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Definition
Some properties of blocks

What is a block?

Definition
Let G be a group acting on a set Ω. A block is a subset ∆ ⊆ Ω
such that for all x ∈ G :

∆x = ∆ or ∆x ∩∆ = ∅.
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Blocks for the symmetry group of a cube

Definition
The block of the smallest size (but still > 1) is called a minimal
block.

Blocks on the left are minimal.
There can be no other blocks.
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Some simple observation about blocks

if G acts transitively on Ω and ∆ is a block for G , then
Σ = {∆x , x ∈ G} forms a partition of Ω;
each element ω ∈ Ω is a (trivial) block;
Ω also is a trivial block;

Definition
If G acts transitively on Ω and has no non-trivial blocks, we say the
group is primitive.
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Some properties of blocks

Blocks and orbits of stabilizers

Lemma
Each block ∆ for G is a union of orbits for Gα of some α ∈ ∆.

Beware: it does not mean, that each union of orbits creates a block. In
only means, that whole orbit of the stabilizer always fits into one block.

Proof.
For ∀α ∈ ∆, ∀x ∈ Gα:

αx = α.

Therefore
α ∈ ∆x ∩∆⇒ ∆x = ∆.

Hence for ∀β ∈ ∆
βx ∈ ∆.
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Permutation isomorphism definition

Definition
Let G ≤ Sym(Ω) and H ≤ Sym(Ω′). They are called permutation
isomorphic, if there exist two mappings λ and ψ that fulfil:

λ : Ω→ Ω′ is a bijection,
ψ : G → H is a group isomorphism and
λ(αx) = λ(α)ψ(x) for all α ∈ Ω and x ∈ G .
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Permutation isomorphism and conjugacy

Theorem
If G and H are both subgroups of Sym(Ω), then they are
permutation isomorphic if and only if they are conjugate in Sym(Ω).

Proof.
If G and H be permutation isomorphic, then there is
λ ∈ Sym(Ω)
ψ an isomorphism, so for ∀y ∈ H ∃!x : ψ(x) = y .
Further:

λ(αx) = λ(α)ψ(x) = λ(α)y

αx = λ−1(λ(α)y ).
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Theorem
Let G be a group acting transitively on a set Ω, and let H be a
normal subgroup of G. Then:

1 orbits of H form a system of blocks for G ;
2 if ∆ and ∆′ are two H-orbits, then H∆ and H∆′ are

permutation isomorphic;
3 if any point in Ω is fixed by all elements of H, then H lies in

the kernel of the action on Ω;
4 the group H has at most [G : H] orbits, and if the index

[G : H] is finite, then the number of orbits of H divides
[G : H];

5 if G acts primitively on Ω, then either H is transitive or H lies
in the kernel of the action.
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Proof of the theorem

1 the orbits of H form a system of blocks for G ;

Proof.

If ∆ is an orbit of H, then α ∈ ∆⇒ ∀h ∈ H : αh ∈ ∆.
QUESTION: αx ∈ ∆x ⇒ ∀h ∈ H : (αx)h ∈ ∆x?
H normal ⇒

∃h′ : (αx)h = (αh′)x

and (αh′)x ∈ ∆x .
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Proof of the theorem

2 if ∆ and ∆′ are two H-orbits, then H∆ and H∆′ are
permutation isomorphic;

Proof.
Take blocks ∆,∆′ = ∆c , for some c ∈ G and define:

λ : ∆→ ∆c

λ(α) = αc , for ∀α ∈ ∆,

ψ : H∆ → H∆c

ψ(x∆) = (c−1xc)∆c
for ∀x , y ∈ H.

ψ is well defined and injective:

x∆ = y∆ ⇐⇒ αxy−1
= α ⇐⇒

⇐⇒ αxy−1c = αc ⇐⇒ αc−1xy−1c = α ⇐⇒ αc−1xc = αc−1yc ⇐⇒
⇐⇒ (c−1xc)∆c

= (c−1yc)∆c
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Proof of the theorem

Proof.

ψ is surjective, because c−1Hc = H.
ψ is homomorphism:

ψ(x∆y∆) = ψ((xy)∆) = (c−1xyc)∆c
= (c−1xcc−1yc)∆c

=
= (c−1xc)∆c

(c−1yc)∆c
= ψ(x∆)ψ(y∆)

These ψ and λ really do work:

λ(αx) = (αx)c = αxc

λ(α)ψ(x) = λ(α)c−1xc = (αc)c−1xc = αcc−1xc = αxc
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Proof of the theorem

3 if any point in Ω is fixed by all elements of H, then H lies in
the kernel of the action on Ω;

Proof.

If H fixes some α ∈ Ω, then αH is of length 1
⇒ all orbits are of length 1
⇒ H fixes all points of Ω.
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Proof of the theorem

4 the group H has at most [G : H] orbits, and if the index
[G : H] is finite, then the number of orbits of H divides
[G : H];

Proof.
Look at the action of G on the orbits of H - Σ, defined as:

g : ∆x 7→ ∆xg∀x ∈ G .

Obviously the number of all orbits of H is [G : G∆], G∆ ≥ G , and

[G : G∆] divides [G : H].
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Proof of the theorem

5 if G acts primitively on Ω, then either H is transitive or H lies
in the kernel of the action.

Proof.
There are only trivial blocks
⇒ whole orbit is one block or all blocks are of size 1.
In the first case H also has to act transitively.
In the other it is in the kernel of G .
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Equivalence of actions definition

Definition
Having two permutation representations ρ : G → Sym(Ω) and
σ : G → Sym(Γ), we say they are equivalent, if there exists a
mapping λ, such that:

λ : Ω→ Γ is a bijection and
λ(αρ(x)) = (λ(α))σ(x).
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An example of equivalent representations

Example

Regular representation ρ : G → Sym(Ω) of a group G is equivalent
to the Cayley representation σ : G → Sym(G ), defined as
σ(g) 7→ (x 7→ xg).

Proof.
We need to define λ. Take some (fixed) β ∈ Ω, then for ∀α ∈ Ω∃!g : α = βρ(g).

λ : Ω 7→ G
λ : α 7→ g , such that α = βρ(g).

This sure is a bijection. Does hold that λ(αρ(x)) = (λ(α))σ(x)?

λ(αρ(x)) = λ((βρ(g))ρ(x)) = λ(βρ(gx)) = gx
(λ(α))σ(x) = λ((βρ(g))σ(x)) = gσ(x) = gx
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Counterexample

Example
Let S2 × S2 be a group acting on {1, 2}.
Let ρ : S2 × S2 → Sym({1, 2}) be defined as

ρ(g , h) = g ,

and σ : S2 × S2 → Sym({1, 2}) as

σ(g , h) = h.

Then ρ(g , h) is permutation isomorphic to σ(g , h), but the
representations are not equivalent.
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Counterexample

Proof.
Just realize, that both groups ρ(g , h) and σ(g , h) actually are S2.
For the proof on non-equivalence of ρ and σ see the images

ρ((12), id) = (12)
σ((12), id) = id .

What can be λ? If it was identity, then

λ(1ρ((12),id)) = λ(2) = 2

λ(1)σ((12),id) = 1id = 1.

If λ was (12), then
λ(1ρ((12),id)) = λ(2) = 1

λ(1)σ((12),id) = 2id = 2.
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Thank you for your attention , !!
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