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Statement of the theorem

Theorem (Cyclic Decomposition Theorem, CDT)

Let T be a linear operator on the finite dimensional vector
space V over F. Then there are vectors v1, v2, . . . , vr ∈ V with
T -annihilators fj = fvj so that

1 V = Z (v1)⊕ Z (v2)⊕ · · · ⊕ Z (vr ),

2 fj+1 | fj , j = 1, 2, . . . , r − 1,

3 vr 6= 0.

Furthermore, the listed properties uniquely determine r and the
T -annihilators.
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Handling the general case

Suppose that the theorem holds when mT = pk , k ∈ N,
p ∈ F[x ] irreducible. We want to handle the case when
mT = pk1

1 pk2
2 · · · pks

s , where all the pi s are distinct irreducible.

Recall the Primary decomposition theorem:

Theorem (Primary Decomposition Theorem)

Suppose that minimal polynomial mT of a linear operator T
equals pk1

1 · p
k2
2 · · · pks

s , where p1, p2, . . . , ps are distinct
irreducible polynomials. Put Vi = Ker pi (T )ki . Then

1 each Vi is T -invariant,

2 for Ti = T |Vi
the minimal polynomial mTi

equals pki
i ,

3 V =
⊕s

1 Vi .
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Decomposition

The subspaces Vi obtained by applying the Primary
decomposition theorem are T -invariant, thus CDT may be
appplied on each of them independently and for each i ≤ s we
have

Vi = Z (vi1)⊕ Z (vi2)⊕ · · · ⊕ Z (viri )

for vectors vij ∈ Vi and the annihilator fij of each vij is pki j
i ,

ki1 ≥ ki2 ≥ · · · ≥ kiri .

Note: each Vi is a sum of different number (ri ) of cyclic
subspaces, but by adding spaces Z (0) if necessary we may
assume that ri = r ∈ N.
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Composing the space back

Let vj = v1j + v2j + · · ·+ vsj and recall the following Lemma:

Lemma

If u, v ∈ V have relatively prime T -annihilators fu, fv , then
Z (u + v) = Z (u)⊕ Z (v) and fu+v = fufv .

Hence we have Z (vj) =
⊕

i≤s Z (vij) and fvj =
∏

i≤s p
kij
i .

Finally,

V =
⊕
i≤s

Vi =
⊕
i≤s

⊕
j≤r

Z (vij) =
⊕
j≤r

⊕
i≤s

Z (vij) =
⊕
j≤r

Z (vj)

and fj+1 | fj .
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Power of irreducible polynomial case

Now the hard part: proof when mT = pk , p being irreducible.
Denote d = deg p.
Observe that we do not have to take care about the condition
(2) in CDT.

Strategy

We proceed by induction on dim V . The inductive step consists
of the following:

Firstly, construct a T -invariant subspace V1 ⊆ V of
codimension d containing Im p(T ).

By the induction hypothesis, V1 can be decomposed in the
CDT-fashion.

Repair the complement of V1 so that it fits into the overall
decomposition.
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Construction of V1

Denote V ∗ the dual of V and T T the transpose of T . As
mT = mTT = pk , p(T T) has to be singular.

Observation

If 0 6= v∗ ∈ Ker p(T T), then T T-annihilator of v∗ is p,
therefore dim Z (v∗) = d .

We let
V1 = Z (v∗)⊥ = {v ∈ V | w∗(v) = 0 for all w∗ ∈ Z (v∗)}.
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Properties of V1

Observation

Z (v∗) ⊆ Ker p(T T), therefore
Im p(T ) = (Ker p(T T))⊥ ⊆ Z (v∗)⊥ = V1

Observation

Z (v∗) is T T-invariant, hence V1 is T -invariant.

Observation

Denote Y (v) = 〈v ,Tv , . . . ,T d−1v〉. Then Y (v) ∩ V1 = 0, if
v /∈ V1.

Proof.

J = {f ∈ F[x ] | f (T )v ∈ V1} is an ideal containing mT ,
therefore its generator is a power of p. Thus if deg f < d , then
f (T )v ∈ V1 only if f = 0.
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Statement of
the theorem

Handling the
general case

Power of
irreducible
polynomial
case

Uniqueness

Properties of V1 contd.

As dim Y (v) = d for any v 6= 0, we have V = V1 ⊕ Y (v).

Applying the induction hypothesis

Put T1 = T |V1 . By the induction hypothesis, there is a
decomposition

V1 =
⊕
j≤r

Z (vj)

with vj ∈ V1. Note that by the T -invariance of V1,
Z (vj) = Z (vj ,T ) = Z (vj ,T1).
We may further assume that pkj is the T -annihilator of vj and
k1 ≥ k2 ≥ · · · ≥ kr .
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Picking suitable v for Y (v)

Pick v /∈ V1. Since p(T )v ∈ Im p(T ) ⊆ V1, there are
polynomials f1, f2, . . . , fr ∈ F[x ] such that

p(T )v =
∑
i≤r

fj(T )vj .

If we write fj = gjp + hj , deg hj < d and let
v ′ = v −

∑
j≤r gj(T )vj , then v ′ /∈ V1 as well and

p(T )v ′ =
∑
i≤r

hj(T )vj .

Observation

If p(T )v ′ = 0, then Y (v ′) = Z (v ′), thus
V =

⊕
j≤r Z (vj)⊕ Z (v ′) and we are done.
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Statement of
the theorem

Handling the
general case

Power of
irreducible
polynomial
case

Uniqueness

What if p(T )v ′ 6= 0?

If p(T )v ′ =
∑

i≤r hj(T )vj 6= 0, then there is a smallest c ≤ r
such that hc(T )vc 6= 0.

Denote U =
⊕r

j=c+1 Z (vj) and observe that
p(T )v ′ ∈ Z (vc)⊕ U.

Further plans

Our goal is to deduce Z (p(T )v ′)⊕ U = Z (vc)⊕ U; if that
were true, then by applying the Lemma 2 we would obtain

V = V1 ⊕ Y (v ′) =
⊕

j≤c−1

Z (vj)⊕ U ⊕ Z (vc)⊕ Y (v ′) =

=
⊕

j≤c−1

Z (vj)⊕U⊕Z (p(T )v ′)⊕Y (v ′) =
⊕

j≤c−1

Z (vj)⊕U⊕Z (v ′),

which is the desired decomposition.
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Statement of
the theorem

Handling the
general case

Power of
irreducible
polynomial
case

Uniqueness

Lemma for repairing the decomposition

Lemma (2)

Let p be an irreducible factor of fv of degree d. Then
{v ,Tv , . . . ,T d−1v} is a linearly independent set, and if
Y (v) = 〈v ,Tv , . . . ,T d−1v〉, then Z (v) = Y (v)⊕ Z (p(T )v).

The setting in the previous frame is v = v ′, fv = some power
of p.
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Facts about Z (p(T )v ′)

Observation

Z (p(T )v ′) ∩ U = 0.

Proof.

If f (T )p(T )v ′ ∈ U, then f (T )hc(T )vc = 0, which implies
pkc | f hc . As deg hc < d , we infer pkc | f , thus f (T )vj = 0 for
c ≥ j ≥ r and f (T )p(T )v ′ = 0.

Thus we have a direct sum Z (p(T )v ′)⊕ U.
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Facts about Z (p(T )v ′) contd.

Observation

Z (p(T )v ′)⊕ U = Z (hc(T )vc)⊕ U.

Proof.

The T -invariance of Z (hj(T )vj) implies
Z (p(T )v ′)⊕ U ⊆ Z (hc(T )vc)⊕ U
(since p(T )v ′ ∈ Z (hc(T )vc)⊕ U).

On the other hand,
hc(T )vc = p(T )v ′ −

∑r
j=k+1 hj(T )vj ∈ Z (p(T )v ′)⊕ U, and

the T -invariance of the subspaces provides the reverse
inclusion.
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Final step

Observation

Z (hc(T )vc) = Z (vc).

Proof.

Clearly Z (hc(T )vc) ⊆ Z (vc). If f is the T -annihilator of
hc(T )vc , then pkc | f hc . As (again) deg hc < d , we have
pkc | f , thus

dim Z (hc(T )vc) = deg f ≥ deg pkc = dim Z (vc),

from which we infer the equality of the two spaces.

To sum up, we have
Z (p(T )v ′)⊕ U = Z (hc(T )vc)⊕ U = Z (vc)⊕ U as desired.
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Uniqueness

Suppose that there are two sets of vectors, v1, v2, . . . , vr ,
w1,w2, . . . ,ws , with T -annihilators f1, f2, . . . , fr , g1, g2, . . . , gs
respectively.

Firstly note that f1 = g1 = mT . To see how the induction
proceeds, observe that from the two decompositions of V we
obtain two decompositions of Im f2(T ):

Im f2(T ) = Z (f2(T )v1) (f2 | fi for i ≥ 2),

Im f2(T ) = Z (f2(T )w1)⊕ Z (f2(T )w2)⊕ · · · ⊕ Z (f2(T )ws).

As v1 and w1 share the same T -annihilator,
Z (f2(T )v1) = Z (f2(T )w1), thus Z (f2(T )wi ) = 0 for i ≥ 2. We
conclude that f2(T )w2 = 0 and g2 | f2. By reversing, g2 = f2.
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