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What is needed...

Suppose there is a geometry whose objects are elements of two sets (set of
points P, set of lines £) and assume that certain axioms are true. Is it
possible to find a field &, s.t. the points of our geometry can be described by

coordinates from K and the lines by linear equations over £?
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What is needed...

@ canonical way how to extend affine plane to projective plane

O one-to-one correspondence between projective spaces and projective

geometry

@ important properties of a geometry associated with modular geometric

lattice are formulated only with points and lines
@ geometry with "good" properties (DA, PT)

O existence of a (not necessarily) commutative field
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What is needed...

@ 1, Axiom: Given two distinct points P, Q, then there exists a unique line

I,st. Pel&Qel.(I=P+Q)
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@ 1, Axiom: Given two distinct points P, Q, then there exists a unique line
I,st. Pel&Qel.(I=P+Q)
@ 2, Axiom: Given a point P and a line [, there exists exactly one line m,

s.t. P € m & m||l (m, | are parallel).
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What is needed...

@ 1, Axiom: Given two distinct points P, Q, then there exists a unique line

st Pel&Qel.(I=P+Q)
@ 2, Axiom: Given a point P and a line [, there exists exactly one line m,

s.t. P € m & m||l (m, | are parallel).

@ 3, Axiom: There exist three distinct points A, B,C, s.t. C ¢ A+ B;

noncollinear points.
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What is needed...

@ 1, Axiom: Given two distinct points P, Q, then there exists a unique line
st Pel&Qel.(I=P+Q)

@ 2, Axiom: Given a point P and a line [, there exists exactly one line m,
s.t. P € m & m||l (m, [ are parallel).

@ 3, Axiom: There exist three distinct points A, B,C, s.t. C ¢ A + B;

noncollinear points.

The property of some lines to be parallel is an equivalence. An equivalence

class of parallel lines is called pencil of parallel lines.
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Symmetry of geometry

RANSLATION

The map o : P — P is called dilatation if it has the following property:

Let us have two distinct points P and @, s.t. o(P) = P’ and o(Q) = Q' If
there is some line I'||P + Q and P’ € I’ then also Q' € I’. We call a dilatation
o degenerate if it maps all points onto one given point.

Let o be non-degenerate dilatation and P point on line [, s.t. o(P) € I. If

P # o(P) then we call the line [ the tfrace of o; 1 = P + o(P).
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Dilatation o is uniquely determined by the images of points P and Q.
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What is needed...
Symmetry of geometry
ring

n

ANSLATION

Dilatation o is uniquely determined by the images of points P and Q.

A non-degenerate dilatation 7 is called the translation if - = 1 (identity) or has

no fixed point. In this case the trace are called the direction.

Translation T is uniquely determined by the images of one point P.
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Symmetry of geometry

RANSLATION

In given geometry all dilatations form a group D and all translations form its

sub-group T. If o is a dilatation and T # 1 a translation, then T and oo ™"

have the same direction. If the translations are of different directions, then T

is commutative group.
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Symmetry of geometry

NG HOMOMORPHISM

Amap a: T — T is called the trace-preserving homomorphism if
@ ais a homomorphism: a(71 - 72) = a(71) - a(m2)

O « preserves traces; i.e. either a(7) = 1 or 7 and «(7) have the same

direction.
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Symmetry of geometry

G HOMOMORPHISM

Amap a: T — T is called the trace-preserving homomorphism if
@ ais a homomorphism: a(71 - 72) = a(71) - a(m2)

O « preserves traces; i.e. either a(7) = 1 or 7 and «(7) have the same

direction.

The set of all « will be denoted by K.

1

Examples: 0:7 =1, l:7—=71, a:7—=7"% a:7—=or0 !
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Symmetry of geometry

@ 4, Axiom: Given any two points P, @, there exists a translation

TrQ : TPQ(P) = Q.
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Symmetry of geometry

@ 4, Axiom: Given any two points P, @, there exists a translation
TrQ : TPQ(P) = Q.
@ 5, Axiom: If 11 and = are translations with the same direction and if

71 £ 1, 2 # 1, 11 # T2, then there exists unique o € K: 72 = a(m1)
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Symmetry of geometry

@ 4, Axiom: Given any two points P, @, there exists a translation
TrQ : TPQ(P) = Q.
@ 5, Axiom: If 11 and = are translations with the same direction and if

71 £ 1, 2 # 1, 11 # T2, then there exists unique o € K: 72 = a(m1)

@ 5P, Axiom: For a given point P: Given points Q, R, s.t. P,Q, R are
distinct but line on a line, then there exists a dilatation o: o(P) = P &

o(Q) = R.
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Construction of a ring

Let a and 8 € K. We construct maps a + 8 and « - 8:

a+B:17— a(r)-B(r)

a-B:17— a(f(1))

Ifaand 8 € K, then o+ 8 and « - B € K. Under this definition the set K

becomes an associative ring with unit element 1 (identity).
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Construction of a ring

Assume we have translations 7, = and «, 3, v € K, then
O (a+8)(r1 - 72) = (a+8)(r1) - (a+ B)(72)

(- B)(m1 - 712) = (- B)(71) - (- B)(72)

(a+B)+v=a+B+7)

at+pB=B+a

O+a=a,a+(—1)-a=0...(K,+) commutative group

B+v)-a=B-at+ty-aqa-(B+y)=a-B+a-v

(@ B)-v=a- (87

© 0 © 06 06 0 o
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Construction of a ring

Leta € K, a # 0 and P a point. There exist a unique dilatation o which has

P as fixed point and such that o(t) = oo™ forall T € T.
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Construction of a ring

Let o # 0 € K. Find a dilatation o such that a(7) = o7~ ".

Renta Sevéikova



Construction of a ring

Let a # 0 € K. Find a dilatation o such that a(7) = oro~". The map which

1

sends 7 into o~ 70, denoted ! is also in K.
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Construction of a ring

Let a # 0 € K. Find a dilatation o such that a(7) = oro~". The map which

1

sends T into ¢~ 7o, denoted o ! is also in K. Thus using the notation ¢

instead of «(7) we have
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Construction of a ring

Let a # 0 € K. Find a dilatation o such that a(7) = oro~". The map which

1

sends T into ¢~ 7o, denoted o ! is also in K. Thus using the notation ¢

instead of «(7) we have

¢ =1 =0 oro No=1"

This shows that a.- o' = o~ ! - & = 1 and establishes an existence of an

inverse.

Renta Sevéikova




Construction of a ring

O COORDINATES

Letm # 1,72 # 1 and 71 # 2 be translations with different directions. To any

translation T € T there exist unique o, 8 € K, s.t.

T =a(n) - B(r2) = B(72) - a(m1).
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Construction of a ring

) COORDINATES

Letm # 1,72 # 1 and 71 # 2 be translations with different directions. To any
translation T € T there exist unique o, 8 € K, s.t.

T =a(n) - B(r2) = B(72) - a(m1).

Now select point O (origin) and translations 71, 7 like above. m —trace and
Tp—trace trough O shall be coordinate axis and points 71 (O), m2(O) shall be
"unit points". Let now P be any point. we write the translation 7o p in the form
Top = a(11) - B(12) with unique «, 8 € K and assign to P the pair (o, 8) as

coordinates.
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Construction of a ring

Letly, 12,13 be distinct lines, which are either parallel or meet in some point
P.IfQ,Q €li, R,R €lsand S, S € I3 and we assume that Q + R||Q’ + R’
and Q + S||Q’ + S’ then also S + R||S’ + R'.
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Construction of a ring

Letly, 12,13 be distinct lines, which are either parallel or meet in some point
P.IfQ,Q €li, R,R €l and S, S’ € l3 and we assume thatQ + R||Q" + R’
and Q + S||Q’ + S’ then also S + R||S’ + R'.

Desaurgues’ theorem holds in projective geometry where all 5 axioms hold.
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Construction of a ring

EM

The Pappus’ theorem is the following configuration:

Renta Sevéikova

Q+R and Q' +S,Q +R
and R +7T,Q+ R and

T + S are pairs of opposite
sides of the hexagon. Now
"if two of these pairs are
parallel, so is the third"

(PT).



Construction of a ring

EM

Select P € P, a # 0 € K, by only one ¢, we can obtain 7 = 0,70, ', also

B _ —1
for B 77 = opToy".
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Construction of a ring

EM

Select P € P, a # 0 € K, by only one ¢, we can obtain 7 = 0,70, ', also

B _ —1
for 3 77 = ogTo, . Then

P = (r#)* = 0&05Tagla;1 = 00037(0005) "

a-fB —1
T = 0a.8T0,.g

= Oq.8 = Oq " 0B.




Construction of a ring

EM

Select P € P, a # 0 € K, by only one ¢, we can obtain 7 = 0,70, ', also

B _ -1
for 3 77 = ogTo, . Then

P = (r#)* = O'gO'ﬁTo'Elo'(;l = 00037(0005) "

a-ff —1
T = 0a.8T0,.g

= Oq.8 = Oq " 0B.
The mult. group of non-zero elements from C ~ group of dilatations which

have P as fixed point. K commutative < D commutative.




Construction of a ring

EM

Nowselectm #Ale L,Pel,m, Q#P,Qel,R# P, Rem.
o dilatation: o1 (P) = P, | = o1—trace, 01(Q) = Q' # P (A5).
o9 dilatation: o2(P) = P, m = ox—trace, o2(R) = R’ # P (A5).

Construct S = g102(R) € m, T = 0201(Q) € - given by
Q+ Rlo1(Q) + o1 (R)|Q" + 0102(R) = Q" + S
R+ Q'||o2(R) + o2(Q)||R' + 0201(Q) = R’ + T
0102 = 0201 & 0102(Q) = 0201(Q) or 0102(Q) = T. Since 0102(Q) € litis

determined by Q + R||o102(Q) + o102(R) = 0102(Q) + S and set

Q + R||T + S - condition for commutativity.
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Construction of a ring

M AND COMMUTATIVE LAW

The field IC is commutative iff in given geometry the Pappus’ theorem holds.
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Construction of a ring

AND COMMUTATIVE LAW

The field IC is commutative iff in given geometry the Pappus’ theorem holds.

@ relation between mult. group of non-zero elements of K and group of

dilatations with same fixed point P

@ application of o1, o2 on points defined in Pappus’ theorem: Q, R; i.e.

01(Q) = Q', 02(R) = R’ (construct S = o102(R), T = 0201(Q))

@ configuration of T"and S determined by pairs of parallel lines
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Construction of a ring

Every field with a finite number of elements is commutative.
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Construction of a ring

Every field with a finite number of elements is commutative.

According to this theorem there is a geometric application:

In a Desarguesian plane with only finite number of points the Pappus’

theorem holds.
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Conclusion

ULTS ON LATTICES

@ linear subspaces of projective space form a modular geometric lattice

O linear subspaces define the geometry whose subspaces are exactly the

linear spaces (projective geometry)

Let L be modular geometric lattice. Then L satisfies the arguesian identity iff
Desaurues’ theorem holds in associate projective geometry and there exists

a field IC which elements are exactly the atoms in L.
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Conclusion

THANK YOU FOR YOUR ATTENTION
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