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Overview

Q Galois Field GF(28)

@ Description of AES

© What operations do you need to compute AES?
@ Dual AES

© What can you do with dual AES?
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Galois Field GF(28)

Consider the field GF(2) = {0,1}.

For any irreducible polynomial p(x) € GF(2)[x], we can construct
the factorring GF(28) := GF(2)[x]/(p(x)).

Then, GF(28) is up to isomorphism the unique finite field with 28
elements. Trivially, GF(28) is a vector space over GF(2).

The multiplicative group of GF(28) is cyclic.
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Operations in the GF(28)

Addition

a(x) @ b(x) = (a7 ® by)x” + (ag ® be)x® + ... + (ap ® bp), where
the a @ b denotes XOR of bits a, b.

For example 10100110 ¢ 10000011 = 00100101.
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Operations in the GF(28)

Multiplication
a(x) @ b(x) = a(x)b(x) mod (x® + x* +x3 + x + 1)

10100110 « 10000011 = 01110110
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Operations in the GF(28)

Multiplication
a(x) @ b(x) = a(x)b(x) mod (x® + x* +x3 + x + 1)

10100110 « 10000011 = 01110110

(X" + x5+ X2+ x)o(x"+x+1) =

(XM 4+ x2 45+ xT+ x84+ x4+ 53+ X%+ X"+ x° + x% + x)
mod (x® + x* +x3 + x+1) = x0 + x5 + x* + x% + x
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Operations in the GF(28)

Multiplicative inverse

a(x)~! modulo (x® 4+ x* + x3 + x 4+ 1) can be computed using
Extended Euclidean Algorithm.

Inverse of 10100110 is ...
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Squaring in GF(28)

Proposition

The function f(x) = x2 is GF(2)-linear in GF(28).

The only scalar multiples are 0, 1.
Let a, b € GF(28). The characteristic of GF(28) is 2, thus
(a® b)?=2a°P2abD b?> = 2> D b2,

OJ

So, there exists matrix Q with boolean coefficients, such that
Qx = x2. Also, the matrix Q is invertible.
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Advanced Encryption Standard (AES)

symmetric block cipher

current NIST standard

proposed in 1999 by J. Daemen and V. Rijmen (Rijndael)
substitution-permutation network

block size is fixed (128 bits), key size is variable (128, 194 or
256 bits)

@ in this lecture, the AES-128 will be described

e 6 6 o o
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AES State Array

Data representation:

SOU SU1 SUZ SUS

’ @ intermediate data block is stored in a 4x4

Si0/S11/S12/S13 array of bytes
@ Each byte s; is interpreted as an element

Sap 82,1 Sz,z Sz,s of
GF(28) = GF(2)[x]/(x® +x*+ x>+ x+1)
S30(Ss,1[S32|53 _ .
@ Example: byte 10100110 is represented as
x4+ x5+ x% + x
@ Also, 10100110 can be written as {A6}
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AES Algorithm overview

@ 10 round of AES are
performed

[ Substitute Bytes | e initial and final rounds are
slightly different

Y
| Shift Rows I

| Mix Columns I

Round Ke
| Add Round Key Ii—iy

J
Encryption Round
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AES SubBytes

N b0 ua] Bua| B Byte-wise substitution:
a,la,]a,a, by | by1| by, by s o take the multiplicative

Gl ik e N PN e M e ] : 1. 8
3, a2,4 a, b, 00| 0] Bra s inverse bjj = a; " in GF(2°)
30|23, ]300 by AL P52 [ s @ apply an affine

transformation

baj = Ab,’J +c
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AES SubBytes

|

0 0 0

|

|

0 0 0

|

1

0 0 0

1

0 0 0

- e -

ey

-+ -

o=

O -

Sedénka

Jaroslav



AES ShiftRows

No
change a0,0 ao,l a0,2 a0,3 ao,o ao,l aoz aoa
ShiftRow
Shift1{ <10 IR T Q1| 82| %3 Ao
VeV >

Shift 2 Dol Dol s 5| 3| &l Dy

w7 Vi

R
shift3[830( 85|35 ?3,3 A T R P
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AES MixColumns

Jaroslav Sed&nka

b(y) =a(y) ® c(y) mod y*+1

as polynomials in GF(28)[y].

cly) =
{03}y3 4 {01}y? + {01}y + {02}



AES AddRoundKey

80| 01| B2 20 Byo| Bo| Bl Bos Whole state array is XORed with
a,|a,la,la, podrounaigs byl by, b4l by s expanded Round key.
B30/ 8| 82 f2: bz.o bz. bz.z 2.2
el & .
B30 aa.ll °3.2| 3.2} bz.o bM‘-"a.2| E

Koo| Ko Koz| Ko
ko] K| Kl K
R B

k3.0 k‘31| 222
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What operations do you need to compute AES?

GF(28) operations

@ addition x P y

@ XOR with a constant x & ¢

@ multiplication x e y

@ multiplication by a constant x e ¢

@ raise to any power in GF(28), including to power —1

Non-GF (28) operations

@ permutation of n-tuples

e GF(2)-linear transformation

o table lookup

Let's call these EGF(28) operations.



Dual cipher

Definition: Dual Ciphers
Two ciphers E, E’ are called dual ciphers, if there exist invertible
functions f(-), g(+) and h(-) such that for each plaintext P and key

K

F(Ex(P)) = Eg(ky(h(P))
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Square cipher

Definition: Square Cipher

Given a cipher E that uses only EGF(28) operations, we define the
cipher E2 by modifying the constants of E this way:
@ whenever there is XOR with ¢ in E, there is XOR with ¢ in
E2
@ whenever there is multiplication by ¢ in E, there is
multiplication by ¢? in E?

@ whenever there is multiplication by matrix A in E, there is
multiplication by QAQ 1 in E?

@ whenever there is table lookup S(x) in E, there is QS(Q~1x)
in E2.
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Square AES

Theorem

For any cipher E using only operations in EGF(28), the ciphers E
and E? are dual ciphers.

Proof

We need to show the "duality” for all operations in EGF(28), that
is, (Ek(P))? = E2,(P?) for all P, K. Note that by (Ex(P))? we
mean byte-wise squaring.

e addition: (x @ y)?2 = x?> ® y? is exactly the linearity of
squaring in GF(28).
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Square AES

Theorem

For any cipher E using only operations in EGF(28), the ciphers E
and E? are dual ciphers.

Proof

We need to show the "duality” for all operations in EGF(28), that
is, (Ek(P))? = E2,(P?) for all P, K. Note that by (Ex(P))? we
mean byte-wise squaring.

e addition: (x @ y)?2 = x?> ® y? is exactly the linearity of
squaring in GF(28).

o multiplication: (x ® y)? = x? e y?
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Square AES

Theorem

For any cipher E using only operations in EGF(28), the ciphers E
and E? are dual ciphers.

Proof

We need to show the "duality” for all operations in EGF(28), that
is, (Ek(P))? = E2,(P?) for all P, K. Note that by (Ex(P))? we
mean byte-wise squaring.

e addition: (x @ y)?2 = x?> ® y? is exactly the linearity of
squaring in GF(28).
o multiplication: (x ® y)? = x? e y?

@ exponentiation: (x¥)? = (x2)k
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Square AES

Theorem

For any cipher E using only operations in EGF(28), the ciphers E
and E? are dual ciphers.

Proof

We need to show the "duality” for all operations in EGF(28), that
is, (Ek(P))? = E2,(P?) for all P, K. Note that by (Ex(P))? we
mean byte-wise squaring.

e addition: (x @ y)?2 = x?> ® y? is exactly the linearity of
squaring in GF(28).

o multiplication: (x ® y)? = x? e y?

@ exponentiation: (x¥)? = (x2)k

@ permutation of n-tuples is trivial
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Square AES

e linear transformation: (Ax)? = QAQ'x? = QAx = (Ax)?
e table lookup: S(x)? = QS(Q~1x).
By structural induction, (Ex(P))? = E2,(P?).

Ol

In a similar way, any invertible linear transformation can be used to
create dual ciphers. Mainly, change of irreducible polynomial p(x)
used to construct the Galois Field is also linear.
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What can you do with dual ciphers?

o Different dual variants of a cipher may be faster for
encryption /decryption

@ When the attacker has partial or total access to the
encryption process, change of bases during the computatiton
can increase security

@ The property of cipher being nontrivialy dual to itself can be
abused for cryptoanalysis
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Thank you for your attention

Questions, comments?
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