CATEGORIES OF MODULES AND HOMOLOGICAL ALGEBRA

EXERCISE 3

(1) Prove the five lemma: Let R be a ring. Given a commutative diagram with exact rows of left R-modules

$$M_{1} \longrightarrow M_{2} \longrightarrow M_{3} \longrightarrow M_{4} \longrightarrow M_{5}$$

$$f_{1} \downarrow \qquad f_{2} \downarrow \qquad f_{3} \downarrow \qquad f_{4} \downarrow \qquad f_{5} \downarrow$$

$$N_{1} \longrightarrow N_{2} \longrightarrow N_{3} \longrightarrow N_{4} \longrightarrow N_{5}$$

the following hold:

- if f_2, f_4 are surjective and f_5 is injective then f_3 is surjective.
- if f_2, f_4 are injective and f_1 is surjective then f_3 is injective.
- Deduce that if f_1, f_2, f_4, f_5 are isomorphisms then f_3 is an isomorphism.
- (2) Let K be a field. For all $n \geq 0$, compute $\operatorname{Ext}_{K[x]}^n(K,K[x])$ and $\operatorname{Tor}_n^{K[x]}(K,K)$.
- (3) Let R be a commutative ring, and let $I \subseteq R$ be an ideal.
 - \bullet Show that for any R-module M there is an isomorphism

$$R/I \otimes_R M \cong M/IM$$
.

• Show that for all $n \in \mathbb{N}$

$$\operatorname{Tor}_n^R(R/I, M) \cong \operatorname{Tor}_{n+1}^R(I, M).$$

(4) Let R be a ring, let M be a right R-module, and let $\{N_i\}_{i\in I}$ be a family of left R-modules. Show that for all $i \geq 0$ there is a natural isomorphism

$$\operatorname{Tor}_{i}^{R}(M, \bigoplus_{i \in I} N_{i}) \cong \bigoplus_{i \in I} \operatorname{Tor}_{i}^{R}(M, N_{i}).$$

(5) Let R be a commutative ring, let $I \subseteq R$ be an ideal. For any R-module M, let

$$\Gamma_I(M) = \{ m \in M \mid \exists n, I^n \cdot m = 0 \}$$

1

This is called the I-torsion submodule of M.

- Show that Γ_I defines a functor $\operatorname{Mod}(R) \to \operatorname{Mod}(R)$.
- Show that this functor is left exact.
- Given a short exact sequence $0 \to M \to N \to K \to 0$ of R-modules, write down the long exact sequence of R-modules obtained from the right derived functor of Γ_I .