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Lattices Used in Cryptography

n ∈ N main security parameter

q ≥ 2 integer (not necessarily a prime)

A ∈ Zn×m
q matrix

A : Zm → Zn is a group homomorphism

similarly AT : Zn → Zm

let πq : Zn → Zn
q be the natural projection

the following sets are (full-rank) lattices

L(AT ) = ImAT + qZm =

= {z ∈ Zm | ∃x ∈ Zn : z = ATx (mod q)} ≤ Zm

L⊥(A) = Ker πqA = {z ∈ Zm | Az = 0 (mod q)} ≤ Zm

both are full-rank because they contain qZm as a
sub-lattice

both are q-periodic
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SIS (Small Integer Solution)

Let a1, . . . , am ∈ Zn
q be given, find z1, . . . , zm ∈ {−1, 0, 1}

such that

z1a1 + · · ·+ zmam = 0 (mod q)

Matrix version: given A ∈ Zn×m
q , find z ∈ {−1, 0, 1}m

such that
Az = 0 (mod q)

z ∈ L⊥(A) is a short vector in the `∞ norm

The problem is easy without restriction zi ∈ {−1, 0, 1}
Hard in average case (reduction to worst-case problems)



SIS and LWE
lattice

problems

Marcel Šebek

Intro

SIS — Small
Integer
Solution

LWE —
Learning With
Errors

Search and
Decision
Equivalence

Cryptosystems
based on LWE

Trapdoors for
Lattices

SIS (Small Integer Solution)

Let a1, . . . , am ∈ Zn
q be given, find z1, . . . , zm ∈ {−1, 0, 1}

such that

z1a1 + · · ·+ zmam = 0 (mod q)

Matrix version: given A ∈ Zn×m
q , find z ∈ {−1, 0, 1}m

such that
Az = 0 (mod q)

z ∈ L⊥(A) is a short vector in the `∞ norm

The problem is easy without restriction zi ∈ {−1, 0, 1}
Hard in average case (reduction to worst-case problems)



SIS and LWE
lattice

problems

Marcel Šebek
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SIS Applications

Hash functions

One-way functions

Signature schemes

Identification schemes
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Collision-Resistant Hash Function

m > n log q (compression condition)

A ∈ Zn×m
q public description

fA : {0, 1}m → Zn
q, fA(z) = Az

fA(z) = fA(y) implies fA(y − z) = 0, y − z ∈ {−1, 0, 1}m

Collision-resistance implies one-wayness
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Worst-Case to Average-Case Reduction

Divide P(B) into qn parts corresponding to Zn
q

Sample lattice points y1, . . . , ym

For each yi , sample ci close to yi using Gaussian
distribution with large enough variance

Therefore, ci are uniform modulo P(B)

let c̃i be lower-left point corresponding to ci

let ai ∈ Zn
q be the corresponding coordinates

ai are uniform, give A to LWE oracle, get Az = 0

C̃z is a lattice vector

(Y − C̃)z is a short lattice vector
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LWE (Learning With Errors)

Let

n ∈ N be dimension

q ≥ 2 be modulus

s ∈ Zn
q be secret

χ be error distribution over Zq

a1 ← Zn
q e1 ← χ b1 = 〈a1, s〉+ e1 mod q

a2 ← Zn
q e2 ← χ b2 = 〈a2, s〉+ e2 mod q

. . .

Search-LWE: find s given enough samples (ai , bi )
m
i=1.

Decision-LWE: distinguish (ai , bi )
m
i=1 from uniform

distribution.
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LWE (Learning With Errors)

Let

n ∈ N be dimension

q ≥ 2 be modulus

s ∈ Zn
q be secret

χ be error distribution over Zq

A← Zn×m
q e← χm b = AT s + e mod q

Search-LWE: find s given (A,b) for a sufficiently large m.

Decision-LWE: distinguish (A,b) from uniform
distribution.

b is a point close to the lattice L(AT )
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Intro

SIS — Small
Integer
Solution

LWE —
Learning With
Errors

Search and
Decision
Equivalence

Cryptosystems
based on LWE

Trapdoors for
Lattices

LWE is easier than SIS

Get (A,b) on input

Pass A to SIS oracle, get Az = 0

If b is uniform, 〈b, z〉 is ”random”

If b = AT s + e mod q, 〈b, z〉 =
〈
AT s, z

〉
+ 〈e, z〉 = 〈e, z〉

is small
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Search and Decision Equivalence

Works for q = poly(n), q prime

For bigger q a different construction is needed

Secret shifting:

(ai , bi ) = (ai , 〈ai , s〉+ ei ) ; (ai , bi + 〈ai , t〉) =

= (ai , 〈ai , s + t〉+ ei )

Let D be the distinguisher for Decision-LWE

Test for s1 = 0 (use secret shifting for other values):

pick r ∈ Zq uniformly
put a′ = a− (r , 0, . . . , 0)), give (a′, b) to D
b = 〈a, s〉+ e = 〈a′, s〉+ rs1 + e
s1 = 0 implies D accepts
s1 6= 0 implies (a′, b) is uniform, D rejects
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Short secrets

Error term may be sampled from Gaussian distribution
with no security loss

Finding s is equivalent to finding e (this limits the amount
of “secret information”)
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Cryptosystem of [Regev05]

Key generation:
Main security parameter: n ∈ N
Public parameters: q ≈ n2 prime, m ≈ n log q, A ∈ Zn×m

q

Secret key: s ∈ Zn
q

Public key: b = AT s + e, e← χm

LWE implies: s cannot be obtained from (A,b)

Encryption of α ∈ {0, 1}:
x← {0, 1}m
u = Ax
u′ = 〈b, x〉+ α

⌊
q
2

⌋
Security: by Left Hashover Lemma and LWE

Decryption:

u′ − 〈s,u〉 =
(〈

ATs + e, x
〉

+ α
⌊q

2

⌋)
− 〈s,Ax〉 =

= 〈e, x〉+ α
⌊q

2

⌋
≈ α

⌊q
2

⌋
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Dual Cryptosystem [GPV08]

Key generation:

Security and public parameters the same as before
Secret key: x← {0, 1}m
Public key: u = Ax

Encryption of α ∈ {0, 1}:
s← Zn

q

b = AT s + e, e← χm

b′ = 〈s,u〉+ e′ + α
⌊
q
2

⌋
, e′ ← χ

Security by LWE

Decryption:

b′ − 〈b, x〉 = 〈s,Ax〉+ e ′ + α
⌊q

2

⌋
−
〈
ATs + e, x

〉
=

= e ′ + α
⌊q

2

⌋
− 〈e, x〉 ≈ α

⌊q
2

⌋



SIS and LWE
lattice

problems

Marcel Šebek
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Security and public parameters the same as before
Secret key: x← {0, 1}m
Public key: u = Ax

Encryption of α ∈ {0, 1}:
s← Zn

q

b = AT s + e, e← χm

b′ = 〈s,u〉+ e′ + α
⌊
q
2

⌋
, e′ ← χ

Security by LWE

Decryption:

b′ − 〈b, x〉 = 〈s,Ax〉+ e ′ + α
⌊q

2

⌋
−
〈
ATs + e, x

〉
=

= e ′ + α
⌊q

2

⌋
− 〈e, x〉 ≈ α

⌊q
2

⌋
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Most Efficient Cryptosystem

Key generation:
Security parameter: n ∈ N
Public parameters: q prime, A ∈ Zn×n

q invertible
Secret key: s← χn

Public key: u = AT s + e, e← χn

Encryption of α ∈ {0, 1}:
r← χn, x← χn

b = Ar + x
b′ = 〈u, r〉+ x ′ + α

⌊
q
2

⌋
, x ′ ← χ

Security by LWE with short secrets

Decryption:

b′ − 〈s,b〉 =
〈
AT s + e, r

〉
+ x ′ + α

⌊q
2

⌋
− 〈s,Ar + x〉 =

= 〈e, r〉 − 〈s, x〉+ x ′ + α
⌊q

2

⌋
≈ α

⌊q
2

⌋
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Most Efficient Cryptosystem

Key generation:
Security parameter: n ∈ N
Public parameters: q prime, A ∈ Zn×n

q invertible
Secret key: s← χn

Public key: u = AT s + e, e← χn

Encryption of α ∈ {0, 1}:
r← χn, x← χn

b = Ar + x
b′ = 〈u, r〉+ x ′ + α

⌊
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Security by LWE with short secrets
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b′ − 〈s,b〉 =
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Most Efficient Cryptosystem

Key generation:
Security parameter: n ∈ N
Public parameters: q prime, A ∈ Zn×n

q invertible
Secret key: s← χn

Public key: u = AT s + e, e← χn

Encryption of α ∈ {0, 1}:
r← χn, x← χn

b = Ar + x
b′ = 〈u, r〉+ x ′ + α
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q
2

⌋
, x ′ ← χ

Security by LWE with short secrets

Decryption:

b′ − 〈s,b〉 =
〈
AT s + e, r

〉
+ x ′ + α
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− 〈s,Ar + x〉 =
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Trapdoors for Lattices

SIS based one-way function fA(x) = Ax may be inverted
using trapdoor

A is (long) lattice basis generated together with a short
basis T

Many useful applications: Identity Based Encryption,
Oblivious Transfer, Deniable Encryption, etc.
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Identity Based Encryption

Extension of the Dual Cryptosystem

Public parameter A sampled together with trapdoor T

Public key: u = Ax = hash(id), secret key: f −1
A (x)



SIS and LWE
lattice

problems

Marcel Šebek
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