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A ring with unit R is called a division ring, if each non-zero element of R has
a multiplicative inverse. To prove that every finite division ring is also a field we
need to show only that R is commutative. For this reason we can reformulate
the theorem we want to prove as follows:

Theorem 1. Every finite division ring R is commutative.

Definition 2. For an element s in R let Cs be the set {x ∈ R : xs = sx}. We
call Cs the centralizer of s.

Definition 3. The center Z of a ring R is the set Z =
⋂

s∈R Cs.

In particular 0 and 1 are in Z and all elements in Z commute, so that Z is a
finite field.

We have q = |Z|, |R| = qn and |Cs| = qns for some integers n, ns.
Now consider on the set R⋆ := R \ {0} the equivalence relation

r
′

∼ r ⇔ r
′

= x−1rx for some x ∈ R⋆

and let
As := {x

−1sx : x ∈ R⋆}

be the equivalence class containing s.
We now prove the main theorem by contradiction. Let us assume that there

is some s ∈ R such that the centralizer Cs is not all of R or equivalently, that
ns < n. By our assumption, there are classes As with |As| ≥ 2.

Now define for s ∈ R⋆ the map fs : x 7→ x−1sx from R⋆ onto As.
We have:

x−1sx = y−1sy ⇔ yx−1 ∈ C⋆
s ←→ y ∈ C⋆

sx

where C⋆
sx = {zx : z ∈ C⋆

s } has size |C
⋆
s |. Hence any element x−1sx is the image

of precisely qns − 1 elements in R⋆ under the map fs.
Note that |R⋆| = |As||C

⋆
s |. In particular

|R⋆|

|C⋆
s |

=
qn − 1

qns − 1
= |As|

is an integer for all s.
Now denote by A1, . . . , At the equivalence classes containing more than one

element. Hence, by our assumption, we know t ≥ 1. Since |R⋆| = |Z⋆|+
∑t

i=1 |Ai|
This gives the proof of so-called class formula
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Lemma 4 (Class formula).

qn − 1 = q − 1 +

t∑

i=1

qn − 1

qni − 1
where 1 <

qn − 1

qni − 1
∈ N for all i.

Lemma 5. We have qni − 1 | qn − 1⇒ ni | n, in particular ni | n for all i.

Now we denote by G the group of the n-th roots of the unity in the complex
numbers.

By the Lagrange theorem, we have d | n whenever d is the order of some
Λ ∈ G.

We proceed now to define another tool we need:

Definition 6. φd(x) :=
∏

order(λ)=d(x− λ)

Since every root has some order d, we can write

xn − 1 =
∏

d|n

φd(x).

Here is important lemma for our proof:

Lemma 7. The polynomial φn lies in Z[x] and the absolute coeficient of φn is

either 1 or −1.

We now finish the proof of the Theorem: Let ni | n be one of the numbers
appearing in Lemma 5. Then

xn − 1 =
∏

d|n

φd(x) = (xni − 1)φn(x)
∏

d|n,d∤ni,d 6=n

φd(x)

We conclude that in Z:

φn(q) | q
n − 1 and φn(q) |

qn − 1

qni − 1
for all i

From this and the Class Formula (Lemma 4) we obtain:

φn(q) | q − 1.

But here we have a contradiction, because:

|φn(q)| =
∏

order(λ)=n

|q − λ| > q − 1.

This implies that φn(q) cannot be a divisor of q − 1.

Conclusion

As we can see the proof by contradiction contains only elementary algebraic tools.
Because of its simplicity and elegance it deserves its place in The Book.
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