EVERY FINITE DIVISION RING IS A FIELD
Martin Maxa

A ring with unit R is called a division ring, if each non-zero element of R has
a multiplicative inverse. To prove that every finite division ring is also a field we
need to show only that R is commutative. For this reason we can reformulate
the theorem we want to prove as follows:

Theorem 1. Every finite division ring R is commutative.

Definition 2. For an element s in R let Cy be the set {z € R : zs = sxz}. We
call C the centralizer of s.

Definition 3. The center Z of a ring R is the set Z = (), Cs.

In particular 0 and 1 are in Z and all elements in Z commute, so that Z is a
finite field.

We have ¢ = |Z|, |R| = ¢" and |Cy| = ¢" for some integers n, n.

Now consider on the set R* := R\ {0} the equivalence relation

!’ !’
r ~r<r =z trx for some z € R*

and let
Ag = {z7'sz: 2 € R*}

be the equivalence class containing s.

We now prove the main theorem by contradiction. Let us assume that there
is some s € R such that the centralizer Cj is not all of R or equivalently, that
ns < n. By our assumption, there are classes A, with |As] > 2.

Now define for s € R* the map f,: x — z~'sz from R* onto A,.

We have:

sz =y lsysyr e Cre—yecCla
where C¥*x = {2z : 2 € C*} has size |C¥|. Hence any element z~!sz is the image
of precisely g™ — 1 elements in R* under the map f;.
Note that |R*| = |4,||C%|. In particular

R* " -1
| *| — — |As‘
‘Cs| qns -1
is an integer for all s.
Now denote by Aq,...,A; the equivalence classes containing more than one
element. Hence, by our assumption, we know ¢ > 1. Since |R*| = |Z*|+ 3 1_, | Ai

This gives the proof of so-called class formula
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Lemma 4 (Class formula).

n

t

m—1 -1

q”—l:q—l—i—zq Where1<q € N for all 1.
i=1

Lemma 5. We have ¢™ — 1| ¢"™ — 1 = n; | n, in particular n; | n for all i.

Now we denote by G the group of the n-th roots of the unity in the complex
numbers.

By the Lagrange theorem, we have d | n whenever d is the order of some
AeG.

We proceed now to define another tool we need:

Definition 6. ¢a(2) = [[,,4er(0)=a(z — A)

Since every root has some order d, we can write

2" =1 =[] da(x).
d|n

Here is important lemma for our proof:

Lemma 7. The polynomial ¢,, lies in Z[x] and the absolute coeficient of ¢,, is
either 1 or —1.

We now finish the proof of the Theorem: Let n; | n be one of the numbers
appearing in Lemma 5. Then

" =1 =[] oulx) = @ = Deu(x) []  ¢alw)
d|n

d|n,dtn; ,d#n

We conclude that in Z:

¢n(Q) | ¢"—1 and ¢7L(Q) |

n

q

pr— for all ¢

From this and the Class Formula (Lemma 4) we obtain:

¢n(Q) | q— L.

But here we have a contradiction, because:

n@l = J[ la—-A>q¢-1

order(A\)=n

This implies that ¢, (g) cannot be a divisor of ¢ — 1.

Conclusion

As we can see the proof by contradiction contains only elementary algebraic tools.
Because of its simplicity and elegance it deserves its place in The Book.
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