
Hadamard matrices

Monika Seidlová
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Hadamard matrices

Definition: An (n × n) matrix H with entries 1 or −1, such that
H ·HT = nIn, is called an Hadamard matrix of order n.
If H is Hadamard’s, then

H ·HT =nIn (1)

HT ·H =nIn (2)

Therefore, each two distinct rows as well as columns differ in
exactly half the entries. In other words, any two distinct rows or
columns are orthogonal.



Hadamard matrices

Examples of small Hadamard matrices:

H1 = (1)

H2 =

(
1 1
1 −1

)

H4 =


1 1 −1 1
−1 1 1 1
1 1 1 −1
1 −1 1 1





Hadamard matrices

Definition: We say an Hadamard matrix is normalized if the first
row and first column contain only 1s.

Definition: Two Hadamard matrices are said to be equivalent if
one can be obtained from the other by negating rows or columns,
or by interchanging rows or columns.

Every Hadamard matrix is equivalent to a normalized one.
1 1 −1 1
−1 1 1 1
1 1 1 −1
1 −1 1 1

 ∼


1 1 −1 1
1 −1 −1 −1
1 1 1 −1
1 −1 1 1




1 1 −1 1
1 −1 −1 −1
1 1 1 −1
1 −1 1 1

 ∼


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1





Hadamard matrices

Theorem: If an Hadamard matrix of order n exists for a given
n ≥ 1, then n = 1, 2 or n is a multiple of 4.
Proof: Let n > 2 and H be a normalized Hadamard matrix of
order n. Put
A := { j | the entry in the 2nd row, jth column is 1}
B := { j | the entry in the 3nd row, jth column is 1}
|A| = # 1s in 2nd row
|B| = # 1s in 3rd row
|A| = |B| = n/2
The 2nd and 3rd rows differ in |A|+ |B| − 2|A ∩ B| entries.

n/2 =|A|+ |B| − 2|A ∩ B| (3)

n/2 =n/2 + n/2− 2|A ∩ B| (4)

|A ∩ B| =n/4 (5)

Therefore, n is a multiple of 4.



Hadamard matrices

The previous theorem leads up to the Hadamard Conjecture:

For every k natural, an Hadamard matrix of order 4k exists.

The smallest multiple of 4, of which order no Hadamard matrix is
presently known, is 668.



Hadamard matrices
Kronecker product

Definition: Given an (m × n) matrix A and a (p × q) matrix B,
their Kronecker product C = A⊗ B is an (mp × nq) matrix with
elements defined by cαβ = aijbkl , where
α = p(i − 1) + k
β = q(j − 1) + l

For example, the Kronecker product of the (2× 2) matrix A and
the (3× 2) matrix B is shown in the following (6× 4) matrix

A⊗ B =

(
a11B a12B
a21B a22B

)
=



a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a11b31 a11b32 a12b31 a12b32
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22
a21b31 a21b32 a22b31 a22b32





Hadamard matrices
Sylvester’s construction

In 1867, James Sylvester was the first one to write about what we
now call Hadamard matrices. He described a construction of these
matrices.

Theorem: If H is an Hadamard matrix of order n, then

H′ =

(
H H
H −H

)
is an Hadamard matrix of order 2n.

Since H1 = (1) is an Hadamard matrix of order 1, the following
Corollary flows from Sylvester’s construction:
There is an Hadamard matrix of order 2t for all natural t.



Hadamard matrices
Sylvester’s construction

Theorem (Sylvester): Let Hn1 and Hn2 be Hadamard matrices of
orders n1 and n2, then the Kronecker product of Hn1 and Hn2 is an
Hadamard matrix of order n1n2.

Sylvester’s construction can be formalized using the matrix

H2 =

(
1 1
1 −1

)
Then we have that

H2t =

(
H2t−1 H2t−1

H2t−1 −H2t−1

)
= H2 ⊗H2t−1 ,

for 2 ≤ t ∈ N.



Hadamard matrices
Paley’s construction

Definition: Let q be an odd prime power. The quadratic character
χ on the group Fq is defined as follows

χ(g) =


1 if g is a quadratic residue in Fq

−1 if g is a quadratic nonresidue in Fq

0 if g = 0.



Hadamard matrices
Paley’s construction

Theorem: For q an odd prime power and an ordering
{g0 = 0, g1, . . . , gq−1} of Fq, set Q = (χ(gi − gj))0≤i ,j<q. Let S
be the ((q + 1)× (q + 1)) matrix

S =

(
0 1
1T Q

)
, where 1 is a vector of 1s.

If q ≡ 3 mod 4, then

Pq =

(
1 −1
1T Q + Iq

)
is an Hadamard matrix of order (q + 1).

If q ≡ 1 mod 4, then

P′q =

(
S + Iq+1 S− Iq+1

S− Iq+1 −S− Iq+1

)
is an Hadamard matrix of order 2(q + 1).



Hadamard matrices
Example of Paley’s construction

For q = 3, we have F3 = {0, 1, 2}. 1 is a quadratic residue, 2 is a
quadratic nonresidue. We have that
χ(0) = 0
χ(1) = 1
χ(2) = −1
We construct Q = (χ(i − j))0≤i ,j<3

Q =

 χ(0) χ(2) χ(1)
χ(1) χ(0) χ(2)
χ(2) χ(1) χ(0)

 =

 0 −1 1
1 0 −1
−1 1 0


3 ≡ 3 mod 4, so we construct an Hadamard matrix of order 4.

P3 =

(
1 −1
1T Q + I3

)
=


1 −1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1





Hadamard matrices
Paley’s construction

Definition: Let {qi , i ∈ I} and {q′j , j ∈ J} be finite sets of prime
powers congruent to 3 mod 4 and 1 mod 4, respectively. A matrix
of the form

(⊗i∈IPqi)⊗ (⊗j∈JP
′
q′j

),

which is an Hadamard matrix of order
∏

i∈I (qi + 1)
∏

j∈J 2(q′j + 1),
is called a Paley Hadamard matrix.



Hadamard matrices
Equivalence

Are the matrices

P3 =


1 −1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1

 and H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


which we get from Sylvester’s construction from H1 = (1),
equivalent?
Do different constructions yield inequivalent Hadamard matrices?



Hadamard matrices
Equivalence

P3 =


1 −1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1

 ∼


1 −1 −1 −1
1 1 −1 1
1 −1 1 1
1 1 1 −1




1 −1 −1 −1
1 1 −1 1
1 −1 1 1
1 1 1 −1

 ∼


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 = H4



Hadamard matrices
Equivalence

P3 and H4 must be equivalent, because there is only one class of
equivalence for Hadamard matrices of order 4.

order 1 2 4 8 12 16 20 24 28 2n

# of classes 1 1 1 1 1 5 3 60 487 ≥ 10
⌊
n
5

⌋
+ 1

The smallest order that cannot be constructed by a combination of
Sylvester’s and Paley’s methods is 92. The following construction
was used in 1962 to construct H92 by a computer.



Hadamard matrices
Williamson’s construction

Theorem: Suppose there exist four symmetric matrices A, B, C, D
of order n with entries 1 and -1 which satisfy

XYT = YXT , ∀ X, Y ∈ {A, B, C, D}.

Further, suppose

AAT + BBT + CCT + DDT = 4nIn.

Then, using A, B, C, D in the Williamson array H given by

H =


A B C D
−B A −D C
−C D A −B
−D −C B A


gives an Hadamard matrix of order 4n.



Hadamard matrices
Example of Williamson’s construction

Let A =

 1 1 1
1 1 1
1 1 1

 , B = C = D =

 −1 1 1
1 −1 1
1 1 −1



A2 =

 3 3 3
3 3 3
3 3 3

 , B2 =

 3 −1 −1
−1 3 −1
−1 −1 3


Thus, AAT + BBT + CCT + DDT = 4nIn. We can use matrices
A and B to construct an Hadamard matrix of order 12.



Hadamard matrices
Example of Williamson’s construction

H12 =



+ + + − + + − + + − + +
+ + + + − + + − + + − +
+ + + + + − + + − + + −
+ − − + + + + − − − + +
− + − + + + − + − + − +
− − + + + + − − + + + −
+ − − − + + + + + + − −
− + − + − + + + + − + −
− − + + + − + + + − − +

+ − − + − − − + + + + +
− + − − + − + − + + + +
− − + − − + + + − + + +





Hadamard matrices
Conclusion

I Orders and the Hadamard conjecture

I Sylvester’s construction

I Paley’s construction

I Williamson’s construction


