
Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Algorithms for permutation groups
Part I

Adéla Skoková

March 25, 2012

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Content

Runing times for algorithms for permutation groups
Basic definitions
The Sifting procedure
Schreier’s Lemma

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Basic notation

A permutation group G is a group whose elements are
permutations of the given set Ω.

Group of all permutations is symetric group Sym(Ω) and group of
permutations is its subgroup.

Group operations are composition of permutations in G.

Suppose that |Ω| = n.
We can identify Ω with {1, 2, 3, ..., n}.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Owerview of permutation group algorithm

Input to the algorithm which works with permutation group: list of
generators of the group.

We have given G = 〈S〉 ≤ Sn, the input lenght can be |S|n.
A polynomial-time algorithm – O((|S|n)c) for some fixed c.
In practice |S| is usually small.

Experience shows that a lot of ideas, developed in the
polynomial-time context, are later incorporated in practical
algorithms; conversely, procedures performing well in practice often
have versions with polynomial running time.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Some tasks - deterministic polynomial-time algorithm

given h ∈ Sym(Ω), test whether h ∈ G
find the order of G
find orbits, center or blocks of imprimitivity of G
. . .

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Definition (Small-base group)
We call an (infinite) family ∆ of permutation groups small-base
groups if each G ∈ ∆ of degree n satisfies log |G| < logc n for some
fixed constant c.

Example: primitive groups not containing alternating composition.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Nearly-linear time algorithms

The nearly linear time, O(n|S| logc′ (n|S|)), of the input length.

The time bound of nearly linear-time algorithms on small-base
input groups is O (n|S|).

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Non-polynomial-time methods

Given ∆ ⊆ Ω, compute the setwise stabilizer
G∆ = {g ∈ G|∆g = ∆}.
Given H,G ≤ Sym(Ω), compute CG(H) centralizer .
Given H,G ≤ Sym(Ω), compute G ∩H.
Given x1, x2 ∈ G, decide whether they are conjugate.

It is concievable that there may be polynomial time algorithms (at
least for the classes of groups occurring in practice) to solve them.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Basic definitions

Definition
A sequence of elements B = (β1, ..., βm) from Ω is called a base
for G if the only element of G to fix B pointwise is the identity.

The sequence B defines a subgroup chain

G = G[1] ≤ G[2] ≤ . . . ≤ G[m] ≤ G[m+1] = 1,

where G[i] := G(β1,...,βi−1) is the pointwise stabilizer of
{β1, . . . , βi−1} .

Definition
The base is called nonredundant if G[i+1] is a proper subgroup of
G[i] for all i ∈ [1,m].

Different nonredundant bases can have different size.
Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

A small-base group

Repeating Lagranges theorem:

|G| =
m∏

i=1
|G[i] : G[i+1]|.

The cosets of G[i] mod G[i+1] correspond to the elements of the
orbit βG[i]

i , we obtain |G[i] : G[i+1]| = |βG[i]
i | ≤ n for all i ∈ [1,m].

If B is nonredundant then |G[i] : G[i+1]| ≥ 2.

2|B| ≤ |G| ≤ n|B|

log |G|
log n ≤ |B| ≤ log |G|

The last inequality justifies the name ’small-base group’.
Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Strong generating set

Definition
A strong generating set (SGS) for G relative to B is a generating
set S for G with the property that〈

S ∩ G[i]
〉

= G[i], for 1 ≤ i ≤ m + 1.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Example

A group G = S4 in its natural action on the set [1, 4] = {1, 2, 3, 4} .
B = (1, 2, 3) is nonredundant base for G.

G[1] = Sym([1, 4]) � G[2] = Sym([2, 4]) � G[3] = Sym([3, 4]) � G[4] = 1

S = {(1, 2, 3, 4), (3, 4)} is not strong generating set relative to B
since

〈
S ∩ G[2]

〉
= Sym([3, 4]) 6= G[2] = Sym([2, 4]).

T = {(1, 2, 3, 4), (2, 3, 4), (3, 4)} is an SGS relative to B.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Fundamental orbits

Definition

Orbits βG[i]
i of SGS are called fundamental orbits of G.

By |G| =
∏m

i=1 |G[i] : G[i+1]| we can see that |G| =
∏m

i=1 |βG[i]
i |.

Given SGS, the orbits βG[i]
i can be computed easily.

Keeping track of elements of G[i] in the orbit algorithm that carry
βi to points in βG[i]

i , we obtain transversals Ri for G[i] mod G[i+1]

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

The Sifting Procedure

Every g ∈ G can be written uniquely in the form g = rmrm−1 . . . r1
with ri ∈ Ri , (Lagrange’s theorem).

This decomposition can be done algorithmically:
Given g ∈ G, find the coset representative r1 ∈ R1 such that
βg

1 = βr1
1 .

Then compute g2 := gr−1
1 ∈ G[2]; find r2 ∈ R2 such that βg2

2 = βr2
2 ;

compute g3 := g2r−1
2 ∈ G[3];

etc.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Testing membership

Given h ∈ Sym(Ω),
We can try to factor h as a product of coset representatives.
Successful: h ∈ G.

for some i ≤ m, the ratio hi := hr−1
1 r−1

2 . . . r−1
i−1 computed by

the sifting procedure carries βi out of the orbit βG[i]
i ;

hm+1 := hr−1
1 r−1

2 . . . r−1
m−1r−1

m 6= 1.

Definition
The ratio hi with the largest index i (i ≤ m + 1) computed by the
sifting procedure is called the siftee of h.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Schreier tree

Definition
A Schreier tree data structure for G is a sequence of pairs (Si ,Ti)
called Schreier trees, one for each base point βi , 1 ≤ i ≤ m.

Ti is a directed labeled tree, with all edges directed toward the
root βi and edge labels from a set Si ⊆ G[i].

Vertices of Ti are points of the fundamental orbit βG[i]
i .

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Schreier tree II

Labels satisfy the condition that for each directed edge from γ to δ
with label h, γh = δ.

If γ is a vertex of Ti then the sequence of the edge labels along
the unique path from γ to βi in Ti is a word in the elements of Si
such that the product of these permutations moves γ to βi .

Thus each Schreier tree (Si ,Ti) defines inverses of a set of coset
representatives for G [i+1] in G [i].

We store inverses of coset representatives in the Schreier trees
because sifting requires the inverses of these transversal elements.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Memory requirements

Memory requirement for storage:
Si is O(|Si |n)
Ti is O(n).

Ti can be stored in an array Vi of lenght n.

γ-th entry of Vi is deffined iff γ ∈ βG[i]
i .

Vi [γ] is a pointer to the element of Si .
It is the label of the unique edge of Ti starting at γ.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Example continue

G = S4 with base B = (1, 2, 3)
and SGS T = {(1, 2, 3, 4), (2, 3, 4), (3, 4)} .

Construction of Schreier trees for G using label set Si := T ∩ G[i].

The trees Ti can be constructed as the breadth-first-search trees,
which compute the orbits βG[i]

i .

The edges of the trees must be directed toward the roots, we have
to use the inverses of the elements of Si in the construction of the
Ti .

The label set Si determines uniquely only the levels of the tree Ti ,
because the vertices on level j may be the images of more vertices
on level j − 1, under more permutations.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Example continue

Construction of Schreier trees for G using label set Si := T ∩ G[i].
In T1:

level 0 contains the point 1
level 1 contains only the point 4 - it is the only point that is
the image of 1 under the inverse of some element of S1, and
(1, 2, 3, 4) is the only possible label for the edge

→
(4, 1).

level 2 contains only the point 3 - we have three possibilities
for defining the label of

→
(3, 4) because the inverses of

(1, 2, 3, 4), (2, 3, 4), and (3, 4) all map 4 to 3.

The labels of
→

(3, 4) depends on the order of the elements S1.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Example continue

One possibility for Schreier tree:

(id , (2, 3, 4), (2, 3, 4), (1, 2, 3, 4)),

(∗, id , (2, 3, 4), (2, 3, 4)),

and(∗, ∗, id , (3, 4)),

here ∗ denotes that the appropriate entry of the array is not
defined because the corresponding point is not in the fundamental
orbit of βi .

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Example continue

A transversal element carrying the first base point 1 to 3.
From the first array we obtain that:

(2, 3, 4).(1, 2, 3, 4) = (1, 2, 4, 3)

maps 3 to 1.

Its inverse is the desired transversal element.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Schreier’s Lemma

Lemma (Schreier’s Lemma)
Let H ≤ G = 〈S〉 and let R be a right transversal for G mod H,
with 1 ∈ R.Then the set

T =
{

rs(rs)−1|r ∈ R, s ∈ S
}

generates H.
The elements of T are called Schreier generators for H.

r is the chosen representative in the transversal R of the coset Hg ,
that is g ∈ Hg .

The lemma is used in the Schreier-Sims algorithm and also for
finding a presentation of a subgroup.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Schreier’s Lemma - proof

Proof.
By definition, the elements of T are in H,

it is enough to show that T ∪ T−1 generates H.

T−1 =
{

rs(rs)−1|r ∈ R, s ∈ S−1
}

T =
{

rs(rs)−1|r ∈ R, s ∈ S
}

Let h ∈ H be arbitrary.

Since H ≤ G, h = s1s2 . . . sk for k ∈ N
and si ∈ S ∪ S−1 for i ≤ k.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Schreier’s Lemma - proof

Proof.
We define a sequence h0, h1, ..., hk of group elements such that

hj = t1t2 . . . tj rj+1sj+1sj+2 . . . sk ,

with ti ∈ T ∪ T−1 for i ≤ j , rj+1 ∈ R, and hj = h.

Let h0 := 1s1s2 . . . sk .

Recursively, if hj is already defined then let

tj+1 := rj+1sj+1(rj+1sj+1)−1

rj+2 := rj+1sj+1.

Clearly, hj+1 = hj = h, and it has the required form.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Schreier’s Lemma - proof

Proof.
We have h = hk = t1t2 . . . tk rk+1.

Since h ∈ H and t1t2 . . . tk ∈ 〈T〉 ≤ H,
we must have rk+1 ∈ H ∩ R = 1.
Hence h ∈ 〈T〉.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Remarque

We deal only with finite groups, and so every element h of a given
group G = 〈S〉 can be written as a product h = s1s2 . . . sk of
generators and we do not have to deal with the possibility that
some si is the inverse of a generator. In the proof of Lemma, we
included the possibility si ∈ S−1 since this lemma is valid for
infinite groups as well, and in an infinite group we may need the
inverses of generators to write every group element as a finite
product.

Adéla Skoková Algorithms for permutation groups - part I

Runing times for algorithms for permutation groups
Basic definitions

The Sifting procedure
Schreier’s Lemma

Thank you for your attention.

Adéla Skoková Algorithms for permutation groups - part I

	Runing times for algorithms for permutation groups
	Basic definitions
	The Sifting procedure
	Schreier's Lemma

