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L-Real numbers

We have bounded rational numbers:
BQ={zr€Q;Ine N:|z| <n}

and an indifferation ~ on rational numbers:

numbers
x~y <= YneN:|lz—y|l<27"

which is compatible with arithmetical operations +, —, ., /,
and also with |.| and relation <

(for unary operation f it means x ~ 2’ then f(x) ~ f(z')).
Then it is possible to make the quotient ring

R:(BQ7+7_7'70717<)/N

We can prove that R is the field of real numbers, therefore
we label it R.
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Theorem

The structure R = (BQ,+,—,.,0,1,<)/ ~ is a complete
ordered field and contains Q = {[a]~;a € Q} as a dense
subfield. Moreover Q is isomorphic to Q.

v

m Field: R satisfies the field axioms as commutativity,
distributivity and associativity, [0]~ is the unit for +,
[1]~ the unit for -, ...

m Ordering: [z]. < [y]~ <= z A yandz <y

m Density of Q: Prove: xg,z1 € BQ, xg 7 x1, then there
exists 7 € Q such that g < r < z1 and xg % 1 £ x7.

m Completeness: We prove that every nonempty above
bounded X C BQ/ ~ has a supremum using infinitely
many intervals and w-saturation.
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L-Real numbers

Denote R ="*R, BR ={z € R;3n € N : |z| < n}.
On standard real numbers we define an indifference = as

r=y < (r,y € BR&x ~y)V (z,y € BR&z -y > 0).

It is equal to ~ on bounded real numbers and infinite
instances reduce each to one monad.

Denote +0o and —oco different standard instances, which are
not in R. Extended real numbers is then the set

R =RU{—00, +o0}
The indifference = and relation < can be extended naturally
to R.
Extension of arithmetical operations follows from
requirement of stability under = (for € R):

(£00) 4+ (£o0) = 2 + (£o0) = (£o00) + & = L0
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Definitions

m Let f: R — R be a function, a € R a standard point.
B a
Kufinova m We say f is continuous, if for every standard

a € dom(f), fla]- C [f(a)]-.

N m The function f is increasing, resp. decreasing, at a, if

aiffcmf [a]- € dom(f) and for every x,y € [a]-, z < a < v,

e f(x) < fla) < f(y), resp. f(z) > f(a) > f(y).

m The function f has a local mazximum at a, if
[a]. C dom(f) and for every z € [a]-, f(x) < f(a).
Similarly we define a local minimum.

m A standard function f : R — R has a derivative b € R
at a standard point a € dom(f), if [a]~ N dom(f) # {a}
and a # z € [a]. = W = b. Then we write
f'(a) = b. Similarly we define oneside derivatives.
Equivalent definition: f’(a) = w for A =0.
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acquires its minimum My and maximum M; and f maps
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Let K € N, K =400, A = (b—a)/K and z; = a +iA for
every 0 <i < K.
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Let a < b be real, f : [a,b] — R continuous function. Then f
acquires its minimum My and maximum M; and f maps

onto [My, M;].

Proof.

Let K € N, K =400, A = (b—a)/K and z; = a +iA for
every 0 <i < K.
Denote y = min{ f(z;);7 < K} and fix ip: f(z,) = y.
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Theorem [Continuous function on closed interval]

Let a < b be real, f : [a,b] — R continuous function. Then f

acquires its minimum My and maximum M; and f maps
onto [My, M;].

Proof.

Let K € N, K = +o00, A= (b—a)/K and x; = a + iA for
every 0 <i < K.

Denote y = min{ f(z;);7 < K} and fix ip: f(z,) = y.

Then there exists a standard ¢ ~ z;,, ¢ € [a,b] and certainly
My = f(c). Similarly we have f(x;,) = M;.
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Theorem [Continuous function on closed interval]

Let a < b be real, f : [a,b] — R continuous function. Then f
acquires its minimum My and maximum M; and f maps
onto [My, M;].

Proof.

Let K € N, K = +o00, A= (b—a)/K and x; = a + iA for
every 0 <i < K.

Denote y = min{ f(z;);7 < K} and fix ip: f(z,) = y.

Then there exists a standard ¢ ~ z;,, ¢ € [a,b] and certainly
My = f(c). Similarly we have f(x;,) = M;.

WLOG z;, < x;,. If we have My < y < M; a standard
point, denote j = min{i;ig < i < i1,y < f(z;)}. Then
f(zj—1) <y < f(xj), so from the continuosity: f(z;) = y.
So there must be a standard point d = z; satisfying

fld) =y. O
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Let f : R — R be a standard function, a € R.

If f'(a) > 0, respectively f/(a) < 0, then f is
increasing, resp. decreasing, in a.
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Theorem [Local extremal]
Let f : R — R be a standard function, a € R.

If f'(a) > 0, respectively f/(a) < 0, then f is
increasing, resp. decreasing, in a.
If f'(a) # 0 then at a is no local extremum of f.

v

Let f'(a) > 0 and a < 21 = a.
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Theorem [Local extremal]
Let f : R — R be a standard function, a € R.
If f'(a) > 0, respectively f/(a) < 0, then f is
increasing, resp. decreasing, in a.
If f'(a) # 0 then at a is no local extremum of f.

v

Letf’( )>0and a <z =a.
Then % f'(a) implies
f(@1) = fla) = f'(a)(z1 —a) > 0, and so f(z1) > f(a).
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Let f : R — R be a standard function, a € R.

If f'(a) > 0, respectively f/(a) < 0, then f is
increasing, resp. decreasing, in a.

If f'(a) # 0 then at a is no local extremum of f.

Proof.
b Let f'(a) >0and a <z = a.
Then f(zll— f'(a) implies

f(@1) = fla) = f'(a)(21 —a) > 0, and so f(z1) > f(a).
Similarly @ = z3 < @ implies f (CCQ) < f(a) and thus f is
increasing at a. Analogically for f'(a) < 0.




Theorem [Local extremal]
Let f : R — R be a standard function, a € R.
If f'(a) > 0, respectively f/(a) < 0, then f is
increasing, resp. decreasing, in a.
Extremes If f'(a) # 0 then at a is no local extremum of f.

and ~

b Let f'(a) >0and a <z = a.

Then f(zll— f'(a) implies

f(@1) = fla) = f'(a)(21 —a) > 0, and so f(z1) > f(a).
Similarly @ = z3 < @ implies f (CCQ) < f(a) and thus f is
increasing at a. Analogically for f'(a) < 0.
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Some other helpful Lemmas:

Lemma
Let f: R — R, a € dom(f) a standard point.

If there exists finite f/(a), then f is continuous in a.
f'(a) =b <= standardly: YU neighbourhood of b in
R there exists § > 0 Va # z € dom(f) : |[a —z| < 0

— f(a) f(fﬂ) cU.

Lemma [Mean value theorem]

For real a < b and a continuous function f : [a,b] — R,
which has a derivative in each = € (a,b) there exists
¢ € (a,b) such that f'(c) = W.
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m Let F: R — R be a function, X C dom(F'). Then F' is
pointwise stabilized for X, if for every standard x € X
there exists y € BR which stabilizes F' in x, it means
that F[z]. C [y]~.
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m Let F: R — R be a function, X C dom(F'). Then F' is
pointwise stabilized for X, if for every standard x € X
there exists y € BR which stabilizes F' in x, it means
that F[z]. C [y]~.

If for every = € X there exists y € BR, which stabilizes
F in z, we say that F' is stabilized for X.
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Some typical non-standard definitions

m Let F: R — R be a function, X C dom(F'). Then F' is
pointwise stabilized for X, if for every standard x € X
there exists y € BR which stabilizes F' in x, it means
that F[z]. C [y]~.

If for every = € X there exists y € BR, which stabilizes
F in z, we say that F' is stabilized for X.

m Let /' : R — R be a pointwise stabilized function for
dom(F'). Then there exists an unique standard function
f defined on dom(F') such that for every standard
a € dom(f), Fla]~ = [f(a)]~. We call f the standard
trace of F'.
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m Let F: R — R be a function, X C dom(F'). Then F' is

Kufinova pointwise stabilized for X, if for every standard x € X

there exists y € BR which stabilizes F' in x, it means

that F[z]. C [y]~.

If for every = € X there exists y € BR, which stabilizes
F in z, we say that F' is stabilized for X.

Non-

o] m Let /' : R — R be a pointwise stabilized function for
enlargement dom(F'). Then there exists an unique standard function
f defined on dom(F') such that for every standard

a € dom(f), Fla]~ = [f(a)]~. We call f the standard
trace of F'.

Lemma

The standard trace of pointwise stabilized function is
continuous.
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Let I C R be a standard bounded interval, F': [ — R an
internal function, which has a value from BR in some point
from [?I]-.. Let F’ be pointwise stabilized for I. Then

F' is pointwise stabilized for I and so it has a standard
trace f on I which is continuous.

f'(a) = F'(a) for every standard a € I.

f' is standard trace of F’ on I and f’ is continuous.
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Theorem [Standard trace of the derivative]

Let I C R be a standard bounded interval, F': [ — R an
internal function, which has a value from BR in some point
from [7I]-. Let F’ be pointwise stabilized for I. Then

F' is pointwise stabilized for I and so it has a standard
trace f on I which is continuous.

f'(a) = F'(a) for every standard a € I.

f' is standard trace of F’ on I and f’ is continuous.

Proof.

1) Denote z € [°I]- such that F(x) € BR and let a € I be
some different standard point, a < £ = a. The function F is
internally continuous on [a, z], because it has a derivative on
I, so from the mean value theorem there exists y € (a, x)
such that F(x) — F(a) = F'(y)(x —a). Due to F'(y) € BR it
is F'(z) = F(a), so F(a) € BR. The rest from Lemmas. [

<
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Theorem [Standard trace of the derivative]

standard
Analysis Let I C R be a standard bounded interval, F': [ — R an
e internal function, which has a value from BR in some point
from [7I]-. Let F’ be pointwise stabilized for I. Then
F' is pointwise stabilized for I and so it has a standard
trace f on I which is continuous.

f'(a) = F'(a) for every standard a € I.
Non-

standard f' is standard trace of F/ on I and f’ is continuous.

enlargement

Proof.

2) We prove: f! (a) = F'(a) for a € I except the last point
of I. There exists a standard point z € I, a < z and f = F
on [a,x], it means |F(y) — f(y)| < n =0 for every y € [a, x].
Then for arbitrary 0 < A = 0 such that n/A =0 it is

1) — fla+Dd)—f(a)  Flat+A)+m—F(a)—m2 _
fla) = === = A =

F(a+AA)_F(a) + M2 = F(q). O
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