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Figure: Lattice of NaCl
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Definition of Lattice

Definition

A lattice is set points

L(v1 . . . vn) = {v1a1 + . . .+ vnan | ai ∈ Z ∀i ∈ {1, . . . , n}} ,

where v1, . . . , vn are linearly independant vectors in Rm. These
vector are called a basis of L.

If we define B as the m × n matrix with columns v1, . . . , vn,
then we can write

L(v1 . . . vn) = L(B) = {By | y ∈ Zn}

Rank of lattice is n and dimension is m. If m = n then the
lattice is called full-rank.
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Basis

Basis of lattice is not unique:

Figure: Two bases of the same lattices in R2
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But not every n-tuple of vectors in Rn generate same lattice:

Figure: Two bases of different lattices in R2
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Equivalency of lattices

A matrix A ∈ Zn×n is called unimodular if det(A) = ±1.

Remark

If matrix U is unimodular then U−1 is unimodular and
U−1 ∈ Zn×n

Lemma

Two lattices L(B1), L(B2) are the same if and only if there
exists unimodular matrix U such that B1 = B2U.



Lattice -
Introduction
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Proof of Equivalency

Since L(B1) = L(B2), there exists matrix U ∈ Zn×n that
B1 = B2U. Similarly, there exist matrix V ∈ Zn×n such that
B2 = B1V .
Hence B2 = B1V = B2UV , and we get
BT

2 B2 = V TUTBT
2 B2UV .

Taking determinants:

det(BT
2 B2) = det(VU)2det(BT

2 B2)

Hence det(U)det(V ) = ±1 and since both matrices have
integer det(U) = ±1, as required. �
Assuming B1 = B2U for unimodular matrix U implies directly
L(B1) ⊆ L(B2). From remark we obtain that U−1 is
unimodular too, so B1U−1 = B2 implies L(B1) ⊇ L(B2).
We get L(B1) = L(B2). �
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Fundametal parallelepiped

Definition

A fundamental parallelepiped for lattice L(B) is defined as

P(B) = {Bx | x ∈ [0, 1)n} .

We define determinant of lattice detL(B) = |det(B)|.

Remark

The value of determinat is the volume of the fundamental
parallelepiped.

From previous lemma we easily get that two lattice
L(B1), L(B2) are the same if and only if detL(B1) = detL(B2).
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Succesive minimum

Another parameter of lattice is the lenght of the shortest
nonzero vector in the lattice. We denote this lenght by λ1(L).
By lenght we mean Euclidean norm defined as

‖x‖ =

√√√√ n∑
i=1

x2
i .

More generally:

Definition

For lattice L of rank n and for k ≤ n k-th succesive minimum
λk(L) is defined as the smallest radius of closed ball around
zero contains k linearly independant vectors in lattice L.
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Blichfeldt’s Theorem

Theorem

For lattice L and set S ⊆ Rn with vol(S) > detL there exist
nonequal points z1, z2 ∈ S such that z1 − z2 ∈ L.

Proof: Let B is some basis of L. The sets x + P(B) for x ∈ L
form a partition of Rn.
For every x ∈ L we define Sx = S ∩ (x + P(B)).
Now we define S∗x = Sx − x . Then S∗x ⊆ P(B) and because∑

x∈L
vol(S∗x ) =

∑
x∈L

vol(Sx) = vol(S) ≥ detL = vol(P(B))

there are x , y in L, x 6= y , that S∗x ∩ S∗y 6= ∅. Let z be a point
S∗x ∩ S∗y . Then z + x ∈ Sx ⊆ S and z + y ∈ Sy ⊆ S and
0 6= (x + z)− (y + z) = x − y ∈ L. �
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Minkowski’s Theorem I.

Set S ∈ Rn is centrally-symetric if x ∈ S ⇒ −x ∈ S
Set S ∈ Rn is convex if for any x , y ∈ S and λ ∈ [0, 1]

λx + (1− λ)y ∈ S

Theorem

Let L be lattice and S central symetric convex set in Rn. If
vol(S) > 2n · detL then set S contains a nonzero lattice point.

Proof

Define S∗ = 1
2 S = {x | 2x ∈ S}. Then vol(S∗) > detL.

By Blichfeldt’s theorem there exist z1, z2 ∈ S∗ such that
0 6= z1 − z2 ∈ L.
By properties of S 2z1−2z2

2 = z1 − z2 ∈ S, as required. �
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Minkowski’s Theorem II.

Remark

Let B(0, r) denote open ball of radius r in Rn then

vol(B(0, r) ≥
(

2r√
n

)n

Theorem

Let L be lattice of rank n then λ1(L) ≤
√

n(det(L))1/n
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Proof of Minkowski’s theorem

Proof

By definition of λ1, B(0, λ1(L) contains no nonzero lattice
point. From previous theorem and remark we get

2ndetL ≥ vol(B(0, λ1(L))) ≥
(

2λ1(L)√
n

)n

.

By rearranging

√
n(det(L))1/n ≥ λ1(L). �
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Easy Computational problems

Membership: Given a lattice basis B ∈ Zm×n and a point
v ∈ Zm, decide if v ∈ L(B).
This problem is equivalent to question if system of m linear
equation Bx = v has solution in Zn. Solving by Gauss
elimination.

Equivalence: Given B1,B2 ∈ Zm×n, decide if L(B1) = L(B2).
If m=n we can use lemma about equivalency and compute and
compare determinants of B1 and B2. Otherwise we can use
membership problem for all columns of B1 and matrix ( basis )
B2 and then for all columns of B2 and matrix B1.
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The Shortest Vector Problem - SVP

Search SVP: Given a basis B of lattice L find a vector
v ∈ L(B) such that ‖v‖ = λ1(L(B)).

Optimization SVP: Given a basis B find λ1(L(B)).

Decisional SVP: Given a basis B and rational r , determine if
λ1(L(B)) ≤ r or not.
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Aproxiamtion variants of SVP

For γ ≥ 1 we define following problems:

Search SVP: Given a basis B of lattice L find a nonzero vector
v ∈ L(B) such that ‖v‖ ≤ γ · λ1(L(B)).

Optimization SVPγ : Given a basis B find such d that
d ≤ λ1(L(B)) ≤ d · γ.

Promise SVPγ : Given a basis B and rational r , determine if
λ1(L(B)) ≤ r or λ1(L(B)) < r · γ.

Open question: Is the search variant harder than optimization
variant ?
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The Shortest Independant Vector Problem - SIVP

For γ ≥ 1:

SIVPγ : Given a basis B find n linearly independant vectors in
L(B) of lenght ≤ γ · λn(L(B)).
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Tomáš Kobrle

Lattice and its
basis

Minkovski’s
Theorem

Computational
problems

The Closest vector problem - CVP

For parameter γ ≥ 1 we define:

Search CVPγ : Given a lattice basis B and a vector t ∈ Zn,
find v ∈ L(B) such that ‖v − t‖ ≤ γ · dist(t, L(B)).

Optimization CVPγ : Given a lattice basis B and a vector
t ∈ Zn, find d such that d ≤ dist(t, (L(B)) ≤ d · γ.

Promise CVPγ : Given a lattice basis B and a vector t ∈ Zn

and rational r , determine if dist(t, (L(B)) ≤ r or
dist(t, (L(B)) < r · γ.
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Facts about complexivity

Genaral SVP and CVP are NP-hard problem.

Aproxiamating problems are probably not NP-hard but the best
algorithm runs in exponential time even more there is no better
quantum algorithm, which means that cryptosystems based on
aproxiamting SVP or CVP are great promise for post-quantum
cryptography.

Promise CVPγ and SVPγ are known as GapCVPγ respective
GapSVPγ . Both these problems are in NP ∩ coNP for
γ ≈ c

√
n where c is some constant.
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Cryptosystems based on lattices

GGH encryption / signature scheme

NTRUEncrypt and NTRUSign
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End of prezentation

Thank you for your attention
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