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Intro

Our setting: V is a vector space, T is a linear operator.

We want to decompose T , in order to understand it.

What is a good decomposition of a an operator?
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Good decomposition – an example

Operator T is diagonalisable if there exist a basis such that T
is represented by a diagonal matrix.

We can then easily compute rank, determinant, range,
kernel . . .

We can readily identify some “natural” subspaces on
which T is well-behaved – the characteristic spaces.

However, not every T is diagonalisable.
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Characteristic polynomial

Characteristic polynomial of the operator T is the polynomial
det(A− xI ), where A is a matrix that represents T .

Root c of the characteristic polynomial is called characteristic
value, and its corresponding space — the kernel of the
mapping A− cI — is called characteristic space.

Characteristic spaces are independent and invariant – which is
pretty cool.
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Characteristic polynomial – example

Example

[
0 −1
1 0

]
p = x2 + 1

3 1 −1
2 2 −1
2 2 0

 p = (x − 1)(x − 2)2
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Minimal polynomial

A polynomial p is called annihilating if p(T ) = 0.

Annihilating polynomials form an ideal, and there is a unique
monic generator – minimal polynomial M of T .

Minimal polynomial always exists, and divides the characteristic
polynomial (the Cayley-Hamilton theorem).

Operator T is diagonalisable iff M is a product of distinct
monomials.
Operator T is triangulable iff M is a product of monomials
(i.e., we are in a algebraically closed field).
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Minimal polynomial – example

Example


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 here A3 = 4A, thus (x3 − 4x)(A) = 0

⇒ MA ∈ {x(x + 2), x(x − 2), (x + 2)(x − 2), x(x + 2)(x − 2)}
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Independent subspaces

Subspaces W1, . . . ,Wk are independent if whenever we have
αi ∈Wi such that

∑
αi = 0, then αi = 0.

For independent subspaces the space W spanned by all Wi is
called direct sum of the subspaces Wi and is denoted by

⊕
Wi .

Example: characteristic spaces, skew-symmetric matrices.
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Projections

A projection is a mapping E such that E 2 = E .

Some properties:

a ∈ Rng(E ) ⇐⇒ Ea = a,

V = Rng(E )⊕ ker(E ),

E is diagonalisable.
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Projections and direct sums

Whenever we have direct sum decomposition into Wi , we also
have mappings Ei such that

Ea =
∑

Eia (that is, I =
∑

Ei ),

E 2
i = Ei ,

EiEj = 0.

But, the converse also holds! Whenever we have such mappings
Ei , the subspaces Rng(Ei ) form a direct sum decomposition.

Proof.

From I =
∑

Ei we have that Rng(Ei ) spans V . Let a =
∑

ai ,
assume ai = Eibi . Then

Eja =
∑
i

Ejai =
∑
i

EjEibi = Ejbj = aj .
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Projections and operators

We want a decomposition into Wi ’s such that they are
invariant under T – so that Ta =

∑
TiEia,

and that the restrictions of T are in some elementary form.

Proposition

A necessary and sufficient condition for Wi ’s to be invariant
under T is that EiT = TEi (for every i).

Proof.

Let T commute, a ∈Wi . Then
Ta = TEia = EiTa⇒ Ta ∈ Rng(Ei ).
Let Wi be invariant. Take a =

∑
Eia, Ta =

∑
TEia,

TEia = Eibi . Then EjTEia = EjEibi , thus
EjTa = Ejbj = TEja.
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Primary decomposition – example

Example

0 −1 0
1 0 0
0 0 2

 ,
its characteristic and minimal polynomial are (x − 2)(x2 + 1),
thus it is not diagonalisable.

But! Ker((T 2 + I )) and Ker((T − 2I )) together span V ,
hooray!
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Primary decomposition theorem

Theorem

Let p =
∏

i pri
i be the minimal polynomial of T , where pi are

distinct irreducible monic polynomials; and let
Wi = Ker(pri

i (T )). Then⊕
i Wi is a direct sum decomposition of V ,

Wi ’s are invariant under T ,

the minimal polynomial for restriction of T on Wi is pri
i .

Proof idea: we shall reach the Wi ’s by constructing projections
– by finding polynomials hi such that hi (T ) is I on Wi and 0
on Wj 6=i .
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Primary decomposition theorem – proof

Proof.

Let fi = p/pri
i =

∏
j 6=i p

rj
j . Thus there are gi ’s such that∑

i figi = 1.

We set Ei = hi = figi . As p divides fi fj , we have EiEj = 0.
From primality we have

∑
Ei = I , and thus the Ei ’s are

projections and give rise to a direct sum decomposition.

Take a ∈ Rng(Ei ), then
pri
i (T )a = pri

i (T )Eia = pri
i (T )fi (T )gi (T )a = 0.

Take a ∈Wi , then pri
i divides fjgj , thus Eja = 0 and Eia = a.

Let g be such that g(Ti ) = 0. Then g(T )fi (T ) = 0, thus pri
i fi

divides gfi .
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Cyclic subspaces and annihilators

Let v be a finite-dimensional vector in V , by Z (v) = Z (v ,T )
ve denote the cyclic subspace generated by v – it is the
smallest T -invariant subspace containing v , that is,

Z (v) = span{v ,Tv ,T 2v , . . .} = {f (T )v : f (X ) ∈ F[X ]}.

Again, the minimal polynomial fv (X ) such that fv (T )v = 0 is
called the T -annihilator of v .
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Olin’s lemmata

1 Z (v) = {f (T )v : deg f (X ) < deg fv (X )} and
{v ,Tv , . . . ,T deg fv (X )−1} is a basis of Z (v). The minimal
polynomial of restriction of T to Z (v) is fv (T ).

2 Let p(X ) be an irreducible factor of fv (X ) of degree d .
The set {v ,Tv , . . . ,T d−1v} is linearly independent, and
Z (v) = span{v ,Tv , . . . ,T d−1v} ⊕ Z (p(T )v).

3 If fv (X ) and fu(X ) are relatively prime,
Z (u + v) = Z (v)⊕ Z (u) and fu+v (X ) = fu(X )fv (X ).
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{v ,Tv , . . . ,T deg fv (X )−1} is a basis of Z (v). The minimal
polynomial of restriction of T to Z (v) is fv (T ).

2 Let p(X ) be an irreducible factor of fv (X ) of degree d .
The set {v ,Tv , . . . ,T d−1v} is linearly independent, and
Z (v) = span{v ,Tv , . . . ,T d−1v} ⊕ Z (p(T )v).

3 If fv (X ) and fu(X ) are relatively prime,
Z (u + v) = Z (v)⊕ Z (u) and fu+v (X ) = fu(X )fv (X ).
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Intro

Characteristic
and minimal
polynomial

Direct sum
decomposition

Olin’s
lemmata

Olin’s lemmata – proof

Proof.

Take w ∈ Z (u) ∩ Z (v), then for some h(X ) and g(X ) we have
w = h(T )v = g(T )u, thus fv (T )w = fv (T )h(T )v = 0 and
similarly fu(T )w = 0.

Therefore, fw (X ) divides both fv (X ) and
fw (X ) ⇒ Z (v) + Z (u) = Z (v)⊕ Z (u).

Since v + u ∈ Z (v)⊕ Z (u), we have Z (v + u) ⊆ Z (v)⊕ Z (u).

There are a(X ) and b(X ) so that 1 = a(X )fv (X ) + b(X )fu(X ).
Then,

v = a(T )fv (T )v + b(T )fu(T )v = b(T )fu(T )(u + v).
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