Algorithms for permutation groups

Part Il

Michal Hrbek

March 24, 2012

Michal Hrbek Algorithms for permutation groups - part Ill

Algorithms

Let Q be a finite set and G = (S) < SymQ a permutation group
given by generators S.

For a permutation g € Sym (2, determine wheter g is an element
of G.

Compute a base and a strong generating set for G. Then the
membership is decided by sifting.

For a subset A C Q, find generators of its (pointwise) stabilizer

@ Declare every element of Q to be a base point
@ Use base points from A first
@ The (k + 1)-th stabilizer group is Ga)

Michal Hrbek Algorithms for permutation groups - part |1l

Given a finite set A and a map ¢ : S — Sym A, decide wheter ¢
defines a homomorphism G — Sym A.

o Define H=((g,¢(g)) | g € S) (a subgroup of
SymQ x Sym A)

o Observe that ¢ defines a homomorphism if and only if Hq) is
trivial

Let ¢ : G — Sym A be an action of G on A. Find its kernel.

o Define G = {(g,¢(g)) | g € G}, a subgroup of
Sym Q x Sym A isomorphic to G

@ Observe that g € Ker ¢ if and only if (g, ¢(g)) € C(A)

Michal Hrbek Algorithms for permutation groups - part Ill

For any g € G and h € ¢(G), compute ¢(g) and some
representative of coset o~ 1(h) effectively.

o Compute two strong generating sets 51, Sy for
G ={(g,9(g) | g € G}, where S is relative to a base

By = (51,---,8m), such that 1,..., Bk € Q and
Bka1,---,PBm € A for some 1 < k < mand S, is relative to

B> with roles of € and A inversed

@ Observe that ¢(g) can be computed by sifting (g,1) in
Schreier data structure corresponding to S; and restricting the
inverse of the siftee to A

@ Observe that representative of ¢ ~1(h) can be computed by
sifting (1, h) in Schreier data structure corresponding to S,
and restricting the inverse of the siftee to Q2

Michal Hrbek Algorithms for permutation groups - part Il|

Closures

Let Q2 be a finite set and G = (S) < SymQ a permutation group.
Suppose that we have a strong generating set S1 of G relative to
some base B. If T C SymQ then we call a group H= (51 U T)
the closure of G by T.

Compute a strong generating set of the closure of G by T without
a need to construct it from scratch.

@ Add T to the generating set of G and recompute the first
fundamental orbit ﬁ{" and the coresponding transversal H
modulo Hpg,

@ Declare that our data structure is up to date below level 1 in
order to initialize the Schreier-Sims algorithm

Michal Hrbek Algorithms for permutation groups - part Ill

Definition
Let H=(T) <SymQ, G = (S) < SymQ and suppose that G has

an action on H. The algebraic closure (H®) is called a G-closure
of H.

Task

Compute a G-closure of H effectively. (We suppose that we can
compute an algebraic closure of a set of generators)

| \

@ Suppose that T is an SGS of H

@ let HH=H and forall he T1 = T,g € S collect h® such
that h8 ¢ H; into a list L

@ Compute an algebraic closure of T; U L, recompute SGS T, of
Ho

@ lterate until L is empty

Michal Hrbek Algorithms for permutation groups - part Ill

Base images

Let G < Sym (2 be a permutation group with base B. Instead of
storing an element g € G as a permutation, we can remember just
the images of base points in action of g. Since B& = B
(pointwise) implies that gh~! fixes B pointwise and hence g = h,
images of base points determine g uniquely.

Recover g € G effectively from its base images.

Algorithm

Let G < Sym) be a permutation group with an SGS S relative to
B and let t be the sum of depths of Schreier trees coding the coset
represetative sets along the point stabilizer chain of G. If

f : B — Q is an injection, it is possible to find an element g € G
such that B& = f(B) or decide that no such element exists in

O(t|€]) time.

Michal Hrbek Algorithms for permutation groups - part |1l

Algorithm

Let G < Sym) be a permutation group with an SGS S relative to
B and let t be the sum of depths of Schreier trees coding the coset
represetative sets along the point stabilizer chain of G. If

f : B — Q is an injection, it is possible to find an element g € G
such that B& = f(B) or decide that no such element exists in
O(t|€]) time.

@ Suppose that B = (B1,...,8m)and G = Gt > ... > G s
the point stabilizer chain.

e If £(f1) lies in orbit Blcl, take the product of edge labels
along the path from (1) to (31 in the first Schreier tree. We
get 1 € G such that f(81)" = f1

e Define f, : B — Q by () = f(8;)". If f(B2) € 52@2, we
take a product of edge labels from f,(52) to 32 in the second
Schreier tree. We get r3 € G such that 3 : B — defined by
f3(Bi) = f(Bi)"" fixes B, B2

Michal Hrbek Algorithms for permutation groups - part Ill

@ lterating this process we get g = nnr...rm € G such that
f(B) = Ble™)

o If fi(B;) & 8BS for some 1 < i < m, we conclude that there is
no g € G such that f(B) = B%

If we decide that having such g expressed as a word in elements of
an SGS (or just its existence) is enough, the algorithm can be sped
up to O(t|B|):

@ Instead of computing the products r; of elements along the

paths in Schreier trees, we just remember it as a word w;

e By assumption S = S~', we have that g = (w1 ... W) ' is
also a word in S

This procedure is also called “sifting as a word".

Michal Hrbek Algorithms for permutation groups - part Ill

Sifting as a word has another application. If we know a base of a
permutation group in advance, the computation of an SGS can be
sped up.

Given a base B for some permutation group G = (S) Sym Q,
|| = n, an SGS for G can be computed in O(n|B|?|S|log3|G|)
time. In particular, if a nonredundant base is known then an SGS
can be computed by nearly linear-time algorithm.

Michal Hrbek Algorithms for permutation groups - part |1l

Black-Box group representation

@ Storing elements of G as base images makes computing
products slow

@ We can store them as words in an SGS (obtained by sifting)

@ The length of such word is bounded by a sum of depths of the
Schreier trees

@ We have that G is isomorphic to a group H of such words in
an obvious way. Let us denote the isomorphism by

For any g € G, h € H, we can compute 1)(g) in O(log® |G|) time
and 1»=1(h) in O(|Q|log® |G|) time

Michal Hrbek Algorithms for permutation groups - part |1l

