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History, pioneers

Pioneers

Levi ben Gershon (Gersonides) (1288-1344)

Alexandre-Théophile Vandermonde (1735-1796)

Joseph-Louis Lagrange (1736–1813)

Paolo Ruffini (1765–1822)

Niels Henrik Abel (1802-1829)

..but they were in fact uncoscious of the group concept.
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History, E. Galois

Évariste Galois (1811-1832)
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History, E. Galois

Évariste Galois (1811-1832)

first to use the word ”group”

discovered the notion of
normal subgroup

”some men will find it
profitable to sort out this
mess”

Galois considered only permutations of a finite set.
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History, (almost) modern approach

Augustin Louis Cauchy (1789–1857)

Arthur Cayley (1821-1895)

Walther Franz Anton von Dyck (1856-1934)

Christian Felix Klein (1849-1925)
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Definitions, which all of us know

Let Ω be a nonempty set. A permutation is any bijection α of the
set Ω on itself, the symmetric group on Ω is the set of all
permutations of Ω together with the operation of composition of
mappings, a permutation group is just a subgroup of a symmetric
group.
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Pepa Dvǒrák Permutation groups



Definitions, which all of us know

Let Ω be a nonempty set. A permutation is any bijection α of the
set Ω on itself, the symmetric group on Ω is the set of all
permutations of Ω together with the operation of composition of
mappings, a permutation group is just a subgroup of a symmetric
group.
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Group actions

Let G be a group and Ω a nonempty set. We say that G acts on
Ω if for each α ∈ Ω and each g ∈ G we have an element αg ∈ Ω
and we have also

α1 = α for each α ∈ Ω (where 1 is the nautral element of G );

(αg )h = αgh for all g , h ∈ G and all α ∈ Ω.

Examples

symmteries of cube

G on itself

group of bijections on V acts on the set of functions
x : V →W by (gx) (v) = x

(
g−1 (v) ), g ∈ G
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Pepa Dvǒrák Permutation groups



Group actions

Let G be a group and Ω a nonempty set. We say that G acts on
Ω if for each α ∈ Ω and each g ∈ G we have an element αg ∈ Ω
and we have also

α1 = α for each α ∈ Ω (where 1 is the nautral element of G );

(αg )h = αgh for all g , h ∈ G and all α ∈ Ω.

Examples

symmteries of cube

G on itself

group of bijections on V acts on the set of functions
x : V →W by (gx) (v) = x

(
g−1 (v) ), g ∈ G
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Group action as a homomorphism

If a group G acts on a set Ω, then to each element g ∈ G we can
associate a mapping from Sym (Ω), namely α 7→ αg . We get
therefore a group homomorphism G → Sym (Ω).
We call such (and in fact any of this kind) homomorphism a
representation of G on Ω. The degree of an action is the
cardinality of Ω. The kernel of a an action is the kernel of the
corresponding represenation. The action is faithful , if ker = 1
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Some well known facts

Theorem (Cayley representation (1854))

Every group is isomorphic to a subgroup of a suitable symmetric
group.

Example (Action on right cosets)

Let H ≤ G and define ΓH := {Hg |g ∈ G} . We can define an
action ρH of G on ΓH by putting (Hg)h := Hgh. We get the
following results:

kerρH is the largest normal subgroup of G containing H.

If H is of finite index in G , then G has a normal subgroup K
contained in H whose index in G divides n! (i.e. K E H and
[K : G ] n! ).
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Number theory application

Theorem (Euler, 1747)

Every prime p of the form 4n + 1 is a sum of two squares.

Proof.

Discuss the properties of the following mapping:

(x , y , z) 7→


(x + 2z , z , y − x − z) if x < y − z ;
(2y − x , y , x − y + z) if y − z < x < 2y ;
(x − 2y , x − y + z , y) if x > 2y .

on the set Ω = {(x , y , z) ∈ N3 | x2 + 4yz = p}.
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Orbits and stabilizers

If group G acts on the set Ω, we call the set αG := {ag | g ∈ G}
the orbit of α under G and the set Gα := {g ∈ G | αg = α} the
stabilizer of α under G . The most important properties are
summed up in the following theorem.

Theorem

Suppose the group G acts on the set Ω, g , h ∈ G and α, β ∈ Ω.
Then

1 the orbits αG and βG are either disjoint or equal;

2 the stabilizer Gα is a subgroup of G and Gα = g−1Gαg
whenever β = αg . Moreover, αg = αh ⇔ Gαg = Gαh;

3

∣∣αG
∣∣ = |G : Gα|.
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Pepa Dvǒrák Permutation groups



Orbits and stabilizers

If group G acts on the set Ω, we call the set αG := {ag | g ∈ G}
the orbit of α under G and the set Gα := {g ∈ G | αg = α} the
stabilizer of α under G . The most important properties are
summed up in the following theorem.

Theorem

Suppose the group G acts on the set Ω, g , h ∈ G and α, β ∈ Ω.
Then

1 the orbits αG and βG are either disjoint or equal;

2 the stabilizer Gα is a subgroup of G and Gα = g−1Gαg
whenever β = αg . Moreover, αg = αh ⇔ Gαg = Gαh;

3

∣∣αG
∣∣ = |G : Gα|.
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Theoretical applications

Theorem (Burnside)

Let G be a finite group that acts on a set X . For each g ∈ G let
Xg denote the set of elements in X that are fixed by g. Then the
number of orbits is equal to

1
|G |
∑

g∈G Xg .

Theorem

Let G be a finite p-group. Then the center
Z (G ) := {g ∈ G |g commutes with each h ∈ G} is non-trivial.

Theorem

Let G be a finite p-group and H its non-trivial normal subgroup.
Then H ∩ Z (G ) is non-trivial.
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Transitive action

A group acting on a set Ω is said to be transitive on Ω if the
action has only one orbit, otherwise it is said to be intransitive.

A group G acting transitively on Ω is said to act regularly, if
Gα = 1 for each α ∈ Ω.
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Transitive action, properties

Theorem

Suppose G acts transitively on the set Ω.Then:

1 the stabilizers Gα form a single conjugacy class of subgroups;

2 the index of each stabilizer Gα in G is equal to the cardinality
of Ω;

3 if G is finite, its action is regular iff |G | = |Ω|.
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Transitive action, properties

Lemma

Let G be a group acting transitively on the set Ω then for each
α ∈ Ω, the only transitive subgroup of G containing the stabilizer
Gα is G itself.

Lemma

Suppose G acts transitively on a finite set Ω and let Γ ⊆ Ω. Then
G acts ”evenly”, i.e. all α ∈ Ω are in the same number of sets Γg ,
g ∈ G .
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Examples - cube

The group of symmetries of cube..
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Examples - octahedron

..and of octahedron:
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..and of octahedron:
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Examples - Fano plane

And what about the group of automorphisms of Fano’s plane?

(an automorphism of Fano plane is a permutation of vertices which
preserves collinearity)
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Thank you.
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