, S,+, ·, 0,≤〉.
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Preliminaries

We can assign a natural number to each formula (it is
called Gödel’s number) so it makes sense to write ϕ(ϕ).
We call a (total) function f : Nn → N computable if there
exists a Σ1-formula δ(x, y) that defines the function f .
A set is computable (or recursive) if its characteristic
function is computable.
A function F : Nn → N is represented in a numerical theory
T by a formula ϕ if

T ` ϕ(a1, . . . , an, y)↔ y = F (a1, . . . , an)

for all a1, . . . , an ∈ N.
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Diagonal lemma

Lemma
Let T be an extension of the theory Q and let ϕ(v0) be a formula
of T . Then there exists a sentence ϕ∗ such that T ` ϕ∗ ↔ ϕ(ϕ∗).

Proof.
Let D(x) = Sub(x,Vr(0),Num(x)) be a function that for each
formula α(x) returns α(α). D is computable. Let δ(v0, v1) be a
formula representing D in Q. Then

Q ` (∀v1)(δ(β, v1)↔ v1 = β(β))

for each formula β(v0). Define

ψ(v0)↔ (∃v1)(δ(v0, v1) & ϕ(v1)).

Then T ` ψ(β)↔ ϕ(β(β)) and we can choose ϕ∗ as ψ(ψ).
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Theory T proves:

ϕ∗ ↔ ψ(ψ)↔ (∃v1)(δ(ψ, v1) & ϕ(v1))↔
↔ (∃v1)(v1 = D(ψ) & ϕ(v1))↔ ϕ(D(ψ))↔

↔ ϕ(ψ(ψ))↔ ϕ(ϕ∗).
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Definition
Formula τ(x) of a numerical theory T is a definition of truth in
T if for each sentence ϕ of T the following statement holds:
T ` ϕ↔ τ(ϕ).

Definition
Theory T is consistent if there is no formula ϕ such that T ` ϕ
and T ` ¬ϕ.

Definition
A set X of natural numbers is arithmetical if there is a formula
ϕ(n) in the language of arithmetic such that each number n is
in X iff ϕ(n) holds in the standard model of arithmetic.

Definition
Let L be a language andM an L-structure. Then
Th(M) = {ϕ : ϕ is a sentence in L andM |= ϕ}.
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Theorem
1 There is no definition of truth in a consistent extension of

the theory Q.
2 Th(N ) is not an arithmetical set.

Proof.
1) For a formula τ(x) in the language of T , there exists a
sentence ϕ such that T ` ϕ↔ ¬τ(ϕ). Thus, τ cannot be a
definition of truth in T .
2) Let T = Th(N ) and let τ(x) be a formula defining Th(N ).
Then, for each sentence ϕ in the language of arithmetic, we have
T ` ϕ⇔ ϕ ∈ T ⇔ N |= τ(ϕ)⇔ τ(ϕ) ∈ T . This means that
T ` ϕ↔ τ(ϕ), i.e. τ is a definiton of truth in T – a
contradiction with 1).

Jiří Sýkora CANTOR’S DIAGONAL METHOD - PART II



Theorem
1 There is no definition of truth in a consistent extension of

the theory Q.
2 Th(N ) is not an arithmetical set.

Proof.
1) For a formula τ(x) in the language of T , there exists a
sentence ϕ such that T ` ϕ↔ ¬τ(ϕ). Thus, τ cannot be a
definition of truth in T .
2) Let T = Th(N ) and let τ(x) be a formula defining Th(N ).
Then, for each sentence ϕ in the language of arithmetic, we have
T ` ϕ⇔ ϕ ∈ T ⇔ N |= τ(ϕ)⇔ τ(ϕ) ∈ T . This means that
T ` ϕ↔ τ(ϕ), i.e. τ is a definiton of truth in T – a
contradiction with 1).

Jiří Sýkora CANTOR’S DIAGONAL METHOD - PART II



Theorem
1 There is no definition of truth in a consistent extension of

the theory Q.
2 Th(N ) is not an arithmetical set.

Proof.
1) For a formula τ(x) in the language of T , there exists a
sentence ϕ such that T ` ϕ↔ ¬τ(ϕ). Thus, τ cannot be a
definition of truth in T .
2) Let T = Th(N ) and let τ(x) be a formula defining Th(N ).
Then, for each sentence ϕ in the language of arithmetic, we have
T ` ϕ⇔ ϕ ∈ T ⇔ N |= τ(ϕ)⇔ τ(ϕ) ∈ T . This means that
T ` ϕ↔ τ(ϕ), i.e. τ is a definiton of truth in T – a
contradiction with 1).

Jiří Sýkora CANTOR’S DIAGONAL METHOD - PART II



Definition
A theory is recursively axiomatized if its set of axioms is
recursive.

Definition
PrfT (x, y) is a formula that holds iff “y is a proof of x in T ”.

Fact
Q is Σ1-complete, i.e.

Q ` ϕ(m1, . . . ,mk)⇔ N |= ϕ[m1, . . . ,mk]

for a Σ1-formula ϕ and m1, . . . ,mk ∈ N.
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Gödel’s first theorem

Theorem
Let T be a consistent and recursively axiomatized extension of
the theory Q. Then there exists a Π1-sentence in the language of
arithmetic which is true in N and unprovable in T .
Precisely: Let Θ(x, y) be a Σ1-formula that defines PrfT and let
ν be a sentence such that Q ` ν ↔ ¬(∃y)Θ(ν, y). Then T 0 ν
and N |= ν.

Proof.
Suppose T ` ν. Then PrfT (ν, d) holds for some d ∈ N, i.e.
Q ` (∃y)Θ(ν, y) (from Σ1-completeness). However,
T ` ¬(∃y)Θ(ν, y), which is a contradiction.
Let us prove N |= ν. Suppose N |= ¬ν. Then N |= Θ(ν, d) for
some d ∈ N. Thus, Q ` Θ(ν, d) so PrfT (ν, d) holds, i.e. T ` ν
and we obtain a contradiction.
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Definition
ThT is the set of all sentences that are provable in T .
nThT is the set of all sentences such that their negation is
provable in T .

Definition
A theory is decidable if ThT is recursive.

Definition
A theory T is complete if T is consistent and for each sentence ϕ
either T |= ϕ or T |= ¬ϕ.
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∆1-inseparability

Theorem
Let T be a consistent numerical theory and let every ∆1-subset
of N be represented in T by some formula.

1 Suppose P ⊆ N separates ThT and nThT , i.e. P contains
one of the sets and is disjoint from the other one. Let
EP = {〈a, b〉 ∈ N2; P (Sub(a,Vr(0),Num(b)))} be a relation.
Then for each ∆1-set A ⊆ N, there exists a ∈ N such that
A = EP [a].

2 ThT and nThT cannot be separated by any ∆1-set. In
particular, T is undecidable.
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∆1-inseparability

Proof.
1) ThT and nThT are disjoint because T is consistent. Denote
Sub(a,Vr(0),Num(b)) by Sb(a, b). Then
EP = {〈a, b〉 ∈ N2; P (Sb(a, b))}. Let P ⊆ N be a set separating
ThT and nThT ; because of symmetry, we may suppose that
ThT ⊆ P . For a ∆1-set A ⊆ N there exists a formula a with one
free variable Vr(0) such that

b ∈ A ⇒ ThT (Sb(a, b))⇒ P (Sb(a, b)),

b 6∈ A ⇒ nThT (Sb(a, b))⇒ ¬P (Sb(a, b)).

Therefore, b ∈ A⇔ EP (a, b), i.e. EP [a] = A.
2) If a ∆1-set P ⊆ N separates ThT and nThT , then also
A = {a ∈ N; ¬EP (a, a)} is a ∆1-set. From 1), there exists a ∈ N
such that A = EP [a]. Then we have
¬EP (a, a)⇔ a ∈ A⇔ EP (a, a) – a contradiction.
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∆1-inseparability
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Undecidability

Corollary
Let T be a consistent extension of the theory Q. Then T is
undecidable. Moreover, if T is recursively axiomatized, then T is
not complete.

Proof.
Direct consequence of the previous theorem and the fact that
every ∆1-relation can be represented in Q by a Σ1-formula.
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Ultrafilters

Definition
An ultrafilter over a set X is a set U ⊆ P(X) such that

1 if A ∈ U and A ⊆ B then B ∈ U ,
2 if A,B ∈ U then A ∩B ∈ U ,
3 ∅ 6∈ U , and
4 for each subset A ⊆ X, exactly one of A,X \A is in U .

Definition
Let U be an ultrafilter over I. For two elements f, g of the
cartesian product

∏
i∈I Ai, we define an equivalence by f ≡U g

iff {i ∈ I : f(i) = g(i)} ∈ U . We denote the equivalence class of
f by fU . The ultraproduct is then defined as∏

i∈I
Ai/U = {fU : f ∈

∏
i∈I

Ai}.
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Łoś’s theorem

Definition
Let L be a first-order language, I a non-empty set and
(Ai : i ∈ I) a family of non-empty L-structures. Let φ(x) be a
formula of L and a a tuple of elements of the product

∏
I Ai.

We define the Boolean value of φ(a), denoted ‖φ(a)‖, to be the
set {i ∈ I : Ai |= φ(a(i))}.

Theorem
Let L be a first-order language, (Ai: i ∈ I) a non-empty family
of non-empty L-structures and U an ultrafilter over I. Then for
any formula φ(x̄) of L and tuple ā of elements of

∏
I Ai,∏

I

Ai/U |= φ(āU ) if and only if ‖φ(ā)‖ ∈ U .
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Ultrapowers

Definition
We call the ultraproduct

∏
I Ai/U the ultrapower of A modulo

U if Ai = A for each i ∈ I. We denote the ultrapower by AI/U .

Definition

The diagonal map e : A→ AI/U is defined by e(b) = aU where
a(i) = b for all i ∈ I.

Corollary

If AI/U is an ultrapower of A, then the diagonal map
e : A→ AI/U is an elementary embedding.
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Non-standard model of arithmetic

Definition
An ultrafilter U over X is principal if there exists x ∈ X such
that U = {A ⊆ X : x ∈ A}.

Remark
If U is a principal ultrafilter, then the ultraproduct

∏
I Ai/U is

isomorphic to one of the Ai.

Corollary
There is a model A of the theory of natural numbers and a ∈ A
such that A |= a > n for every natural number n.

Proof.

Let U be a non-principal ultrafilter over N. Then A = NN/U is
a model of the theory of natural numbers. Take a = bU where
b(i) = i for each i ∈ N.
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Thank you for your attention!
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