
Non-
standard
Analysis

Petra
Kuřinová

Real
numbers

Extremes
and
continuosity

Non-
standard
enlargement

Non-standard Analysis

Non-standard Analysis

Petra Kuřinová
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Real
numbers

Extremes
and
continuosity

Non-
standard
enlargement

Non-standard Analysis

Real numbers

We have bounded rational numbers:

BQ = {x ∈ Q; ∃n ∈ N : |x| < n}

and an indifferation ∼ on rational numbers:

x ∼ y ⇐⇒ ∀n ∈ N : |x− y| < 2−n

which is compatible with arithmetical operations +, −, ., /,
and also with |.| and relation <
(for unary operation f it means x ∼ x′ then f(x) ∼ f(x′)).
Then it is possible to make the quotient ring

R = (BQ,+,−, ., 0, 1, < )/ ∼

We can prove that R is the field of real numbers, therefore
we label it R.
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Real
numbers

Extremes
and
continuosity

Non-
standard
enlargement

Non-standard Analysis

Real numbers

We have bounded rational numbers:

BQ = {x ∈ Q; ∃n ∈ N : |x| < n}

and an indifferation ∼ on rational numbers:

x ∼ y ⇐⇒ ∀n ∈ N : |x− y| < 2−n

which is compatible with arithmetical operations +, −, ., /,
and also with |.| and relation <

(for unary operation f it means x ∼ x′ then f(x) ∼ f(x′)).
Then it is possible to make the quotient ring

R = (BQ,+,−, ., 0, 1, < )/ ∼

We can prove that R is the field of real numbers, therefore
we label it R.



Non-
standard
Analysis

Petra
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Real
numbers

Extremes
and
continuosity

Non-
standard
enlargement

Non-standard Analysis

Real numbers

Theorem
The structure R = (BQ,+,−, ., 0, 1, <)/ ∼ is a complete
ordered field and contains Q = {[a]∼; a ∈ Q} as a dense
subfield. Moreover Q is isomorphic to Q.

Idea of the proof
Field: R satisfies the field axioms as commutativity,
distributivity and associativity, [0]∼ is the unit for +,
[1]∼ the unit for ·, ...
Ordering: [x]∼ < [y]∼ ⇐⇒ x 6∼ y and x < y

Density of Q: Prove: x0, x1 ∈ BQ, x0 6∼ x1, then there
exists r ∈ Q such that x0 < r < x1 and x0 6∼ r 6∼ x1.

Completeness: We prove that every nonempty above
bounded X ⊆ BQ/ ∼ has a supremum using infinitely
many intervals and ω-saturation.
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Kuřinová
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Kuřinová
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Real numbers

Denote R = ∗R, BR = {x ∈ R;∃n ∈ N : |x| < n}.

On standard real numbers we define an indifference .= as

x
.= y ⇐⇒ (x, y ∈ BR&x ∼ y) ∨ (x, y 6∈ BR&x · y > 0).

It is equal to ∼ on bounded real numbers and infinite
instances reduce each to one monad.
Denote +∞ and −∞ different standard instances, which are
not in R. Extended real numbers is then the set

R = R ∪ {−∞,+∞}

The indifference .= and relation < can be extended naturally
to R.
Extension of arithmetical operations follows from
requirement of stability under .= (for x ∈ R):

(±∞) + (±∞) = x+ (±∞) = (±∞) + x = ±∞

· · ·
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Non-standard Analysis

Extremes and continuosity

Definitions
Let f : R→ R be a function, a ∈ R a standard point.

We say f is continuous, if for every standard
a ∈ dom(f), f [a] .= ⊆ [f(a)] .=.
The function f is increasing, resp. decreasing, at a, if
[a] .= ⊆ dom(f) and for every x, y ∈ [a] .=, x < a < y,
f(x) < f(a) < f(y), resp. f(x) > f(a) > f(y).
The function f has a local maximum at a, if
[a] .= ⊆ dom(f) and for every x ∈ [a] .=, f(x) ≤ f(a).
Similarly we define a local minimum.
A standard function f : R→ R has a derivative b ∈ R
at a standard point a ∈ dom(f), if [a]∼ ∩ dom(f) 6= {a}
and a 6= x ∈ [a]∼ =⇒ f(a)−f(x)

a−x
.= b. Then we write

f ′(a) = b. Similarly we define oneside derivatives.
Equivalent definition: f ′(a) = f(a+∆)−f(a)

∆ for ∆ .= 0.
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Non-standard Analysis

Extremes and continuosity

Theorem [Continuous function on closed interval]

Let a < b be real, f : [a, b]→ R continuous function. Then f
acquires its minimum M0 and maximum M1 and f maps
onto [M0,M1].

Proof.
Let K ∈ N, K .= +∞, ∆ = (b− a)/K and xi = a+ i∆ for
every 0 ≤ i ≤ K.
Denote y = min{f(xi); i ≤ K} and fix i0: f(xi0) = y.
Then there exists a standard c ∼ xi0 , c ∈ [a, b] and certainly
M0 = f(c). Similarly we have f(xi1) .= M1.
WLOG xi0 < xi1 . If we have M0 < y < M1 a standard
point, denote j = min{i; i0 < i < i1, y ≤ f(xi)}. Then
f(xj−1) < y ≤ f(xj), so from the continuosity: f(xj)

.= y.
So there must be a standard point d .= xj satisfying
f(d) = y.
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Real
numbers

Extremes
and
continuosity

Non-
standard
enlargement

Non-standard Analysis

Extremes and continuosity

Theorem [Continuous function on closed interval]

Let a < b be real, f : [a, b]→ R continuous function. Then f
acquires its minimum M0 and maximum M1 and f maps
onto [M0,M1].

Proof.
Let K ∈ N, K .= +∞, ∆ = (b− a)/K and xi = a+ i∆ for
every 0 ≤ i ≤ K.

Denote y = min{f(xi); i ≤ K} and fix i0: f(xi0) = y.
Then there exists a standard c ∼ xi0 , c ∈ [a, b] and certainly
M0 = f(c). Similarly we have f(xi1) .= M1.
WLOG xi0 < xi1 . If we have M0 < y < M1 a standard
point, denote j = min{i; i0 < i < i1, y ≤ f(xi)}. Then
f(xj−1) < y ≤ f(xj), so from the continuosity: f(xj)

.= y.
So there must be a standard point d .= xj satisfying
f(d) = y.



Non-
standard
Analysis

Petra
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Extremes and continuosity

Theorem [Local extrema]

Let f : R→ R be a standard function, a ∈ R.

1 If f ′(a) > 0 , respectively f ′(a) < 0, then f is
increasing, resp. decreasing, in a.

2 If f ′(a) 6= 0 then at a is no local extremum of f .

Proof.
1 Let f ′(a) > 0 and a < x1

.= a.
Then f(x1)−f(a)

x1−a = f ′(a) implies
f(x1)− f(a) = f ′(a)(x1 − a) > 0, and so f(x1) > f(a).
Similarly a .= x2 < a implies f(x2) < f(a) and thus f is
increasing at a. Analogically for f ′(a) < 0.

2 Immediately from 1).
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f(x1)− f(a) = f ′(a)(x1 − a) > 0, and so f(x1) > f(a).
Similarly a .= x2 < a implies f(x2) < f(a) and thus f is
increasing at a. Analogically for f ′(a) < 0.

2 Immediately from 1).
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Some other helpful Lemmas:

Lemma
Let f : R→ R, a ∈ dom(f) a standard point.

1 If there exists finite f ′(a), then f is continuous in a.

2 f ′(a) = b ⇐⇒ standardly: ∀U neighbourhood of b in
R there exists δ > 0 ∀a 6= x ∈ dom(f) : |a− x| < δ

=⇒ f(a)−f(x)
a−x ∈ U.

Lemma [Mean value theorem]

For real a < b and a continuous function f : [a, b]→ R,
which has a derivative in each x ∈ (a, b) there exists
c ∈ (a, b) such that f ′(c) = f(b)−f(a)

b−a .
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Real
numbers

Extremes
and
continuosity

Non-
standard
enlargement

Non-standard Analysis

Non-standard enlargement

Some typical non-standard definitions

Let F : R→ R be a function, X ⊆ dom(F ). Then F is
pointwise stabilized for X, if for every standard x ∈ X
there exists y ∈ BR which stabilizes F in x, it means
that F [x]∼ ⊆ [y]∼.
If for every x ∈ X there exists y ∈ BR, which stabilizes
F in x, we say that F is stabilized for X.
Let F : R→ R be a pointwise stabilized function for
dom(F ). Then there exists an unique standard function
f defined on dom(F ) such that for every standard
a ∈ dom(f), F [a]∼ = [f(a)]∼. We call f the standard
trace of F .

Lemma
The standard trace of pointwise stabilized function is
continuous.
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Theorem [Standard trace of the derivative]

Let I ⊆ R be a standard bounded interval, F : I → R an
internal function, which has a value from BR in some point
from [σI] .=. Let F ′ be pointwise stabilized for I. Then

1 F is pointwise stabilized for I and so it has a standard
trace f on I which is continuous.

2 f ′(a) .= F ′(a) for every standard a ∈ I.
3 f ′ is standard trace of F ′ on I and f ′ is continuous.

Proof.
1) Denote x ∈ [σI] .= such that F (x) ∈ BR and let a ∈ I be
some different standard point, a < x

.= a. The function F is
internally continuous on [a, x], because it has a derivative on
I, so from the mean value theorem there exists y ∈ (a, x)
such that F (x)−F (a) = F ′(y)(x− a). Due to F ′(y) ∈ BR it
is F (x) .= F (a), so F (a) ∈ BR. The rest from Lemmas.
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Theorem [Standard trace of the derivative]

Let I ⊆ R be a standard bounded interval, F : I → R an
internal function, which has a value from BR in some point
from [σI] .=. Let F ′ be pointwise stabilized for I. Then

1 F is pointwise stabilized for I and so it has a standard
trace f on I which is continuous.

2 f ′(a) .= F ′(a) for every standard a ∈ I.
3 f ′ is standard trace of F ′ on I and f ′ is continuous.

Proof.
2) We prove: f ′+(a) .= F ′(a) for a ∈ I except the last point
of I. There exists a standard point x ∈ I, a < x and f

.= F
on [a, x], it means |F (y)− f(y)| < η

.= 0 for every y ∈ [a, x].
Then for arbitrary 0 < ∆ .= 0 such that η/∆ .= 0 it is
f ′(a) = f(a+∆)−f(a)

∆ = F (a+∆)+η1−F (a)−η2

∆ =
F (a+∆)−F (a)

∆ + η1−η2

∆
.= F ′(a).
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