ALGORITHMS FOR, PERMUTATION GROUPS — PART II

Petr Niznansky

In this part we show the Schreier-Sims algorithm for computing a strong gen-
erating set (SGS) for group G. An algorithm is deterministic and works in poly-
nomial time. We denote Sym(f2) as a symmetric group on set 2 (we interested
only in finite groups so |Q] < c0). The key component is Schreir-Sims lemma (in
previous abstract) and following lemma.

Lemma 1. Let{f,...,0; } C Sym(Q) and G < Sym(Q). For1l < j < k+1, let
Sj - G(51;<~~7Bj—1) such that <SJ> > <Sj+1> hold for j < k. If G = <Sl>, Skt1 = @,
and

(Sj)s; = (Sj+1)

holds for all 1 < j < k then B = (B, ..., Bx) is a base for G and S = J}_, S; is
an SGS for G relative to B.

We say that data structure is up to date below level j if (S;)s, = (Si+1) holds
for all i satisfying j < i < m.

An algorithm itself is recursive and core of algorithm is following: Suppose we
have B ={ f1,...,Bm } a nonredundant base and data structure up to date below
level j (e.g. we have SGS for (S;11)). Every step of algorithm approximate SGS
of G, which is denoted by S. We compute a transversal R; for (S;) mod (S;)g,;.
Generators are known (Schreier-Sims lemma). We test all Schreier generators
whether are they in (S;;1). If this is satisfied then the data structure is up to
date below level j—1. If Schreier generator g is not in (S;41), then we find siftee ¢’
of g. We add ¢’ to S and our data structure is up to date below j + 1. If j =m
then add to B a new point not fixed by ¢’. The algorithm terminates when the
data structure becomes up to date below level 0. Lemma 1 implies correctness.

The algorithm starts with choosing 81 € € that is moved by at least one
generator in T (set which generates G) and setting S; := T. The data structure
is up to date below level 1.

The Schreier-Sims algorithm has several improvements some of them are prob-
abilistic.

Probably the most common used variant (probabilistic) of Schreier-Sims algo-
rithm has following properties:

Theorem 2. Suppose that G = (T) < Sym(Q?) and |2] = n. There is an
algorithm that, with error probability less than 1/n? for a constant d prescribed
by the user, constructs and SGS for G in O(nlogn log*(|G|) + |T| nlog(|G|)) time
using O(nlog(|G|) + |T| n) memory.

30

