
Algorithms for permutation groups
Part III

Michal Hrbek

March 24, 2012

Michal Hrbek Algorithms for permutation groups - part III

Algorithms

Let Ω be a finite set and G = 〈S〉 ≤ Sym Ω a permutation group
given by generators S .

Task

For a permutation g ∈ Sym Ω, determine wheter g is an element
of G .

Compute a base and a strong generating set for G . Then the
membership is decided by sifting.

Task

For a subset ∆ ⊆ Ω, find generators of its (pointwise) stabilizer
G(∆).

Declare every element of Ω to be a base point

Use base points from ∆ first

The (k + 1)-th stabilizer group is G(∆)

Michal Hrbek Algorithms for permutation groups - part III

Task

Given a finite set ∆ and a map ϕ : S → Sym ∆, decide wheter ϕ
defines a homomorphism G → Sym ∆.

Define H = 〈(g , ϕ(g)) | g ∈ S〉 (a subgroup of
Sym Ω× Sym ∆)

Observe that ϕ defines a homomorphism if and only if H(Ω) is
trivial

Task

Let ϕ : G → Sym ∆ be an action of G on ∆. Find its kernel.

Define Ḡ = {(g , ϕ(g)) | g ∈ G}, a subgroup of
Sym Ω× Sym ∆ isomorphic to G

Observe that g ∈ Kerϕ if and only if (g , ϕ(g)) ∈ Ḡ(∆)

Michal Hrbek Algorithms for permutation groups - part III

Task

For any g ∈ G and h ∈ ϕ(G), compute ϕ(g) and some
representative of coset ϕ−1(h) effectively.

Compute two strong generating sets S1,S2 for
Ḡ = {(g , ϕ(g) | g ∈ G}, where S1 is relative to a base
B1 = (β1, . . . , βm), such that β1, . . . , βk ∈ Ω and
βk+1, . . . , βm ∈ ∆ for some 1 ≤ k ≤ m and S2 is relative to
B2 with roles of Ω and ∆ inversed

Observe that ϕ(g) can be computed by sifting (g , 1) in
Schreier data structure corresponding to S1 and restricting the
inverse of the siftee to ∆

Observe that representative of ϕ−1(h) can be computed by
sifting (1, h) in Schreier data structure corresponding to S2

and restricting the inverse of the siftee to Ω

Michal Hrbek Algorithms for permutation groups - part III

Closures

Definition

Let Ω be a finite set and G = 〈S〉 ≤ Sym Ω a permutation group.
Suppose that we have a strong generating set S1 of G relative to
some base B. If T ⊆ Sym Ω then we call a group H = 〈S1 ∪ T 〉
the closure of G by T .

Task

Compute a strong generating set of the closure of G by T without
a need to construct it from scratch.

Add T to the generating set of G and recompute the first
fundamental orbit βH1 and the coresponding transversal H
modulo Hβ1

Declare that our data structure is up to date below level 1 in
order to initialize the Schreier-Sims algorithm

Michal Hrbek Algorithms for permutation groups - part III

Definition

Let H = 〈T 〉 ≤ Sym Ω,G = 〈S〉 ≤ Sym Ω and suppose that G has
an action on H. The algebraic closure 〈HG 〉 is called a G -closure
of H.

Task

Compute a G-closure of H effectively. (We suppose that we can
compute an algebraic closure of a set of generators)

Suppose that T is an SGS of H

Let H1 = H and for all h ∈ T1 = T , g ∈ S collect hg such
that hg 6∈ H1 into a list L

Compute an algebraic closure of T1 ∪ L, recompute SGS T2 of
H2

Iterate until L is empty

Michal Hrbek Algorithms for permutation groups - part III

Base images

Let G ≤ Sym Ω be a permutation group with base B. Instead of
storing an element g ∈ G as a permutation, we can remember just
the images of base points in action of g . Since Bg = Bh

(pointwise) implies that gh−1 fixes B pointwise and hence g = h,
images of base points determine g uniquely.

Task

Recover g ∈ G effectively from its base images.

Algorithm

Let G ≤ Sym Ω be a permutation group with an SGS S relative to
B and let t be the sum of depths of Schreier trees coding the coset
represetative sets along the point stabilizer chain of G. If
f : B → Ω is an injection, it is possible to find an element g ∈ G
such that Bg = f (B) or decide that no such element exists in
O(t|Ω|) time.

Michal Hrbek Algorithms for permutation groups - part III

Algorithm

Let G ≤ Sym Ω be a permutation group with an SGS S relative to
B and let t be the sum of depths of Schreier trees coding the coset
represetative sets along the point stabilizer chain of G. If
f : B → Ω is an injection, it is possible to find an element g ∈ G
such that Bg = f (B) or decide that no such element exists in
O(t|Ω|) time.

Suppose that B = (β1, . . . , βm) and G = G 1 ≥ · · · ≥ Gm+1 is
the point stabilizer chain.

If f (β1) lies in orbit βG
1

1 , take the product of edge labels
along the path from f (β1) to β1 in the first Schreier tree. We
get r1 ∈ G such that f (β1)r1 = β1

Define f2 : B → Ω by f2(βi) = f (βi)
ri . If f2(β2) ∈ βG2

2 , we
take a product of edge labels from f2(β2) to β2 in the second
Schreier tree. We get r3 ∈ G such that f3 : B → Ω defined by
f3(βi) = f (βi)

r1r2 fixes β1, β2

Michal Hrbek Algorithms for permutation groups - part III

Iterating this process we get g = r1r2 . . . rm ∈ G such that
f (B) = B(g−1)

If fi (βi) 6∈ βG
i

i for some 1 ≤ i ≤ m, we conclude that there is
no g ∈ G such that f (B) = Bg

If we decide that having such g expressed as a word in elements of
an SGS (or just its existence) is enough, the algorithm can be sped
up to O(t|B|):

Instead of computing the products ri of elements along the
paths in Schreier trees, we just remember it as a word wi

By assumption S = S−1, we have that g = (w1 . . .wm)−1 is
also a word in S

This procedure is also called “sifting as a word”.

Michal Hrbek Algorithms for permutation groups - part III

Sifting as a word has another application. If we know a base of a
permutation group in advance, the computation of an SGS can be
sped up.

Theorem

Given a base B for some permutation group G = 〈S〉 Sym Ω,
|Ω| = n, an SGS for G can be computed in O(n|B|2|S |log 3|G |)
time. In particular, if a nonredundant base is known then an SGS
can be computed by nearly linear-time algorithm.

Michal Hrbek Algorithms for permutation groups - part III

Black-Box group representation

Storing elements of G as base images makes computing
products slow

We can store them as words in an SGS (obtained by sifting)

The length of such word is bounded by a sum of depths of the
Schreier trees

We have that G is isomorphic to a group H of such words in
an obvious way. Let us denote the isomorphism by ψ

Lemma

For any g ∈ G , h ∈ H, we can compute ψ(g) in O(logc |G |) time
and ψ−1(h) in O(|Ω| logc |G |) time

Michal Hrbek Algorithms for permutation groups - part III

