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Sylvester-Hadamard matrices

Hadamard matrix of order n - an n × n matrix with
elements +1 and -1 such that any distinct row or column
vectors are mutually orthogonal

Definition

A (normalized) Sylvester-Hadamard matrix of size 2m, m ≥ 0, is a
squared 2m × 2m matrix that is defined recursively by

H2m =
1√
2

(
H2m−1 H2m−1

H2m−1 −H2m−1

)
,

where recursion is initiated by H1 = (1).
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Hadamard transform and Inverse Hadamard transform

Hadamard transform - mapping T : R2m → R2m defined by
T (x) = H2m · x

Inverse Hadamard transform - inverse matrix of
Sylvester-Hadamard matrix is equal to its transpose
⇒ inverse Hadamard transform is performed by applying HT

2m ,
i.e.

x = HT
2mT (x) = HT

2mH2mx
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Complexity of Hadamard transform

Hadamard transform uses only additions and subtractions (no
multiplication)

Fast Hadamard transform - complexity O(n log n)
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Walsh functions - formal definition

Complete set of orthogonal functions on the interval [0, 1]

Formal definition of Walsh functions Wal(i , t):
(i = 0, 1, . . ., 0 ≤ t ≤ 1)

Wal(0, t) = x0(t) = 1, 0 ≤ t ≤ 1

Wal(1, t) = x1(t) =

{
1, 0 ≤ t < 0, 5

−1, 0, 5 ≤ t ≤ 1

Wal(2, t) = x2(t) =

{
1, 0 ≤ t < 0, 25 and 0, 75 ≤ t ≤ 1

−1, 0, 25 ≤ t ≤ 0, 75

Wal(3, t) = x3(t) =

{
1, 0 ≤ t < 0, 25 and 0, 5 ≤ t < 0, 75

−1, 0, 25 ≤ t < 0, 5 and 0, 7f ≤ t ≤ 1

and recursively for m = 1, 2, . . . and k = 1, . . . , 2m−1 we have Wal(2m−1 + k − 1, t) = xkm(t)

x2k−1
m+1 (t) =

{
xkm(2t), 0 ≤ t < 0, 5

(−1)k+1xkm(2t − 1), 0, 5 ≤ t ≤ 1

xkm+1(t) =

{
xkm(2t), 0 ≤ t < 0, 5

(−1)k xkm(2t − 1), 0, 5 ≤ t ≤ 1
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The first 8 Walsh functions
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Walsh functions and Hadamard matrices

Definition of Walsh functions Wal(0, t) to Wal(2m−1, t)
using Sylvester-Hadamard matrix H2m :

Divide the interval [0, 1] into 2m parts[
0,

1

2m

)
,

[
1

2m
,

2

2m

)
, . . . ,

[
2m − 1

2m
, 1

)
Walsh function defined by the i th row of a matrix H2m takes
the value 1 in the interval [k/2m, (k + 1)/2m] if

H2m(i , k + 1) = 1,

otherwise it takes the value -1
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The first 8 Walsh functions using Hadamard matrix H8
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Synchronous Code Division Multiple Access (CDMA)

Multiple access - ability of many users to communicate with
each other while sharing a common transmission medium
(channel)

CDMA - method of multiple access that separates different
signals using unique sequence (signature) for each user

Synchronous CDMA - all communication signals are
synchronous
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Coding in CDMA and Hadamard matrices - I.

Find a set S of mutually orthogonal vectors (a cardinality of
the set must be greater than the number of users)

As a set S row or column vectors in Hadamard matrix Hn of
sufficient order can be considered

Assign unique vector si from S to each user i (signature)

Each signature corresponds to given row (or column) in the
matrix Hn
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Coding in CDMA and Hadamard matrices - II.

For user i , a bit 1 is represented as a sequence si and a bit 0
is represented as a sequence −si

User i wants to transmit a bit 1 ⇒ i transmit sequence si
User i wants to transmit a bit 0 ⇒ i transmit sequence −si
User i doesn’t want to transmit anything ⇒ do nothing

In the common channel, all sequences transmitted by users are
added ⇒ we get the raw signal s (interference pattern)
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Decoding in CDMA and Hadamard matrices

Reciever extracts original signal for user i by combining the
sequence si with an interference pattern (a dot product of the
vectors si and s)

s · si > 0 ⇒ user i transmited bit 1
s · si < 0 ⇒ user i transmited bit 0
s · si = 0 ⇒ user i didn’t transmit anything
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Coding of digital images by Hadamard transform

Digital image - a n1 × n2 matrix with integral input

Image coding by two-dimensional Hadamard transform:

Divide an image to the blocks (matrices) of size 2m × 2m

(each block is coded separately)

Transform block B by Hadamard matrix Hm
2 as

B̄ = H2mBH
T
2m (1)
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Basis images

Transform of block provides a representation in terms of
orthogonal basis images ⇒ components of B̄ provide the
coefficients for the expression of B as a linear combination of
the basis images Iij

Basis images for the 4× 4 case (white=1, black=-1):
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Image compression

For images that don’t have a lot of rapid intensity oscillations,
energy tends to be packed into upper left corner of B̄

Compression can be achieved by keeping only some set of
upper left components

Example: B - original 4 × 4 block, B̄0 - upper left four entries in B̄,
B̄1 - upper left entry in B̄

B =


6 6 6 6
6 6 6 6
6 6 0 0
6 6 0 0

HT
4 B̄0H4 =


6 6 6 6
6 6 6 6
6 6 0 0
6 6 0 0

HT
4 B̄1H4 =


45 45 45 45
45 45 45 45
45 45 45 45
45 45 45 45


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Other applications

Quantum information processing (Grover’s algorithm and
Shor’s algorithm)
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