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History, pioneers

Pioneers
@ Levi ben Gershon (Gersonides) (1288-1344)
@ Alexandre-Théophile Vandermonde (1735-1796)
e Joseph-Louis Lagrange (1736-1813)
e Paolo Ruffini (1765-1822)
o Niels Henrik Abel (1802-1829)
..but they were in fact uncoscious of the group concept.
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History, E. Galois

Evariste Galois (1811-1832)
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o first to use the word " group”
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normal subgroup
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History, E. Galois

Evariste Galois (1811-1832)

o first to use the word " group”

@ discovered the notion of
normal subgroup

@ "some men will find it

profitable to sort out this
mess”

Galois considered only permutations of a finite set.
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History, (almost) modern approach

@ Augustin Louis Cauchy (1789-1857)

o Arthur Cayley (1821-1895)

e Walther Franz Anton von Dyck (1856-1934)
o Christian Felix Klein (1849-1925)
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Definitions, which all of us know

Let Q be a nonempty set. A permutation is any bijection « of the
set Q on itself, the symmetric group on € is the set of all
permutations of € together with the operation of composition of
mappings,
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Definitions, which all of us know

Let Q be a nonempty set. A permutation is any bijection « of the
set Q on itself, the symmetric group on € is the set of all
permutations of € together with the operation of composition of
mappings, a permutation group is just a subgroup of a symmetric

group.
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Let G be a group and Q a nonempty set. We say that G acts on
Q if for each a € Q and each g € G we have an element a8 € Q
and we have also
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o al = a for each a € Q (where 1 is the nautral element of G);
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Let G be a group and Q a nonempty set. We say that G acts on
Q if for each a € Q and each g € G we have an element a8 € Q
and we have also

o al = a for each a € Q (where 1 is the nautral element of G);

o (a8)" =g forall g,he G and all & € Q.
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Let G be a group and Q a nonempty set. We say that G acts on
Q if for each a € Q and each g € G we have an element a8 € Q
and we have also

o ol =« for each o € Q (where 1 is the nautral element of G);
° (ag)h = o8 forall g,h € G and all a € Q.
Examples
@ symmteries of cube
@ G on itself

@ group of bijections on V' acts on the set of functions
x: V= Why(gx)(v)=x(g*(v)). g€G
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Group action as a homomorphism

If a group G acts on a set €2, then to each element g € G we can
associate a mapping from Sym (), namely a — af.
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Group action as a homomorphism

If a group G acts on a set €2, then to each element g € G we can
associate a mapping from Sym (), namely a — o8. We get
therefore a group homomorphism G — Sym (Q).
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Group action as a homomorphism

If a group G acts on a set €2, then to each element g € G we can
associate a mapping from Sym (), namely a — o8. We get
therefore a group homomorphism G — Sym (Q).

We call such (and in fact any of this kind) homomorphism a
representation of G on .
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associate a mapping from Sym (), namely a — o8. We get
therefore a group homomorphism G — Sym (Q).

We call such (and in fact any of this kind) homomorphism a
representation of G on ). The degree of an action is the
cardinality of Q. The kernel of a an action is the kernel of the
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Group action as a homomorphism

If a group G acts on a set €2, then to each element g € G we can
associate a mapping from Sym (), namely a — o8. We get
therefore a group homomorphism G — Sym (Q).

We call such (and in fact any of this kind) homomorphism a
representation of G on ). The degree of an action is the
cardinality of Q. The kernel of a an action is the kernel of the
corresponding represenation. The action is faithful, if ker =1
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Some well known facts

Theorem (Cayley representation (1854))

Every group is isomorphic to a subgroup of a suitable symmetric
group.
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Some well known facts

Theorem (Cayley representation (1854))

Every group is isomorphic to a subgroup of a suitable symmetric
group.

Example (Action on right cosets)

Let H < G and define 'y := {Hg |g € G}. We can define an
action py of G on 'y by putting (Hg)h = Hgh.
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Some well known facts

Theorem (Cayley representation (1854))

Every group is isomorphic to a subgroup of a suitable symmetric
group.

Example (Action on right cosets)

Let H < G and define 'y := {Hg |g € G}. We can define an
action py of G on 'y by putting (Hg)h := Hgh. We get the
following results:
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Some well known facts

Theorem (Cayley representation (1854))

Every group is isomorphic to a subgroup of a suitable symmetric
group.

Example (Action on right cosets)

Let H < G and define 'y := {Hg |g € G}. We can define an
action py of G on 'y by putting (Hg)h := Hgh. We get the
following results:

@ kerpy is the largest normal subgroup of G containing H.
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Some well known facts

Theorem (Cayley representation (1854))

Every group is isomorphic to a subgroup of a suitable symmetric
group.

Example (Action on right cosets)

Let H < G and define 'y := {Hg |g € G}. We can define an
action py of G on 'y by putting (Hg)h := Hgh. We get the
following results:

@ kerpy is the largest normal subgroup of G containing H.

o If H is of finite index in G, then G has a normal subgroup K
contained in H whose index in G divides n! (i.e. K < H and
[K: G] n!).

Pepa Dvofik Permutation groups



Number theory application

Pepa Dvofik Permutation groups



Number theory application

Theorem (Euler, 1747)

Every prime p of the form 4n+ 1 is a sum of two squares.
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Number theory application

Theorem (Euler, 1747)

Every prime p of the form 4n+ 1 is a sum of two squares.

Proof.
Discuss the properties of the following mapping:

(x+2z,z,y —x—2z) ifx<y-—z
(y,2) = @y —xy,x—y+2z) ify—z<x<2y;
(x =2y, x—y+2zy) if x>2y.

on the set Q = {(x,y, z) € N3| x> + 4yz = p}. O
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Orbits and stabilizers

If group G acts on the set Q, we call the set a® := {a8| g € G}
the orbit of « under G
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Orbits and stabilizers

If group G acts on the set Q, we call the set a® := {a8| g € G}
the orbit of o under G and the set G, := {g € G| a8 = a} the
stabilizer of a under G.
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Orbits and stabilizers

If group G acts on the set Q, we call the set a® := {a8| g € G}
the orbit of o under G and the set G, := {g € G| a8 = a} the
stabilizer of o under G. The most important properties are
summed up in the following theorem.
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Orbits and stabilizers

If group G acts on the set Q, we call the set a® := {a8| g € G}
the orbit of o under G and the set G, := {g € G| a8 = a} the
stabilizer of o under G. The most important properties are
summed up in the following theorem.

Theorem
Suppose the group G acts on the set €2, g,h € G and o, B € Q2.
Then
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Orbits and stabilizers

If group G acts on the set Q, we call the set a® := {a8| g € G}
the orbit of o under G and the set G, := {g € G| a8 = a} the
stabilizer of o under G. The most important properties are
summed up in the following theorem.

Theorem
Suppose the group G acts on the set €2, g,h € G and o, B € Q2.
Then

@ the orbits a® and B¢ are either disjoint or equal;
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Orbits and stabilizers

If group G acts on the set Q, we call the set a® := {a8| g € G}
the orbit of o under G and the set G, := {g € G| a8 = a} the
stabilizer of o under G. The most important properties are
summed up in the following theorem.

Theorem
Suppose the group G acts on the set €2, g,h € G and o, B € Q2.
Then

@ the orbits a® and B¢ are either disjoint or equal;

@ the stabilizer G,, is a subgroup of G and G, = g 1G,.g
whenever 3 = a&. Moreover, a8 = o & G,g = G, h;
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Orbits and stabilizers

If group G acts on the set Q, we call the set a® := {a8| g € G}
the orbit of o under G and the set G, := {g € G| a8 = a} the
stabilizer of o under G. The most important properties are
summed up in the following theorem.

Theorem
Suppose the group G acts on the set €2, g,h € G and o, B € Q2.
Then
@ the orbits a® and B¢ are either disjoint or equal;
@ the stabilizer G,, is a subgroup of G and G, = g 1G,.g
whenever 3 = a&. Moreover, a8 = o & G,g = G, h;
(s |aG| =[G : Gyl.
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Theoretical applications

Theorem (Burnside)

Let G be a finite group that acts on a set X. For each g € G let
Xg denote the set of elements in X that are fixed by g. Then the
number of orbits is equal to

1
161 2-geG Xe-
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Theoretical applications
Theorem (Burnside)

Let G be a finite group that acts on a set X. For each g € G let
Xg denote the set of elements in X that are fixed by g. Then the
number of orbits is equal to

1
1G] 2ogeG Xe-

v
Theorem

Let G be a finite p-group. Then the center
Z(G) :={g € G|g commutes with each h € G} is non-trivial.
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Theoretical applications
Theorem (Burnside)

Let G be a finite group that acts on a set X. For each g € G let
Xg denote the set of elements in X that are fixed by g. Then the
number of orbits is equal to

1
1G] 2ogeG Xe-

v

Theorem

Let G be a finite p-group. Then the center
Z(G) :={g € G|g commutes with each h € G} is non-trivial.

y

Theorem

Let G be a finite p-group and H its non-trivial normal subgroup.
Then HN Z (G) is non-trivial.

N
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Transitive action

A group acting on a set Q2 is said to be transitive on  if the
action has only one orbit, otherwise it is said to be intransitive.
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Transitive action

A group acting on a set Q2 is said to be transitive on  if the
action has only one orbit, otherwise it is said to be intransitive.

A group G acting transitively on ( is said to act regularly, if
G, = 1 for each a € Q.
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Transitive action, properties

Suppose G acts transitively on the set €2. Then:
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Transitive action, properties

Suppose G acts transitively on the set €2. Then:

© the stabilizers G, form a single conjugacy class of subgroups;
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Transitive action, properties

Suppose G acts transitively on the set €2. Then:
© the stabilizers G, form a single conjugacy class of subgroups;

@ the index of each stabilizer G,, in G is equal to the cardinality
of Q;
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Transitive action, properties

Suppose G acts transitively on the set €2. Then:
© the stabilizers G, form a single conjugacy class of subgroups;

@ the index of each stabilizer G,, in G is equal to the cardinality
of Q;

@ if G is finite, its action is regular iff |G| = |Q|.
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Transitive action, properties
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Transitive action, properties

Let G be a group acting transitively on the set Q) then for each
a € Q, the only transitive subgroup of G containing the stabilizer
Gy, is G itself.
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Transitive action, properties

Let G be a group acting transitively on the set Q) then for each
a € Q, the only transitive subgroup of G containing the stabilizer
Gy is G itself.

Suppose G acts transitively on a finite set Q and let T C Q. Then
G acts "evenly”, i.e. all a € Q are in the same number of sets '8,
g€ G.
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Examples - cube

- = -
e

(=]
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Examples - cube
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The group of symmetries of cube.. - 8
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Examples - cube
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e

The group of symmetries of cube.. - 8
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Examples - octahedron
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Examples - octahedron

..and of octahedron:
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Examples - Fano plane
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Examples - Fano plane

And what about the group of automorphisms of Fano's plane?
1

3 T 5

(an automorphism of Fano plane is a permutation of vertices which
preserves collinearity)
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Thank you.
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