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© What we already know

@ Frobenius Groups
@ Definition
@ Examples
@ Properties
@ Frobenius kernel

© 8-transitive permutation groups
@ 8-transitive permutation groups
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What we already know

@ Nothing, we are really dumb.
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Frobenius Groups

Definition

A permutation group G is a if it is

@ transitive
@ non-regular

@ every non-trivial element fixes point

Particularly

G={idlu{geG:|Fix(g) =0l Ulg e G:|Fix(g) = 1}
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Frobenius Groups

Definition

A permutation group G is a if it is

@ transitive
@ non-regular

@ every non-trivial element fixes point

Particularly
G={id}U{ge G:|Fix(g)]=0}U{g e G:|Fix(g)=1}

The smallest example: S3
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Frobenius Groups

More examples

@ The dihedral group D, of size 2n for odd n
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Frobenius Groups

More examples

@ The dihedral group D, of size 2n for odd n
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@ For a field F the group of invertible affine transformations of F

x—ax+b, ac€F',beF
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Frobenius Groups

More examples

@ The dihedral group D, of size 2n for odd n
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@ For a field F the group of invertible affine transformations of F

x+—ax+b, acULF"becF
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Frobenius Groups

More examples

@ The dihedral group D, of size 2n for odd n
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@ For a field F the group of invertible affine transformations of F
x—ax+b, acU<F*' beF

In the finite case the size of this group is |U|-|F|, which is dn
for some n = pk, d|n—1.
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Frobenius Groups

More examples

Direct isometries of a tetrahedron:
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Frobenius Groups

Properties

Let G be a finite Frobenius group acting on an n-point set X. Then
|G| = dn for some d | n— 1.

Recall: |G| = |Gx|-|Orb(x)|
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Frobenius Groups

Properties

Let G be a finite Frobenius group acting on an n-point set X. Then
|G| = dn for some d | n— 1.

Recall: |G| = |Gx|-|Orb(x)|

Proof:
o The stabilizer G, of x € X acts on every orbit on
Y =X\ {x}.
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Frobenius Groups

Properties

Let G be a finite Frobenius group acting on an n-point set X. Then
|G| = dn for some d | n— 1.

Recall: |G| = |Gx|-|Orb(x)|

Proof:
o The stabilizer G, of x € X acts on every orbit on
Y =X\ {x}.

@ = Every orbit on Y has size |Gy|.
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Frobenius Groups

Properties

Let G be a finite Frobenius group acting on an n-point set X. Then
|G| = dn for some d | n— 1.

Recall: |G| = |Gx|-|Orb(x)|

Proof:
o The stabilizer G, of x € X acts on every orbit on
Y =X\ {x}.

e = Every orbit on Y has size |Gx|.
@ = |Gx|||Y|=n—1, denote d = |G|
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Frobenius Groups

Properties

Let G be a finite Frobenius group acting on an n-point set X. Then
|G| = dn for some d | n— 1.

Recall: |G| = |Gx|-|Orb(x)|

Proof:
o The stabilizer G, of x € X acts on every orbit on
Y =X\ {x}.

@ = Every orbit on Y has size |Gy|.
®© = |Gy| | |Y|=n—1, denote d = |G|
o |G| =|Gy|-|Orb(x)| = dn.
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Frobenius Groups

Properties

Let G be a finite group with order pq, where p < q are primes.
Then either G is abelian orp | g —1 and G = Fp 4.

That means:
o either G 2 Z, X Zqg,
@ or G is isomorphic to a group of affine transformations of F,

x—ax+b, acUbel,
with U < Fg, [U| = p.

Every group of order 15 is isomorphic to Z3 x Zs and every group
of order 14 is isomorphic to Z» x Zz or Dy.

Michal Szabados Permutation Groups: Frobenius Groups



Definition
Examples
Properties
Frobenius kernel

Frobenius Groups

Ferdinand Georg Frobenius

Definition

(October 26, 1849 — August 3, 1917)
was a German mathematician, best known for his contributions to
the theory of differential equations and to group theory. He also
gave the first full proof for the Cayley—Hamilton theorem.
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Frobenius Groups

Ferdinand Georg Frobenius

Definition

(October 26, 1849 — August 3, 1917)
was a German mathematician, best known for his contributions to
the theory of differential equations and to group theory. He also
gave the first full proof for the Cayley—Hamilton theorem.
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Frobenius Groups

Structure Theorem for Finite Frobenius Groups

Definition

For a Frobenius group G we define its

K ={g € G:|Fix(g)| #1}
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Frobenius Groups

Structure Theorem for Finite Frobenius Groups

Definition

For a Frobenius group G we define its
K={g G |Fix(g) # 1}

Let K be a Frobenius kernel of a finite Frobenius group G. Then:

(i) K is a normal subgroup of G.

(i) For each odd prime p, the Sylow p-subgroups of G, are cyclic,
and the Sylow 2-subgroups are either cyclic or quaternion. If
G Is not solvable, then it has exactly one composition factor,
namely As.

(iii) K is a nilpotent group.

Michal Szabados Permutation Groups: Frobenius Groups



Definition
Examples
Properties
Frobenius kernel

Frobenius Groups

Exercise

Show that a primitive permutation group G with abelian point
stabilizers is either regular of prime degree or a Frobenius group.

It is regular.
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Frobenius Groups

Exercise

Show that a primitive permutation group G with abelian point
stabilizers is either regular of prime degree or a Frobenius group.

It is regular.

@ Regular action of G on X is isomorphic to the action of right

translations on G:
X

g = &
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Frobenius Groups

Exercise

Show that a primitive permutation group G with abelian point
stabilizers is either regular of prime degree or a Frobenius group.

It is regular.

@ Regular action of G on X is isomorphic to the action of right
translations on G:

g" = gx
@ Suppose G has a proper subgroup H.
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Frobenius Groups

Exercise

Show that a primitive permutation group G with abelian point
stabilizers is either regular of prime degree or a Frobenius group.

It is regular.

@ Regular action of G on X is isomorphic to the action of right
translations on G:

g" = gx
@ Suppose G has a proper subgroup H.
o Claim: right cosets of H {Hg | g € H} form blocks:
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Frobenius Groups

Exercise

Show that a primitive permutation group G with abelian point
stabilizers is either regular of prime degree or a Frobenius group.

It is regular.

@ Regular action of G on X is isomorphic to the action of right
translations on G:

g" = gx
@ Suppose G has a proper subgroup H.
o Claim: right cosets of H {Hg | g € H} form blocks:
® g+ gx, hg — hgx
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Frobenius Groups

Exercise

Show that a primitive permutation group G with abelian point
stabilizers is either regular of prime degree or a Frobenius group.

It is regular.

@ Regular action of G on X is isomorphic to the action of right
translations on G:

g" = gx
@ Suppose G has a proper subgroup H.
o Claim: right cosets of H {Hg | g € H} form blocks:
° g+ gx, hg — hgx
@ 7 with primitivity = G has no proper subgroups.
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Frobenius Groups

Exercise

Show that a primitive permutation group G with abelian point
stabilizers is either regular of prime degree or a Frobenius group.

It is regular. v/
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Frobenius Groups

Exercise

Show that a primitive permutation group G with abelian point
stabilizers is either regular of prime degree or a Frobenius group.

It is regular. v/

Non-regular: home exercise
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8-transitive permutation groups

Definition

A permutation group G acting on Q is said to be k-transitive if G
acts transitively on k-point subsets of Q.

Theorem

| A\

Let G < Sym(RQQ) be an 8-transitive group of finite order. Then
G > Alt(Q).
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8-transitive permutation groups

Thank you for your attention!
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