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V.1. R" as a linear and metric space

V.1. R” as a linear and metric space
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V.1. R" as a linear and metric space

V.1. R” as a linear and metric space

Definition
The set R”, n € N, is the set of all ordered n-tuples of real
numbers, i.e.

R = {[xy,...,Xp] : X1,...,Xn € R}.
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V.1. R" as a linear and metric space

V.1. R” as a linear and metric space

Definition
The set R”, n € N, is the set of all ordered n-tuples of real
numbers, i.e.

R = {[xy,...,Xp] : X1,...,Xn € R}.

Forx =[xi,....xp) e R, y =[w1,...,¥n] € R"and a € R
we set

x+y:[X1+Y1>---aXn+yn], Oéx:[OéX1,...,OzXn].

Further, we denote 0 = [0, . .., 0] — the origin.
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V.1. R" as a linear and metric space

Definition
The Euclidean metric (distance) on R” is the function
p: R" x R" — [0, +00) defined by

p(X,y) =

The number p(x, y) is called the distance of the point x
from the point y.
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V.1. R" as a linear and metric space

Theorem 1 (properties of the Euclidean metric)
The Euclidean metric p has the following properties:
(i) VX, y e R": p(x,¥y) =0 x =y,
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V.1. R" as a linear and metric space

Theorem 1 (properties of the Euclidean metric)
The Euclidean metric p has the following properties:

(i) VX, y e R": p(x,¥y) =0 x =y,

(i) ¥X,y €R™: p(x,y) = p(y. X), (symmetry)
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V.1. R" as a linear and metric space

Theorem 1 (properties of the Euclidean metric)
The Euclidean metric p has the following properties:

(i) VX, y e R": p(x,¥y) =0 x =y,

(i) ¥X,y €R™: p(x,y) = p(y. X), (symmetry)

(i) Vx,y,z € R": p(x,y) < p(X,2) + p(2. ),
(triangle inequality)
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V.1. R" as a linear and metric space

Theorem 1 (properties of the Euclidean metric)
The Euclidean metric p has the following properties:
(i) VX, y e R": p(x,¥y) =0 x =y,

(i) vx,y € R": p(x,y) = p(¥, X), (symmetry)
(i) VX.y,z € R": p(x,y) < p(X,2) + p(Z. ),
(triangle inequality)
(iv) vx,y € R, VA € R: p(Ax,Ay) = [A|p(X. ),
(homogeneity)
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V.1. R" as a linear and metric space

Theorem 1 (properties of the Euclidean metric)
The Euclidean metric p has the following properties:
(i) VX, y e R": p(x,¥y) =0 x =y,

(i) vx,y € R": p(x,y) = p(¥, X), (symmetry)
(i) VX.y,z € R": p(x,y) < p(X,2) + p(Z. ),
(triangle inequality)
(iv) vx,y € R, VA € R: p(Ax,Ay) = [A|p(X. ),
(homogeneity)

(v) Vx,¥y.Z€R": p(x+Z,y +2Z) = p(X, ).
(translation invariance)
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V.1. R" as a linear and metric space

Definition
Let x € R”, r € R,r > 0. The set B(x, r) defined by

B(x,r) ={y eR"; p(x,y) <r}

is called an open ball with radius r centred at x or the
neighbourhood of x.
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V.1. R" as a linear and metric space

Definition
Let M C R". We say that x € R" is an interior point of M, if
there exists r > 0 such that B(x,r) C M.
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V.1. R" as a linear and metric space

Definition
Let M C R". We say that x € R" is an interior point of M, if
there exists r > 0 such that B(x,r) C M.

The set of all interior points of M is called the interior of M
and is denoted by Int M.
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V.1. R" as a linear and metric space

Definition
Let M C R". We say that x € R" is an interior point of M, if
there exists r > 0 such that B(x,r) C M.

The set of all interior points of M is called the interior of M
and is denoted by Int M.

The set M C R" is open in R", if each point of M is an
interior point of M, i.e. if M = Int M.
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V.1. R" as a linear and metric space

Theorem 2 (properties of open sets)
(i) The empty set and R" are open in R".

Remark
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V.1. R" as a linear and metric space

Theorem 2 (properties of open sets)
(i) The empty set and R" are open in R".

(i) LetG, CR", « € A+ (), be open inR". Then
Uaea Ga is open in R™.

Remark
(il) A union of an arbitrary system of open sets is an open

set.

Mathematics Il V The space R"



V.1. R" as a linear and metric space

Theorem 2 (properties of open sets)
(i) The empty set and R" are open in R".
(i) LetG, CR", € A+, be open inRR". Then
Upea Ga is open in R".
(i) LetGicR",i=1,...,m, be openinR". Then
N Gi is open in R".

Remark
(il) A union of an arbitrary system of open sets is an open

set.
(i) An intersection of a finitely many open sets is an open

set.
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V.1. R" as a linear and metric space

Definition
Let M Cc R” and x € R". We say that x is a boundary
point of M if foreach r > 0

B(x,r)NnM#0 and B(x,r)n(R"\ M) # 0.
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V.1. R" as a linear and metric space

Definition
Let M Cc R” and x € R". We say that x is a boundary
point of M if foreach r > 0

B(x,r)NnM#0 and B(x,r)n(R"\ M) # 0.

The boundary of M is the set of all boundary points of M
(notation bd M).
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V.1. R" as a linear and metric space

Definition
Let M Cc R” and x € R". We say that x is a boundary
point of M if foreach r > 0

B(x,r)NnM#0 and B(x,r)n(R"\ M) # 0.

The boundary of M is the set of all boundary points of M
(notation bd M).

The closure of M is the set M U bd M (notation M).
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V.1. R" as a linear and metric space

Definition
Let M Cc R” and x € R". We say that x is a boundary
point of M if foreach r > 0

B(x,r)NnM#0 and B(x,r)n(R"\ M) # 0.

The boundary of M is the set of all boundary points of M
(notation bd M).

The closure of M is the set M U bd M (notation M).

A set M C R" is said to be closed in R" if it contains all its
boundary points, i.e. if bd M C M, or in other words if
M= M.
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VI.1. Basic operations with matrices

VI.1. Basic operations with matrices
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VI.1. Basic operations with matrices

VI.1. Basic operations with matrices

Definition
A table of numbers
ayr a2 ... @
axy 82 ... @d2p
. . )
adm dm2 ... dmn

where g; c R, i=1,....m,j=1,...,n,is called a matrix
of type m x n (shortly, an m-by-n matrix). We also write
(az,-,-),-_:11,,m for short.

j=1..n
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VI.1. Basic operations with matrices

VI.1. Basic operations with matrices

Definition
A table of numbers

a1 a2 ... ain
axy 82 ... @d2p
. . . )
am 8mz ... Qmn
where g; c R, i=1,....m,j=1,...,n,is called a matrix

of type m x n (shortly, an m-by-n matrix). We also write
(aij)i_:11..m for short.
j=1.n

An n-by-n matrix is called a square matrix of order n.
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VI.1. Basic operations with matrices

VI.1. Basic operations with matrices

Definition
A table of numbers
a1 a2 ... ain
axy 82 ... @d2p
. . . )
adm dm2 ... dmn
where g; c R, i=1,....m,j=1,...,n,is called a matrix

of type m x n (shortly, an m-by-n matrix). We also write
(aij)i_:11..m for short.
j=1.n

An n-by-n matrix is called a square matrix of order n.
The set of all m-by-n matrices is denoted by M(m x n).
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VI.1. Basic operations with matrices

Definition
Let
ayy a2 ... Qin
axy d22 ... @&op
A=
dm dm2 ... dmn

The n-tuple (a1, ap, . . ., an), where i € {1,2,...,m}, is
called the jth row of the matrix A.
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VI.1. Basic operations with matrices

Definition
Let
ayr a2 ... @
axy d22 ... @&op
A=
dm dm2 ... dmn

The n-tuple (a1, ap, . . ., an), where i € {1,2,...,m}, is
called the jth row of the matrix A.
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VI.1. Basic operations with matrices

Definition
Let
ayy a2 ... Qin
azy 822 ... dz2p
A=
dm dm2 ... dmn

The n-tuple (a1, ap, . .., an), where i € {1,2,...,m}, is
called the jth row of the matrix A.
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VI.1. Basic operations with matrices

Definition
Let
ayy a2 ... Qin
axy d22 ... @&op
A=
dm dm2 ... dmn

The n-tuple (a1, ap, . . ., an), where i € {1,2,...,m}, is
called the jth row of the matrix A.
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VI.1. Basic operations with matrices

Definition
Let
ayy a2 ... Qin
axy d22 ... @&op
A:
am dm2 ... dmn

The n-tuple (a1, ap, . . ., an), where i € {1,2,...,m}, is
called the jth row of the matrix A.
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VI.1. Basic operations with matrices

Definition
Let
ayy a2 ... Qin
axy d22 ... @&op
A= . .
am Aam2 ... Qmn

The n-tuple (a1, ap, . . ., an), where i € {1,2,...,m}, is
called the ith row of the matrix A.

/

),wherej € {1,2,...,n},is called the

apj

The m-tuple ( 2
a}n,-

Jth column of the matrix A.
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VI.1. Basic operations with matrices

Definition
Let
ayy a2 ... Qin
dpy 822 ... @z2p
A= . .
dm @m2 ... Qmn

The n-tuple (a1, ap, . . ., an), where i € {1,2,...,m}, is
called the ith row of the matrix A.

/

),wherej € {1,2,...,n},is called the

apj

The m-tuple ( 2
a}n,-

Jth column of the matrix A.
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VI.1. Basic operations with matrices

Definition
Let
ayy a2 ... @in
axy do2 ... @dop
A= . .
am dm2 ... Qmn

The n-tuple (a1, ap, . . ., an), where i € {1,2,...,m}, is
called the ith row of the matrix A.

/

),wherej € {1,2,...,n},is called the

apj

The m-tuple ( 2
a}n,-

Jth column of the matrix A.
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VI.1. Basic operations with matrices

Definition
Let
ayy a2 ... Qin
axy 822 ... @&zp
A= . .
am dm2 ... Qmn

The n-tuple (a1, ap, . . ., an), where i € {1,2,...,m}, is
called the ith row of the matrix A.

/

),wherej € {1,2,...,n},is called the

apj

The m-tuple ( 2
a}n,-

Jth column of the matrix A.
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VI.1. Basic operations with matrices

Definition
Let
ayy a2 ... Qin
axy 82 ... dop
A= . .
am Aam2 ... dmn

The n-tuple (a1, ap, . . ., an), where i € {1,2,...,m}, is
called the ith row of the matrix A.

/

),wherej € {1,2,...,n},is called the

apj

The m-tuple ( 2
a}n,-

Jth column of the matrix A.
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VI.1. Basic operations with matrices

Definition

We say that two matrices are equal, if they are of the
same type and the corresponding elements are equal, i.e.
if A= (a,-,-),-‘:11__,,771 and B = (buv)g:}--g’ then A = B if and only
ifm=r, n]: s and

aj=b;vie{l,....m},vje{1,... n}.
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Definition
j=1..n j=1..n

The sum of the matrices A and B is the matrix defined by

a1 +by1 ap+bi ... annt b

a1+ by apm+byp ... an+ b
A+ B= . ) ) .

am1 + bm1 ame + bm1 ... 8mn + bmn
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Definition

Let A,Bc M(mx n), A= (a,-j),;:11,,m, B= (by)i;11..m, AeR.
j=1..n j=1..n

The sum of the matrices A and B is the matrix defined by

a1 +by1 ap+bi ... annt b

a1+ by apm+byp ... an+ b
A+ B= . ) ) .

am1 + bm1 ame + bm1 ... 8mn + bmn

The product of the real number A and the matrix A (or the
A-multiple of the matrix A) is the matrix defined by

N84 A2 ... Aaip

A@>1 Ao ... Adaop
MA = , ) .

A@mi A@m2 ... Amn
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VI.1. Basic operations with matrices

Proposition 3 (basic properties of the sum of
matrices and of a multiplication by a scalar)
The following holds:
@ VA B.CcMmxn): A+(B+C)=(A+B)+C,
(associativity)
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VI.1. Basic operations with matrices

Proposition 3 (basic properties of the sum of
matrices and of a multiplication by a scalar)
The following holds:
@ VA B,Cc M(mxn): A+ (B+C)=(A+B)+C,
(associativity)
@ VA Be M(mxn): A+ B=B+ A, (commutativity)
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VI.1. Basic operations with matrices

Proposition 3 (basic properties of the sum of
matrices and of a multiplication by a scalar)
The following holds:
@ VA B.CcM(mxn): A+(B+C)=(A+B)+C,
(associativity)
@ VA Be M(mxn): A+ B=B+ A, (commutativity)
@ JJO e M(mx n)VAe M(mx n): A+ O=A,
(existence of a zero element)
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VI.1. Basic operations with matrices

Proposition 3 (basic properties of the sum of
matrices and of a multiplication by a scalar)
The following holds:
@ VA B.CcM(mxn): A+(B+C)=(A+B)+C,
(associativity)
@ VA Be M(mxn): A+ B=B+ A, (commutativity)
@ JJO e M(mx n)VAe M(mx n): A+ O=A,
(existence of a zero element)
@ VAc M(mxn)3Cae M(mxn): A+ Ca= O,
(existence of an opposite element)
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VI.1. Basic operations with matrices

Proposition 3 (basic properties of the sum of
matrices and of a multiplication by a scalar)
The following holds:
@ VA B, CcMmxn):A+(B+C)=(A+B)+C,
(associativity)
@ VA Be M(mxn): A+ B=B+ A, (commutativity)
@ JJO e M(mx n)VAe M(mx n): A+ O=A,
(existence of a zero element)
@ VAc M(mxn)3Cae M(mxn): A+ Ca= O,
(existence of an opposite element)
@ VAc M(mx n) VA ueR: (An)A = AuA),
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VI.1. Basic operations with matrices

Proposition 3 (basic properties of the sum of
matrices and of a multiplication by a scalar)
The following holds:
@ VA B, CcMmxn):A+(B+C)=(A+B)+C,
(associativity)
@ VA Be M(mxn): A+ B=B+ A, (commutativity)
@ JJO e M(mx n)VAe M(mx n): A+ O=A,
(existence of a zero element)
@ VAc M(mxn)3Cae M(mxn): A+ Ca= O,
(existence of an opposite element)
@ VAc M(mx n) VA ueR: (An)A = AuA),
@ VAc M(mxn):1-A=A,
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VI.1. Basic operations with matrices

Proposition 3 (basic properties of the sum of
matrices and of a multiplication by a scalar)
The following holds:
@ VA B, CcMmxn):A+(B+C)=(A+B)+C,
(associativity)
@ VA Be M(mxn): A+ B=B+ A, (commutativity)
@ JJO e M(mx n)VAe M(mx n): A+ O=A,
(existence of a zero element)
@ VAc M(mxn)3Cae M(mxn): A+ Ca= O,
(existence of an opposite element)
@ VAc M(mx n) VA ueR: (An)A = AuA),
@ VAc M(mxn):1-A=A,
@ VAc M(mx n)VA\ueR: (A +u)A=IA+ LA,
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VI.1. Basic operations with matrices

Proposition 3 (basic properties of the sum of
matrices and of a multiplication by a scalar)
The following holds:
@ VA B, CcMmxn):A+(B+C)=(A+B)+C,
(associativity)
@ VA Be M(mxn): A+ B=B+ A, (commutativity)
@ 10 M(mxn)VAe M(mxn): A+ O=A,
(existence of a zero element)
@ VAc M(mxn)3Cae M(mxn): A+ Ca= O,
(existence of an opposite element)
@ VAc M(mx n) VA, ueR: (M)A = \prA),
@ VAc M(mxn):1-A=A,
@ VAc M(mx n)VA\ueR: (A +u)A=IA+ LA,
@ VA Bec M(mxn)VAeR: \(A+ B) =) A+ \B.
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VI.1. Basic operations with matrices

Remark

@ The matrix O from the previous proposition is called a
zero matrix and all its elements are all zeros.
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VI.1. Basic operations with matrices

Remark

@ The matrix O from the previous proposition is called a
zero matrix and all its elements are all zeros.

@ The matrix C, from the previous proposition is called
a matrix opposite to A. It is determined uniquely, it is
denoted by —A, and it satisfies —A = (—ag);;11._m and

j=1..n

-A=-1.A
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VI.1. Basic operations with matrices

Definition
Let Ac M(mxn), A= (a,s), t.m, B € M(n x k),
B = (bsj)s— 1 Then the product of matrices Aand B is

=
defined as a matrlx AB € M(m x k), AB = (cj)i= tm

j=1..k
where .
Ci = Z a,-sbs,-.
s=1
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VI.1. Basic operations with matrices

Matrix multiplication

ai are
do1 do2 .(bﬂ bi2 b13>
dsy dasz b2y by bog
aay  aaz
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VI.1. Basic operations with matrices

Matrix multiplication

ai are
dp1 a2 .(bﬂ bi2 b13>
dz1 as2 b1 box bos
aay  aaz

ai1biy + ai2b2r  a11bi2 + a2box  a11b13 + Ay2b23
a1b11 + @ob2t  @p1by2 + @2boo  @21by3 + A22b23
az1biy + asebpy  @z1by2 + @seboo  @31by3 + azobaz
as1b11 + Qaobo1  A41b12 + Qsoboo  A41b13 + sobos
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VI.1. Basic operations with matrices

Matrix multiplication

ai are
dp1 a2 .(bﬂ bi2 b13>
dz1 as2 b1 box bos
aay  aaz

ai1biy + ai2bay ay1bi2 + azbox  a@11b13 + ay2b23
a1b11 + @ob2t  @p1by2 + @2boo  @21by3 + A22b23
az1biy + asebpy  @z1by2 + @seboo  @31by3 + azobaz
as1b11 + Qaobo1  A41b12 + Qsoboo  A41b13 + sobos
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VI.1. Basic operations with matrices

Matrix multiplication

ai are
dp1 a2 .(bﬂ bi2 b13>
dz1 as2 Do bz bos
aay  aaz

ai1by1 + @2bor  ay1biz + @12b22  a11b13 + @12b23
a1b11 + @ob2t  @p1by2 + @2boo  @21by3 + A22b23
az1biy + asebpy  @z1by2 + @seboo  @31by3 + azobaz
as1b11 + Qaobo1  A41b12 + Qsoboo  A41b13 + sobos
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VI.1. Basic operations with matrices

Matrix multiplication

ai are
dp1 a2 .(bﬂ bi2 b13>
dz1 as2 b1 box bos
aay  aaz

ai1biy + ai2b2r  a11bi2 + a2box  a11b13 + Ay2b23
a1b11 + @ob2t  @p1by2 + @2boo  @21by3 + A22b23
az1biy + asebpt  @z1bio + @soboo  @31by3 + azobaz
as1b11 + Qaobo1  A41b12 + Qsoboo  A41b13 + sobos
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VI.1. Basic operations with matrices

Matrix multiplication

ai are
dp1 a2 .(bﬂ b1z b13>
dz1 as b1 Do bos
aay  aaz

ai1biy + ai2b2r  a11bi2 + a2box  a11b13 + Ay2b23
a1b11 + @ob2t  @p1by2 + @2boo  @21by3 + A22b23
az1biy + asebpy  @z1bio + @s2boo  @31by3 + azobaz
as1b11 + Qaobo1  A41b12 + Qsoboo  A41b13 + sobos
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VI.1. Basic operations with matrices

Theorem 4 (properties of the matrix
multiplication)
Letm,n k,|I € N. Then:
(i) VAe M(mx n)VB e M(nx k)VC e M(k x |):
A(BC) = (AB)C, (associativity of multiplication)
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VI.1. Basic operations with matrices

Theorem 4 (properties of the matrix
multiplication)
Letm,n k,|I € N. Then:
(i) VAe M(mx n)VB € M(nx k) VC € M(k x I):
A(BC) = (AB)C, (associativity of multiplication)
(i) YAe M(m x n) VB, C € M(n x k):
A(B+C)=AB+ AC, (distributivity from the left)

Mathematics Il VI. Matrix calculus



VI.1. Basic operations with matrices

Theorem 4 (properties of the matrix
multiplication)
Letm,n k,|I € N. Then:
(i) VAe M(mx n)VB € M(nx k) VC € M(k x I):
A(BC) = (AB)C, (associativity of multiplication)
(i) YAe M(m x n) VB, C € M(n x k):
A(B+C)=AB+ AC, (distributivity from the left)
(iii) VA, B € M(m x n)VC € M(n x k):
(A+ B)C = AC + BC, (distributivity from the right)
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VI.1. Basic operations with matrices

Theorem 4 (properties of the matrix
multiplication)
Letm,n k,|I € N. Then:
(i) VAe M(mx n) VB € M(n x k) VC € M(k x I):
A(BC) = (AB)C, (associativity of multiplication)
(i) YAe M(m x n) VB, C € M(n x k):
A(B+C)=AB+ AC, (distributivity from the left)
(iiiy VA,B € M(m x n)VC € M(n x k):
(A+ B)C = AC + BC, (distributivity from the right)
(iv) 3 e M(nx n)VAe M(nxn): IA= Al =A.
(existence and uniqueness of an identity matrix 1)
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VI.1. Basic operations with matrices

Theorem 4 (properties of the matrix
multiplication)
Letm,n k,|I € N. Then:
(i) VAe M(mx n) VB € M(n x k) VC € M(k x I):
A(BC) = (AB)C, (associativity of multiplication)
(i) YAe M(m x n) VB, C € M(n x k):
A(B+C)=AB+ AC, (distributivity from the left)
(iiiy VA,B € M(m x n)VC € M(n x k):
(A+ B)C = AC + BC, (distributivity from the right)
(iv) 3 e M(nx n)VAe M(nxn): IA= Al =A.
(existence and uniqueness of an identity matrix 1)

Remark
Warning! The matrix multiplication is not commutative.
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VI.1. Basic operations with matrices
Definition
A transpose of a matrix

ayy a2 a3 ... ain
aoy ax a3y ... an
A=
am dam2 ams ... mn
is the matrix
ayy 81 ... dm
aig axp ... ame
AT =|a3 a3 ... am|
ayp dop ... dmn
i.e.if A= (aj)i- 1.m: then A’ = (b, ) .1, Where b, = a,
j=1. .m
foreachue{1,...,n},ve{1,2,..., }
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VI.1. Basic operations with matrices
Definition
A transpose of a matrix

ayy a2 aiz ... ain
axy dop 823 ... @do2p
A=
am Aamz ams -.-- damn
is the matrix
ayy 81 ... dm
aiz 82 ... ame
AT =|as a3 ... am|
aip d2n ... Amn
i.e.if A= (aj)i- 1.m: then A’ = (b, ) .1, Where b, = a,
=1 .m
foreachue{1,...,n},ve{1,2,..., }
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VI.1. Basic operations with matrices
Definition
A transpose of a matrix

ayy a2 a3 ... ain
dzy dop @23 ... do2p
A=
am Aamz ams -.-- damn
is the matrix
ayy d1 ... dm
a2 do2 ... ame
AT =|as a3 ... am|
aip don ... Amn
i.e.if A= (aj)i- 1.m: then A’ = (b, ) .1, Where b, = a,
=1 .m
foreachue{1,...,n},ve{1,2,..., }
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VI.1. Basic operations with matrices
Definition
A transpose of a matrix

ayy a2 a3 ... ain
aoy ax a3y ... an
A=
am dam2 ams ... mn
is the matrix
ayy 81 ... dm
ayg ax ... ame
AT =|as3 a3 ... am|
ayp dop ... dmn
i.e.if A= (aj)i- 1.m: then A’ = (b, ) .1, Where b, = a,
j=1. .m
foreachue{1,...,n},ve{1,2,.., }
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VI.1. Basic operations with matrices
Definition
A transpose of a matrix

ayy a2 a3 ... ain
axy dop 823 ... @do2p
A=
am dAmz dams --- dmn
is the matrix
ayy 81 ... dmi
a2 82 ... dme
AT =|as a3 ... am|
aip d2n ... Amn
i.e.if A= (aj)i- 1.m: then A’ = (b, ) .1, Where b, = a,
=1 .m
foreachue{1,...,n},ve{1,2,..., }
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VI.1. Basic operations with matrices

Theorem 5 (properties of the transpose of a
matrix)
Plati:

(i) VA€ M(mx n): (AT)" = A,
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VI.1. Basic operations with matrices

Theorem 5 (properties of the transpose of a
matrix)
Plati:

(i) VA€ M(mx n): (AT)" = A,

(i) VA, Be M(mxn): (A+B)T =A" + B’,
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VI.1. Basic operations with matrices

Theorem 5 (properties of the transpose of a
matrix)

Plati:
(i) VA€ M(mx n): (AT)" = A,
(i) VA, Be M(mxn): (A+B)T =A" + B’,
(i) VA€ M(m x n)VB e M(nx k): (AB)T = BTA’.
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VI.1. Basic operations with matrices

Theorem 5 (properties of the transpose of a
matrix)

Plati:
(i) VA€ M(mx n): (AT)" = A,
(i) VA, Be M(mxn): (A+B)T =A" + B’,
(i) VA€ M(m x n)VB e M(nx k): (AB)T = BTA’.
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VI.1. Basic operations with matrices

Theorem 5 (properties of the transpose of a
matrix)

Plati:

(i) VA€ M(mx n): (AT)" = A,

(i) VA, Be M(mxn): (A+B)T =A" + B’,

(i) VA€ M(m x n)VB e M(nx k): (AB)T = BTA’.

Definition

We say that the matrix A € M(n x n) is symmetric if
A=A
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VI1.2. Invertible matrices

VI.2. Invertible matrices
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VI1.2. Invertible matrices

VI.2. Invertible matrices

Definition
Let A € M(n x n). We say that A is an invertible matrix if
there exist B € M(n x n) such that

AB=BA=1.
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VI1.2. Invertible matrices

VI.2. Invertible matrices

Definition
Let A € M(n x n). We say that A is an invertible matrix if
there exist B € M(n x n) such that

AB=BA=1.

Definition
We say that the matrix B € M(n x n) is an inverse of a
matrix A€ M(n x n)if AB= BA=1.
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VI1.2. Invertible matrices

VI.2. Invertible matrices

Definition
Let A € M(n x n). We say that A is an invertible matrix if
there exist B € M(n x n) such that

AB=BA=1.

Definition
We say that the matrix B € M(n x n) is an inverse of a
matrix A€ M(n x n)if AB= BA=1.

Remark
A matrix A € M(n x n) is invertible if and only if it has an

inverse.
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VI1.2. Invertible matrices

Remark

@ If A€ M(n x n)is invertible, then it has exactly one
inverse, which is denoted by A".
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VI1.2. Invertible matrices

Remark

@ If A€ M(n x n)is invertible, then it has exactly one
inverse, which is denoted by A".

@ If some matrices A, B € M(n x n) satisfy AB = I,
then also BA = I.
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VI1.2. Invertible matrices

Remark

@ If A€ M(n x n)is invertible, then it has exactly one
inverse, which is denoted by A".

@ If some matrices A, B € M(n x n) satisfy AB = I,
then also BA = I.

Theorem 6 (operations with invertible matrices)
Let A, B € M(n x n) be invertible matrices. Then
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VI1.2. Invertible matrices

Remark

@ If A€ M(n x n)is invertible, then it has exactly one
inverse, which is denoted by A".

@ If some matrices A, B € M(n x n) satisfy AB = I,
then also BA = I.

Theorem 6 (operations with invertible matrices)
Let A, B € M(n x n) be invertible matrices. Then

(i) A" is invertible and (A1) = A,
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VI1.2. Invertible matrices

Remark

@ If A€ M(n x n)is invertible, then it has exactly one
inverse, which is denoted by A".

@ If some matrices A, B € M(n x n) satisfy AB = I,
then also BA = I.

Theorem 6 (operations with invertible matrices)
Let A, B € M(n x n) be invertible matrices. Then

(i) A" is invertible and (A1) = A,

(i) AT is invertible and (A7) = (A7"),
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VI1.2. Invertible matrices

Remark

@ If A€ M(n x n)is invertible, then it has exactly one
inverse, which is denoted by A".

@ If some matrices A, B € M(n x n) satisfy AB = I,
then also BA = I.

Theorem 6 (operations with invertible matrices)
Let A, B € M(n x n) be invertible matrices. Then

(i) A" is invertible and (A1) = A,
(i) AT is invertible and (A7) = (A7"),
(i) AB is invertible and (AB)~' = B 'A™".
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VI1.2. Invertible matrices

Definition

Let k,ne Nand v',... vk ¢ R". We say that a vector
u € R"is a linear combination of the vectors v', ..., v¥
with coefficients \1,..., A\ € R if

u:)\1v1+-~+)\kvk.
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VI1.2. Invertible matrices

Definition

Let k,ne Nand v',... vk ¢ R". We say that a vector
u € R"is a linear combination of the vectors v', ..., v¥
with coefficients \1,..., A\ € R if

u:)\1v1+-~+)\kvk.

k

By a trivial linear combination of vectors v', ..., vk we

mean the linear combination 0 - v' +--- +0 - vk,
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VI1.2. Invertible matrices

Definition

Let k,ne Nand v',... vk ¢ R". We say that a vector
u € R"is a linear combination of the vectors v', ..., v¥
with coefficients \1,..., A\ € R if

u:)\1v1+-~+)\kvk.

By a trivial linear combination of vectors v', ..., vk we

mean the linear combination 0- v! +--- + 0 - vX. Linear
combination which is not trivial is called non-trivial.
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VI1.2. Invertible matrices

Definition

We say that vectors v', ..., vk € R" are linearly
dependent if there exists their non-trivial linear
combination which is equal to the zero vector.
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VI1.2. Invertible matrices

Definition

We say that vectors v', ..., vk € R" are linearly
dependent if there exists their non-trivial linear
combination which is equal to the zero vector. We say that

vectors v', ..., vk € R" are linearly independent if they
are not linearly dependent, i.e. if whenever \{,... Ak € R
satisfy \v' +---+ VK =0,then \y = \p =--- = A\ = 0.
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VI1.2. Invertible matrices

Definition

We say that vectors v', ..., vk € R" are linearly
dependent if there exists their non-trivial linear
combination which is equal to the zero vector. We say that

vectors v', ..., vk € R" are linearly independent if they
are not linearly dependent, i.e. if whenever \{,... Ak € R
satisfy \v' +---+ VK =0,then \y = \p =--- = A\ = 0.
Remark

Vectors v', ..., v are linearly dependent if and only if one
of them can be expressed as a linear combination of the
others.
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VI1.2. Invertible matrices

Definition
Let A € M(m x n). The rank of the matrix A is the
maximal number of linearly independent row vectors of A,
i.e. the rank is equal to k € N if
(i) there is k linearly independent row vectors of A and
(i) each /-tuple of row vectors of A, where | > K, is
linearly dependent.
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VI1.2. Invertible matrices

Definition
Let A € M(m x n). The rank of the matrix A is the
maximal number of linearly independent row vectors of A,
i.e. the rank is equal to k € N if
(i) there is k linearly independent row vectors of A and
(i) each /-tuple of row vectors of A, where | > K, is
linearly dependent.
The rank of the zero matrix is zero. Rank of A is denoted
by rank(A).
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VI1.2. Invertible matrices

Definition
We say that a matrix A € M(m x n) is in a row echelon
form if for each i € {2,..., m} the ith row of A is either a

zero vector or it has more zeros at the beginning than the
(i — 1)th row.
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VI1.2. Invertible matrices

Definition

We say that a matrix A € M(m x n) is in a row echelon
form if for each i € {2,..., m} the ith row of A is either a
zero vector or it has more zeros at the beginning than the
(i — 1)th row.

Remark
The rank of a row echelon matrix is equal to the number

of its non-zero rows.
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VI1.2. Invertible matrices

Definition
The elementary row operations on the matrix A are:
(i) interchange of two rows,
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VI1.2. Invertible matrices

Definition

The elementary row operations on the matrix A are:
(i) interchange of two rows,

(if) multiplication of a row by a non-zero real number,
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VI1.2. Invertible matrices

Definition
The elementary row operations on the matrix A are:
(i) interchange of two rows,
(if) multiplication of a row by a non-zero real number,
(iii) addition of a multiple of a row to another row.
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VI1.2. Invertible matrices

Definition
The elementary row operations on the matrix A are:
(i) interchange of two rows,
(if) multiplication of a row by a non-zero real number,
(iii) addition of a multiple of a row to another row.

Definition

A matrix transformation is a finite sequence of elementary
row operations. If a matrix B € M(m x n) results from the
matrix A € M(m x n) by applying a transformation T on

the matrix A, then this fact is denoted by A L B.
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VI1.2. Invertible matrices

Theorem 7 (properties of matrix
transformations)

(i) Let A€ M(m x n). Then there exists a transformation
transforming A to a row echelon matrix.
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VI1.2. Invertible matrices

Theorem 7 (properties of matrix
transformations)
(i) Let A€ M(m x n). Then there exists a transformation
transforming A to a row echelon matrix.

(i) Let Ty be a transformation applicable to m-by-n
matrices. Then there exists a transformation T,
applicable to m-by-n matrices such that for any two

matrices A, B € M(m x n) we have A % B if and only
, T:
if B ~3
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VI1.2. Invertible matrices

Theorem 7 (properties of matrix
transformations)
(i) Let A€ M(m x n). Then there exists a transformation
transforming A to a row echelon matrix.

(i) Let Ty be a transformation applicable to m-by-n
matrices. Then there exists a transformation T,
applicable to m-by-n matrices such that for any two

matrices A, B € M(m x n) we have A % B if and only
. T
if B ~5

(i) Let A, B € M(m x n) and there exist a transformation
T such that A ~~ B. Then rank(A) = rank(B).
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VI1.2. Invertible matrices

Transformation to a row echelon form
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VI1.2. Invertible matrices

Transformation to a row echelon form
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VI1.2. Invertible matrices

Transformation to a row echelon form
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VI1.2. Invertible matrices

Transformation to a row echelon form
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VI1.2. Invertible matrices

Transformation to a row echelon form

e o o o o o
O o ¢ 0o o o
O o ¢ o o o
O ¢ ¢ 0 o o
0O ¢ o o o o
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VI1.2. Invertible matrices

Transformation to a row echelon form

e o o o o o
O o ¢ o o o
O o ¢ o o o
O o o o o o
0O ¢ o 0 o o
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VI1.2. Invertible matrices

Transformation to a row echelon form

e o o 0 o o
0 O o o o o
0 O e o o o
0 O e o o o
0 0O o ¢ o o
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VI1.2. Invertible matrices

Transformation to a row echelon form

e o o 0 o o
0 0O o o o o
0 O ¢ o o o
0 O ¢ o o o
0 0O o o o o
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VI1.2. Invertible matrices

Transformation to a row echelon form

e o o 0 o o
0 0O ¢ o o o
0 O ¢ o o o
0 O ¢ o o o
0 0O o o o o
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VI1.2. Invertible matrices

Transformation to a row echelon form

[ ] [ ] [ ] [ ] [ ] [ ]
0 0O o o o o
0 OO e o o
0 OO o o o
0 OO o o o
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VI1.2. Invertible matrices

Transformation to a row echelon form

e o
00
00
00
00
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VI1.2. Invertible matrices

Transformation to a row echelon form

e o
00
00
00
00
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VI1.2. Invertible matrices

Transformation to a row echelon form

[ ] [ ] [ ] [ ] [ ] [ ]
0 0O o o o o
0 O O o o o
0 OO O e o
O OO O e o
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VI1.2. Invertible matrices

Transformation to a row echelon form

[ ] [ ] [ ] [ ] [ ] [ ]
0 0O o o o o
0 OO o o o
0 OO O o o
O OO O o o
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VI1.2. Invertible matrices

Transformation to a row echelon form

e o
00
00
00
00
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VI1.2. Invertible matrices

Transformation to a row echelon form

e o
00
00
00
00

Mathematics Il VI. Matrix calculus

QOO e o
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VI1.2. Invertible matrices

Transformation to a row echelon form

e o
00
00
00
00
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VI1.2. Invertible matrices

Transformation to a row echelon form

e o o o o o
0 O e o o o
0 00O o o o
0O OO OO e
0 0O0OOOTO
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VI1.2. Invertible matrices

Transformation to a row echelon form

[} [ ] [ J [ J [ J [ ]
0 0O ¢ o o o
0 OO0 o o o
0O OO OO e
0 0O0OOOTO
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VI1.2. Invertible matrices

Remark
Similarly as the elementary row operations one can define

also elementary column operations. It can be shown that
the elementary column operations do not change the rank

of the matrix.
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VI1.2. Invertible matrices

Remark

Similarly as the elementary row operations one can define
also elementary column operations. It can be shown that
the elementary column operations do not change the rank
of the matrix.

Remark
It can be shown that rank(A) = rank(A") for any
A e M(m x n).
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VI1.2. Invertible matrices

Theorem 8 (reprezentation of a transformation)
Let T be a transformation on m x n matrices. Then there
exists an invertible matrix Cr € M(m x m) satisfying:
whenever we apply the transformation T to a matrix

A € M(m x n), we obtain the matrix CrA.
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VI1.2. Invertible matrices

Theorem 8 (reprezentation of a transformation)

Let T be a transformation on m x n matrices. Then there
exists an invertible matrix Cr € M(m x m) satisfying:
whenever we apply the transformation T to a matrix

A € M(m x n), we obtain the matrix CrA.

Remark

Also the converse is true: For every invertible matrix C the
mapping A — CA is a transformation.
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VI1.2. Invertible matrices

Lemma 9
Let A € M(n x n) and rank(A) = n. Then there exists a
transformation transforming A to 1.
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VI1.2. Invertible matrices

Lemma 9
Let A € M(n x n) and rank(A) = n. Then there exists a
transformation transforming A to 1.

Theorem 10
Let A € M(n x n). Then A is invertible if and only if
rank(A) = n.
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VI1.3. Determinants

VI.3. Determinants
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VI1.3. Determinants

VI.3. Determinants

Definition

Let A € M(n x n). The symbol A; denotes the

(n — 1)-by-(n — 1) matrix which is created from A by
omitting the ith row and the jth column.
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VI1.3. Determinants

VI.3. Determinants

Definition

Let A € M(n x n). The symbol A; denotes the

(n — 1)-by-(n — 1) matrix which is created from A by
omitting the ith row and the jth column.

ai 1 ce ai j—1 ai j a1 . ain
ai-11 ... d@-1j-1 @a-1j ai-1j+1 ... di-1n

A= aiq . ajj—1 a; aj j+1 . ain
ait+11 - Ait1j-1 dix1j ittt --- 8itin

an71 e an7j_1 an7j an’j_i_‘] o« an7n
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VI1.3. Determinants

VI.3. Determinants

Definition

Let A € M(n x n). The symbol A; denotes the

(n — 1)-by-(n — 1) matrix which is created from A by
omitting the ith row and the jth column.

ai 1 ce ai j—1 a | a1 . ain
ai-11 ... d@-1j-1 dai-1j ai-1j+1 ... @di-1n

A= a; 1 - a; j—1 a; aj j+1 .. ain
ait11 ... 8ix1j-1 i1 8it1j+1 .- 8ixin

an71 e an7j_1 aan an’j_i_‘] o« an7n
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VI1.3. Determinants

VI.3. Determinants

Definition

Let A € M(n x n). The symbol A; denotes the

(n — 1)-by-(n — 1) matrix which is created from A by
omitting the ith row and the jth column.

ai 1 ce ai j—1 ai j+1 . ain
aji-11 ... di-1j-1 aj—1j41 ... @i-1pn
ait1,1 - 8it1,j—1 dit1j+1  --- @ixin

an71 e an7j_1 an’j_i_‘] o« an7n
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VI1.3. Determinants

VI.3. Determinants

Definition

Let A € M(n x n). The symbol A; denotes the

(n — 1)-by-(n — 1) matrix which is created from A by
omitting the ith row and the jth column.

ai 1 - T a1 oo @n
A — ai-11 ... 8-1j1 a1j11 ... di-1n
=
/ ait+11 - 8it1j-1 Gix1j+1 --- 8iyin
an71 P anyj_‘] an7j+1 .. an,n
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VI1.3. Determinants

Definition
Let A = (&;)ij=1.n. The determinant of the matrix A is
defined by
ai ifn=1,
det A = ,
) {27—1(_1 )I+1ai1 det A,’1 if n > 1.
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VI1.3. Determinants

Definition
Let A = (&;)ij=1.n. The determinant of the matrix A is
defined by
ai ifn=1,
det A = ,
) {27—1(_1 )I+1ai1 det A,’1 if n > 1.

For det A we will also use the symbol

ayr a2 ... n
dy1 dop ... Qazp
an‘l an2 . ann
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VI1.3. Determinants

Theorem 11 (cofactor expansion)
Let A= (a,-,-),-,,-:1,,n, k e {1 s n}. Then

n
det A= Z(—1 )*kay det A (expansion along kth column),
i=1

n
det A= (—1)"a,det Ay (expansion along kth row).
=
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VI1.3. Determinants

Lemma 12

Letj,n e N, j < n, and the matrices A, B,C € M(n x n)
coincide at each row except for the jth row. Let the jth row
of A be equal to the sum of the jth rows of B and C. Then
det A = det B 4 det C.
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VI1.3. Determinants

Lemma 12

Letj,n e N, j < n, and the matrices A, B,C € M(n x n)
coincide at each row except for the jth row. Let the jth row
of A be equal to the sum of the jth rows of B and C. Then
det A = det B 4 det C.

a1y ... @ ayr .- @ anr ... @
a1 - &—1,n 811 - 81, a1 - @—-1,n
Uy+Vvy ... Up+Vp | = uq Un + V4 Vn
8j41,1 - 8i41,n ajy11 -+ 8i41,n 811 -~ 8j+1,n
an ... am am ... amn an ... am
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VI1.3. Determinants

Theorem 13 (determinant and transformations)
Let A, A" € M(n x n).
(i) If the matrix A" is created from the matrix A by

multiplying one row in A by a real number 1., then
det A" = i det A.
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VI1.3. Determinants

Theorem 13 (determinant and transformations)
Let A, A" € M(n x n).
(i) If the matrix A" is created from the matrix A by
multiplying one row in A by a real number 1., then
det A" = i det A.
(ii) If the matrix A’ is created from A by interchanging

two rows in A (i.e. by applying the elementary row
operation of the first type), then det A' = — det A.
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VI1.3. Determinants

Theorem 13 (determinant and transformations)
Let A, A" € M(n x n).
(i) If the matrix A" is created from the matrix A by

multiplying one row in A by a real number 1., then
det A" = i det A.

(i) If the matrix A’ is created from A by interchanging
two rows in A (i.e. by applying the elementary row
operation of the first type), then det A' = — det A.

(iii) If the matrix A' is created from A by adding a
w-multiple of a row in A to another row in A (i.e. by
applying the elementary row operation of the third
type), then det A’ = det A.
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VI1.3. Determinants

Theorem 13 (determinant and transformations)

Let A, A" € M(n x n).

(i) If the matrix A" is created from the matrix A by
multiplying one row in A by a real number 1., then
det A" = i det A.

(ii) If the matrix A’ is created from A by interchanging
two rows in A (i.e. by applying the elementary row
operation of the first type), then det A' = — det A.

(iii) If the matrix A' is created from A by adding a
w-multiple of a row in A to another row in A (i.e. by
applying the elementary row operation of the third
type), then det A’ = det A.

(iv) If A" is created from A by applying a transformation,
then det A # 0 if and only if det A’ # 0.
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VI1.3. Determinants

Remark
The determinant of a matrix with a zero row is equal to
zero.
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VI1.3. Determinants

Remark

The determinant of a matrix with a zero row is equal to
zero. The determinant of a matrix with two identical rows
is also equal to zero.
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VI1.3. Determinants

Definition
Let A = (a;);j=1.n. We say that A is an upper triangular
matrix if @ =0fori>j, i,je {1,...,n}.
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VI1.3. Determinants

Definition

Let A = (a;);j=1.n. We say that A is an upper triangular
matrix if @y =0fori>j,i,je {1,...,n}. We say that Ais
a lower triangular matrix if @y =0 for i < j,i,j € {1,...,n}.
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VI1.3. Determinants

Definition

Let A = (a;);j=1.n. We say that A is an upper triangular
matrix if @y =0fori>j,i,je {1,...,n}. We say that Ais
a lower triangular matrix if @y =0 for i < j,i,j € {1,...,n}.

Theorem 14 (determinant of a triangular matrix)

Let A = (aj);j-1.n be an upper or lower triangular matrix.
Then
det A=ayi-am- - ann.
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VI1.3. Determinants

Theorem 15 (determinant and invertibility)

Let A € M(n x n). Then A is invertible if and only if
det A # 0.
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VI1.3. Determinants

Theorem 16 (determinant of a product)
Let A,B € M(n x n). Then det AB = det A - det B.
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VI1.3. Determinants

Theorem 16 (determinant of a product)
Let A,B € M(n x n). Then det AB = det A - det B.

Theorem 17 (determinant of a transpose)
Let A€ M(n x n). Thendet A" = det A.
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VI.4. Systems of linear equations
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VI.4. Systems of linear equations

A system of m equations in n unknowns X, ..., X,:
anXi + ai2Xe + -+ + aipXn = by,
a1 Xy + appXp + -+ + 8opXp = by,

ami X1 +am2X2+"'+aman:bm;
where gy e R, bieR,i=1,....mj=1,...,n
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VI.4. Systems of linear equations

A system of m equations in n unknowns X, ..., X,:
ay Xy + @i2Xe + -+ - + A1pXp = by,
a1 Xy + appXp + -+ + 8opXp = by,

ami X1 + @meXo + -+ @mnXn = bm;

where g; e R, bjeR,i=1,....m,j=1,...,n The
matrix form is

Ax = b,
a1 ... an
where A = ( Dol ) € M(m x n), is called the
ami --- @mn
by
coefficient matrix, b = ( : ) € M(m x 1) is called the
bm

X1
vector of the right-hand side and x = ( ; ) e M(nx1)is
the vector of unknowns. Xn
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VI.4. Systems of linear equations

Definition
The matrix

ayy ... ain b1
(A[b) = | D

is called the augmented matrix of the system (S).
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VI.4. Systems of linear equations

Proposition 18 (solutions of a transformed
system)

LetAc M(mxn),be M(mx1)andletT be a
transformation of matrices with m rows. Denote A ~- A,

b~ b'. Then for any y € M(n x 1) we have Ay = b if and
onlyif Ay = b, i.e. the systems Ax = b and A'x = b’
have the same set of solutions.
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VI.4. Systems of linear equations

Theorem 19 (Rouché-Fontené)

The system (S) has a solution if and only if its coefficient
matrix has the same rank as its augmented matrix.
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VI.4. Systems of linear equations

Systems of n equations in n variables
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VI.4. Systems of linear equations

Systems of n equations in n variables

Theorem 20 (solvability of an n x n system)

Let A € M(n x n). Then the following statements are
equivalent:

() the matrix A is invertible,
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VI.4. Systems of linear equations

Systems of n equations in n variables

Theorem 20 (solvability of an n x n system)

Let A € M(n x n). Then the following statements are
equivalent:

() the matrix A is invertible,

(i) foreach b € M(n x 1) the system (S) has a unique
solution,
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VI.4. Systems of linear equations

Systems of n equations in n variables

Theorem 20 (solvability of an n x n system)

Let A € M(n x n). Then the following statements are
equivalent:

() the matrix A is invertible,

(i) foreach b € M(n x 1) the system (S) has a unique
solution,

(iii) foreach b € M(n x 1) the system (S) has at least
one solution,
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VI.4. Systems of linear equations

Systems of n equations in n variables

Theorem 20 (solvability of an n x n system)

Let A € M(n x n). Then the following statements are
equivalent:

() the matrix A is invertible,

(i) foreach b € M(n x 1) the system (S) has a unique
solution,

(iii) foreach b € M(n x 1) the system (S) has at least
one solution,

(iv) det A 0.
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VI.4. Systems of linear equations

Theorem 21 (Cramer’s rule)

Let A € M(n x n) be an invertible matrix, b € M(n x 1),
x € M(nx1),and Ax = b. Then

an ... a1 b1 aj1 ... Qin
X — an‘] PR an,j_‘] bn anJ_’_‘] . e ann
a det A
forj=1,...,n.
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VI.5. Definiteness of matrices
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VI.5. Definiteness of matrices

VI.5. Definiteness of matrices

Definition
We say that a symmetric matrix A € M(n x n) is

@ positive definite (PD), if u” Au > 0 for all u € R”,
u+#o,
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VI.5. Definiteness of matrices

VI.5. Definiteness of matrices

Definition
We say that a symmetric matrix A € M(n x n) is
@ positive definite (PD), if u” Au > 0 for all u € R”,
u+#o,
@ negative definite (ND), if u” Au < 0 for all u € R”,
u=o,

Mathematics Il VI. Matrix calculus



VI.5. Definiteness of matrices

VI.5. Definiteness of matrices

Definition
We say that a symmetric matrix A € M(n x n) is
@ positive definite (PD), if u” Au > 0 for all u € R”,
u+#o,
@ negative definite (ND), if u” Au < 0 for all u € R”,
u=o,
@ positive semidefinite (PSD), if u” Au > 0 for all
ueceR",
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VI.5. Definiteness of matrices

VI.5. Definiteness of matrices

Definition
We say that a symmetric matrix A € M(n x n) is
@ positive definite (PD), if u” Au > 0 for all u € R”,
u+#o,
@ negative definite (ND), if u” Au < 0 for all u € R”,
u=o,
@ positive semidefinite (PSD), if u” Au > 0 for all
ueceR",
@ negative semidefinite (NSD), if u” Au < 0 for all
ueR",
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VI.5. Definiteness of matrices

VI.5. Definiteness of matrices

Definition
We say that a symmetric matrix A € M(n x n) is
@ positive definite (PD), if u” Au > 0 for all u € R”,
u+#o,
@ negative definite (ND), if u” Au < 0 for all u € R”,
u=o,
@ positive semidefinite (PSD), if u” Au > 0 for all
ueceR",
@ negative semidefinite (NSD), if u” Au < 0 for all
ueR",
@ indefinite (ID), if there exist u, v € R” such that
u"Au > 0and v’ Av < 0.
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VI.5. Definiteness of matrices

Proposition 22 (definiteness of diagonal

matrices)
Let A € M(n x n) be diagonal (i.e. a; = 0 whenever i # j).
Then

@ AisPDifandonlyifa; >0 foralli=1,2,...,n,
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VI.5. Definiteness of matrices

Proposition 22 (definiteness of diagonal

matrices)
Let A € M(n x n) be diagonal (i.e. a; = 0 whenever i # j).
Then

@ AisPDifandonlyifa; >0 foralli=1,2,...,n,

@ AisND ifandonlyifa; <0 foralli=1,2,....n,
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VI.5. Definiteness of matrices

Proposition 22 (definiteness of diagonal

matrices)
Let A € M(n x n) be diagonal (i.e. a; = 0 whenever i # j).
Then

@ AisPDifandonlyifa; >0 foralli=1,2,...,n,

@ AisND ifandonlyifa; <0 foralli=1,2,....n,

@ AisPSDifandonlyifa; >0 foralli=1,2,...,n,
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VI.5. Definiteness of matrices

Proposition 22 (definiteness of diagonal

matrices)

Let A € M(n x n) be diagonal (i.e. a; = 0 whenever i # j).
Then

@ AisPDifandonlyifa; >0 foralli=1,2,...,n,
@ AisND ifandonlyifa; <0 foralli=1,2,....n,
@ AisPSDifandonlyifa; >0 foralli=1,2,...,n,
@ AisNSD ifandonlyifa; <0 foralli=1,2,...,n,
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VI.5. Definiteness of matrices

Proposition 22 (definiteness of diagonal

matrices)

Let A € M(n x n) be diagonal (i.e. a; = 0 whenever i # j).
Then

@ AisPDifandonlyifa; >0 foralli=1,2,...,n,
@ AisND ifandonlyifa; <0 foralli=1,2,....n,
@ AisPSDifandonlyifa; >0 foralli=1,2,...,n,
@ AisNSD ifandonlyifa; <0 foralli=1,2,...,n,

@ Ais ID ifand only if there existi, j € {1,2,...,n}
such that a; > 0 and a; < 0.
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VI.5. Definiteness of matrices

Proposition 23 (necessary conditions for

definiteness)

Let A € M(n x n) be a symmetric matrix. Then
@ IfAis PD, thena; >0 foralli=1,2,...,n,
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VI.5. Definiteness of matrices

Proposition 23 (necessary conditions for

definiteness)

Let A € M(n x n) be a symmetric matrix. Then
@ IfAis PD, thena; >0 foralli=1,2,...,n,
@ IfAisND, thena; <0 foralli=1,2,...,n,
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VI.5. Definiteness of matrices

Proposition 23 (necessary conditions for

definiteness)

Let A € M(n x n) be a symmetric matrix. Then
@ IfAisPD, thena; >0 foralli=1,2,...,n,
@ IfAis ND, thena; <0 foralli=1,2,...,n,
@ IfAis PSD, thena; >0 foralli=1,2,...,n,
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VI.5. Definiteness of matrices

Proposition 23 (necessary conditions for

definiteness)

Let A € M(n x n) be a symmetric matrix. Then
@ IfAisPD, thena; >0 foralli=1,2,...,n,
@ IfAis ND, thena; <0 foralli=1,2,...,n,
@ IfAis PSD, thena; >0 foralli=1,2,...,n,
@ IfAis NSD, thena; <OQforalli=1,2,...,n,
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VI.5. Definiteness of matrices

Proposition 23 (necessary conditions for
definiteness)
Let A € M(n x n) be a symmetric matrix. Then
@ IfAisPD, thena; >0 foralli=1,2,...,n,
@ IfAis ND, thena; <0 foralli=1,2,...,n,
@ IfAis PSD, thena; >0 foralli=1,2,...,n,
@ IfAis NSD, thena; <OQforalli=1,2,...,n,
°

If there exist i, j € {1,2,...,n} such that a; > 0 and
a; <0, thenAis ID.
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VI.5. Definiteness of matrices

Theorem 24 (Sylvester’s criterion)
Let A= (a;) € M(n x n) be a symmetric matrix. Then A is
@ positive definite if and only if

a4 ... aik
: | >0 forallk=1,...,n,
a1 ... Qkk
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VI.5. Definiteness of matrices

Theorem 24 (Sylvester’s criterion)
Let A= (a;) € M(n x n) be a symmetric matrix. Then A is
@ positive definite if and only if

a4 ... aik
: | >0 forallk=1,...,n,
a1 ... Qkk

@ negative definite if and only if

ay ... @k
(=1 : >0 forallk=1,...,n,
ak1 ... Ak
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VI.5. Definiteness of matrices

@ positive semidefinite if and only if

aiiy -+ Qi
. . Z 0
Qiiy .- A,

for each k-tuple of integers 1 < iy < --- < i < n,
k=1,...,n,
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VI.5. Definiteness of matrices

@ positive semidefinite if and only if
aiiy -+ Qi
: - 120
Qiiy .- A,
for each k-tuple of integers 1 < iy < --- < i < n,
k=1,...,n,
@ negative semidefinite if and only if
aiyjiy .- Qi
(=] : 1 [=0
iy .- Qi
for each k-tuple of integers 1 <i; < --- < ik < n,
k=1,...,n.



VII.1 Sequences of several variables

Definition
Let X/ € R" for each j € N-and x € R". We say that a
sequence {x/}; converges to x, if

lim p(x, x) = 0.

J—o0

The vector x is called the limit of the sequence {xf}j?;.
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VII.1 Sequences of several variables

Definition
Let X/ € R" for each j € N-and x € R". We say that a
sequence {x/}; converges to x, if

lim p(x, x)) = 0.

J—00
The vector x is called the limit of the sequence {xf}j?;.
The sequence {y/}, of points in R is called convergent
if there exists y € R" such that {yf}fi1 converges to y.
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VII.1 Sequences of several variables

Definition
Let X/ € R" for each j € N-and x € R". We say that a
sequence {x/}; converges to x, if

lim p(x, x) = 0.

J—o0

The vector x is called the limit of the sequence {xf}j?;.
The sequence {y/}, of points in R is called convergent
if there exists y € R” such that {yf}fi1 converges to y.

Remark _
The sequence {x/}7; converges to x € R" if and only if

VeeR,e>03 e NVjeN,j>jo: X € B(x,e).
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VII.1 Sequences of several variables

Theorem 25 (convergence is coordinatewise)

Let x' € R" for each j € N and let x € R". The sequence
{x/}2, converges to x if and only if for each i € {1,...,n}

the sequence of real numbers {x! }324 converges to the
real number x;.
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VII.1 Sequences of several variables

Theorem 25 (convergence is coordinatewise)
Let x' € R" for each j € N and let x € R". The sequence
{x'}2, converges to x if and only if foreach i € {1,...,n}
the sequence of real numbers {x! }324 converges to the
real number x;.

Remark

Theorem 25 says that the convergence in the space R" is
the same as the “coordinatewise” convergence.
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VII.1 Sequences of several variables

Theorem 25 (convergence is coordinatewise)
Let x' € R" for each j € N and let x € R". The sequence
{x'}2, converges to x if and only if foreach i € {1,...,n}
the sequence of real numbers {x! }324 converges to the
real number x;.

Remark

Theorem 25 says that the convergence in the space R" is
the same as the “coordinatewise” convergence. It follows
that a sequence {x/}?°, has at most one limit. If it exists,
then we denote it by lim;_, x/. Sometimes we also write
simply x/ — x instead of lim;_,.. X/ = x.

Mathematics Il VII. Functions of several variables



VII.1 Sequences of several variables

Theorem 26 (characterisation of closed sets)
Let M C R". Then the following statements are equivalent:

(i) M is closed inR".
(i) R™\ M is open inR".
(i) Any x € R" which is a limit of a sequence from M
belongs to M.
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VII.1 Sequences of several variables

Theorem 27 (properties of closed sets)

(i) The empty set and the whole space R" are closed
inR",

Remark
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VII.1 Sequences of several variables

Theorem 27 (properties of closed sets)
(i) The empty set and the whole space R" are closed
inR",
(i) LetF, CR",a € A# 0, be closed inRR". Then
(Noca Fa is closed in R".

Remark
(if) An intersection of an arbitrary system of closed sets is
closed.
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VII.1 Sequences of several variables

Theorem 27 (properties of closed sets)

(i) The empty set and the whole space R" are closed
inR",
(i) LetF, CR",a € A# 0, be closed inRR". Then
(Noca Fa is closed in R".
(i) LetF;, cR", i=1,...,m, be closed inR". Then
U, Fi is closed inR".

Remark
(if) An intersection of an arbitrary system of closed sets is

closed.
(iii) A union of finitely many closed sets is closed.
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VII.1 Sequences of several variables

Theorem 28
Let M C R". Then the following holds:

(i) The setM is closed in R".
(i) The setInt M is open in R".
(iiiy The set M is open inR" if and only if M = Int M.
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VII.1 Sequences of several variables

Theorem 28
Let M C R". Then the following holds:

(i) The setM is closed in R".
(i) The setInt M is open in R".
(iiiy The set M is open inR" if and only if M = Int M.

Remark
The set Int M is the largest open set contained in M in the

following sense: If G is a set open in R” and satisfying
G C M, then G C Int M.
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VII.1 Sequences of several variables

Theorem 28
Let M C R". Then the following holds:

(i) The setM is closed in R".
(i) The setInt M is open in R".
(iiiy The set M is open inR" if and only if M = Int M.

Remark

The set Int M is the largest open set contained in M in the
following sense: If G is a set open in R” and satisfying

G C M, then G C Int M. Similarly M is the smallest closed
set containing M.
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VII.1 Sequences of several variables

Definition
We say that the set M C R" is bounded if there exists
r > 0 such that M C B(o,r).
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VII.1 Sequences of several variables

Definition

We say that the set M C R” is bounded if there exists

r > 0 such that M C B(o, r). A sequence of points in R” is
bounded if the set of its members is bounded.
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VII.1 Sequences of several variables

Definition

We say that the set M C R” is bounded if there exists

r > 0 such that M C B(o, r). A sequence of points in R” is
bounded if the set of its members is bounded.

Theorem 29 o
A set M C R" is bounded if and only if its closure M is
bounded.
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VIl.2. Continuous functions of several variables

VIl.2. Continuous functions of several
variables

Mathematics Il VII. Functions of several variables



VIl.2. Continuous functions of several variables

VIl.2. Continuous functions of several
variables

Definition
Let MCR", x € M,and f: M — R. We say that f is
continuous at x with respect to M, if we

VeeR,e>030 € R, 0 >0Vy € B(x,5)nM: f(y) € B(f(x),¢).
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VIl.2. Continuous functions of several variables

VIl.2. Continuous functions of several
variables

Definition

Let M CR", x € M,and f: M — R. We say that f is
continuous at x with respect to M, if we

VeeR,e>030 € R, 0 >0Vy € B(x,5)nM: f(y) € B(f(x),¢).

We say that f is continuous at the point x if it is
continuous at x with respect to a neighbourhood of x, i.e.

VeeR,e>030 € R, 0 >0Vy € B(x,0): f(y) € B(f(x),¢).
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VIl.2. Continuous functions of several variables

Theorem 30

LetMCcR", xeM, f- M—R,g: M —R,andceR.Iff
and g are continuous at the point x with respect to M,
then the functions cf, f + g a fg are continuous at x with
respect to M. If the function g is nonzero at x, then also
the function f/g is continuous at x with respect to M.
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VIl.2. Continuous functions of several variables

Theorem 31
Letr,se NNMCRS, LCR,andy € M. Letyq,...,por be
functions defined on M, which are continuous at 'y with

respect to M and [p1(X), ..., o/(X)] € L for each x € M.
Letf: L — R be continuous at the point [p1(Y), - .., ¢r(¥)]

with respect to L. Then the compound function F: M — R
defined by

F(x)=f(p1(X),...,0/(X)), X€EM,

is continuous at y with respect to M.
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VIl.2. Continuous functions of several variables

Theorem 32 (Heine)

LetM CR", x e M, and f: M — R. Then the following are
equivalent.

(i) The function f is continuous at x with respect to M.
(ii) jl_i}n;) f(x') = f(x) for each sequence {x}?°, such that

x € MforjeNand lim x/ = x.

J—0o0
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VIl.2. Continuous functions of several variables

Definition
Let M C R"and f: M — R. We say that f is continuous
on M if it is continuous at each point x € M with respect

to M.
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VIl.2. Continuous functions of several variables

Definition
Let M C R"and f: M — R. We say that f is continuous
on M if it is continuous at each point x € M with respect

to M.
Remark

The functions 7;: R” — R, mj(x) = x;, 1 <j < n, are
continuous on R". They are called coordinate projections.
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VIl.2. Continuous functions of several variables

Theorem 33
Let f be a continuous function on R" and ¢ € R. Then the
following holds:

(i) The set{x € R"; f(x) < c} is open inR".
(i) The set{x € R"; f(x) > c} is openinR".
(i) The set{x € R"; f(x) < c} is closed inR".
(iv) The set{x € R"; f(x) > c} is closed inR".
(v) The set{x € R"; f(x) = c} is closed in R".
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VIl.2. Continuous functions of several variables
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VIl.2. Continuous functions of several variables
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VIl.2. Continuous functions of several variables
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VIl.2. Continuous functions of several variables

Definition
We say that a set M C R" is compact if for each sequence
of elements of M there exists a convergent subsequence

with a limit in M.
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VIl.2. Continuous functions of several variables

Definition

We say that a set M C R" is compact if for each sequence
of elements of M there exists a convergent subsequence
with a limit in M.

Theorem 34 (characterisation of compact

subsets of R")
The set M C R" is compact if and only if M is bounded
and closed.
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VIl.2. Continuous functions of several variables

Definition

We say that a set M C R" is compact if for each sequence
of elements of M there exists a convergent subsequence
with a limit in M.

Theorem 34 (characterisation of compact

subsets of R")
The set M C R" is compact if and only if M is bounded
and closed.

Lemma 35
Omitted.
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VIl.2. Continuous functions of several variables

Definition
Let M c R", x € M, and let f be a function defined at least
on M (i.e. M c Dy). We say that f attains at the point x its

@ maximum on M if f(y) < f(x) for every y € M,
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VIl.2. Continuous functions of several variables

Definition
Let M c R", x € M, and let f be a function defined at least
on M (i.e. M c Dy). We say that f attains at the point x its

@ maximum on M if f(y) < f(x) for every y € M,

@ local maximum with respect to M if there exists § > 0
such that f(y) < f(x) for every y € B(x,0) N M,
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VIl.2. Continuous functions of several variables

Definition
Let M C R", x € M, and let f be a function defined at least
on M (i.e. M c Dy). We say that f attains at the point x its
@ maximum on M if f(y) < f(x) for every y € M,
@ local maximum with respect to M if there exists § > 0
such that f(y) < f(x) for every y € B(x,0) N M,
@ strict local maximum with respect to M if there exists
d > 0 such that f(y) < f(x) for every
y € (B(x,0)\ {x}) n M.
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VIl.2. Continuous functions of several variables

Definition
Let M C R", x € M, and let f be a function defined at least
on M (i.e. M c Dy). We say that f attains at the point x its
@ maximum on M if f(y) < f(x) for every y € M,
@ local maximum with respect to M if there exists § > 0
such that f(y) < f(x) for every y € B(x,0) N M,
@ strict local maximum with respect to M if there exists
d > 0 such that f(y) < f(x) for every
y € (B(x,0)\ {x}) n M.

The notions of a minimum, a local minimum, and a strict
local minimum with respect to M are defined in analogous
way.
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VIl.2. Continuous functions of several variables

Definition
We say that a function f attains a local maximum at a
point x € R" if x is a local maximum with respect to some

neighbourhood of x.
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VIl.2. Continuous functions of several variables

Definition

We say that a function f attains a local maximum at a
point x € R" if x is a local maximum with respect to some
neighbourhood of x.

Similarly we define local minimum, strict local maximum
and strict local minimum.

Mathematics Il VII. Functions of several variables



VIl.2. Continuous functions of several variables

Theorem 36 (attaining extrema)

Let M C R" be a non-empty compact setandf: M — R a
function continuous on M. Then f attains its maximum
and minimum on M.

Mathematics Il VII. Functions of several variables



VIl.2. Continuous functions of several variables

Theorem 36 (attaining extrema)

Let M C R" be a non-empty compact setandf: M — R a
function continuous on M. Then f attains its maximum
and minimum on M.

Corollary

Let M C R" be a non-empty compact setandf: M — R a
continuous function on M. Then f is bounded on M.
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VIl.2. Continuous functions of several variables

Definition
We say that a function f of n variables has a limit at a
point a € R"” equal to A € R* if

VeeR,e>030 € R,0 >0Vx € B(a,0)\{a}: f(x) € B(A¢).
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VIl.2. Continuous functions of several variables

Definition
We say that a function f of n variables has a limit at a
point a € R"” equal to A € R* if

VeeR,e>030 € R,0 >0Vx € B(a,0)\{a}: f(x) € B(A¢).

Remark
@ Each function has at a given point at most one limit.
We write limy_,, f(x) = A.
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VIl.2. Continuous functions of several variables

Definition
We say that a function f of n variables has a limit at a
point a € R"” equal to A € R* if

VeeR,e>030 € R,0 >0Vx € B(a,0)\{a}: f(x) € B(A¢).

Remark
@ Each function has at a given point at most one limit.
We write limy_,, f(x) = A.
@ The function f is continuous at a if and only if
limy_a f(X) = f(aQ).
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VIl.2. Continuous functions of several variables

Definition
We say that a function f of n variables has a limit at a
point a € R"” equal to A € R* if

VeeR,e>030 € R,0 >0Vx € B(a,0)\{a}: f(x) € B(A¢).

Remark
@ Each function has at a given point at most one limit.
We write limy_,, f(x) = A.
@ The function f is continuous at a if and only if
@ For limits of functions of several variables one can
prove similar theorems as for limits of functions of
one variable (arithmetics, the sandwich theorem, .. .).
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VIl.2. Continuous functions of several variables

Theorem 37

Letr,s e N, ac R® and let ¢, ..., o, be functions of s
variables such that limy_,a pj(X) = b;, j=1,...,r. Set
b= [by,...,b]. Letf be a function of r variables which is

continuous at the point b. If we define a compound
function F of s variables by

F(x) = f(o1(x), p2(X), - -, or(X)),
then limy_,a F(x) = f(b).
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N
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VII.3. Partial derivatives and tangent hyperplane

Sete/=[0,...,0 1 0,...,0].

’ jth coordinate’
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VII.3. Partial derivatives and tangent hyperplane

Sete/=[0,...,0, 1 ,0,...,0].
Jjth coordinate
Definition
Let f be a function of nvariables, j € {1,...,n},ac R".
Then the number
of f(a+ te)) — f(a)

oy, (@) = fim t

is called the partial derivative (of first order) of function f
according to jth variable at the point a (if the limit exists).
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VII.3. Partial derivatives and tangent hyperplane

Sete/=[0,...,0, 1 ,0,...,0].
Jjth coordinate
Definition
Let f be a function of nvariables, j € {1,...,n},ac R".
Then the number

8—f(a — m f(a+ te) — f(a)
8)(/ t—0 t
i flar,....a1,8+t ay1,...,an) —f(@,...,an)
t—0 t

is called the partial derivative (of first order) of function f
according to jth variable at the point a (if the limit exists).

Mathematics Il VII. Functions of several variables



VII.3. Partial derivatives and tangent hyperplane

Theorem 38 (necessary condition of the
existence of local extremum)

Let G C R" be an open set, a € G, and suppose that a

function f: G — R has a local extremum (i.e. a local

maximum or a local minimum) at the point a. Then for

eachje {1,...,n} the following holds:

The partial derivative g—;(a) either does not exist or it is
j

equal to zero.
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&
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VII.3. Partial derivatives and tangent hyperplane

Definition

Let G C R” be a non-empty open set. If a function

f: G — R has all partial derivatives continuous at each
point of the set G (i.e. the function x — g—;j(x) is
continuous on G for each j € {1,..., n}), then we say that
f is of the class C' on G. The set of all of these functions
is denoted by C'(G).
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VII.3. Partial derivatives and tangent hyperplane

Definition

Let G C R” be a non-empty open set. If a function

f: G — R has all partial derivatives continuous at each
point of the set G (i.e. the function x — g—;j(x) is
continuous on G for each j € {1,..., n}), then we say that
f is of the class C' on G. The set of all of these functions
is denoted by C'(G).

Remark

If G C R" is a non-empty open set and and f, g € C'(G),
thenf+g e C'(G),f—ge C'(G),and fg € C'(G). If
moreover g(x) # 0 for each x € G, then f/g € C'(G).
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VII.3. Partial derivatives and tangent hyperplane

Proposition 39 (weak Lagrange theorem)
Omitted.
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VII.3. Partial derivatives and tangent hyperplane

Definition
Let G C R" be an open set, a € G, and f € C'(G). Then
the graph of the function

T:xw— f(a)+ %(a)(n —ay) + aa—):z(a)(xg — &)
of

4t aXn(a)(xn —a,), XeR"

is called the tangent hyperplane to the graph of the
function f at the point [a, f(a)].
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VII.3. Partial derivatives and tangent hyperplane

Theorem 40 (tangent hyperplane)

Let GC R" beanopenset,ac G, fe C'(G), and let T

be a function whose graph is the tangent hyperplane of
the function f at the point [a, f(a)]. Then

i f(x) — T(x)
xta p(x.a)
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VII.3. Partial derivatives and tangent hyperplane

Theorem 40 (tangent hyperplane)
Let GC R" beanopenset,ac G, fe C'(G), and let T
be a function whose graph is the tangent hyperplane of
the function f at the point [a, f(a)]. Then

f(x) — T(x)

im —————~ =
xILna p(X, a) 0

Theorem 41
Let G C R" be an open non-empty set and f € C'(G).
Then f is continuous on G.
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VII.3. Partial derivatives and tangent hyperplane

Theorem 40 (tangent hyperplane)
Let GC R" beanopenset,ac G, fe C'(G), and let T
be a function whose graph is the tangent hyperplane of
the function f at the point [a, f(a)]. Then

f(x) — T(x)

im —————~ =
xILna p(X, a) 0

Theorem 41

Let G C R" be an open non-empty set and f € C'(G).
Then f is continuous on G.

Remark
Existence of partial derivatives at a does not imply
continuity at a.
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VII.3. Partial derivatives and tangent hyperplane

Theorem 42 (derivative of a composite function;
chain rule)

Letr,se N andlet G c R, HC R" be open sets. Let
©1,...,¢r € CYQG), f € C'(H) and [p1(X),...,pr(X)] € H
for each x € G. Then the compound function F: G — R
defined by

F(X) = f<@1 (X)v‘;pZ(X)7 .- 'vSOr(X))> X c 67

is of the class C' on G. Leta € G and
b= [pi(a@),...,¢(@)]. Thenforeachjec {1,...,s} we
have

OF VNG

5y @) = 2 5, (B3

= 2 i (a).
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VII.3. Partial derivatives and tangent hyperplane

Definition
Let G C R" be an open set, a € G, and f € C'(G). The
gradient of f at the point a is the vector

of of of

Vf(a): a—)ﬁ(a),a—)(z(a),...,a—xn(a) .
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VII.3. Partial derivatives and tangent hyperplane

Definition
Let G C R" be an open set, a € G, and f € C'(G). The
gradient of f at the point a is the vector

of of of

Vf(a) = a—)ﬁ(a), a—Xz(a), ceey a_Xn

(@)] -

Remark

The gradient of f at a points in the direction of steepest
growth of f at a. At every point, the gradient is
perpendicular to the contour of f.
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VII.3. Partial derivatives and tangent hyperplane

Definition

Let G C R" be an open set, a < G, f € C'(G), and
Vf(a) = o. Then the point a is called a stationary (or
critical) point of the function f.
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VII.3. Partial derivatives and tangent hyperplane

Definition

Let GC R"beanopenset, f: G- R,i,je{1,...,n},
and suppose that g—;i(x) exists finite for each x € G. Then
the partial derivative of the second order of the function f
according to ith and jth variable at a point a € G is

defined by
eof 3(%)(

8x,-8x,-(a)7 Ox; a)

If i = j then we use the notation g—f(i’z’(a).
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VII.3. Partial derivatives and tangent hyperplane

Definition

Let GC R"beanopenset, f: G- R,i,je{1,...,n},
and suppose that g—;i(x) exists finite for each x € G. Then
the partial derivative of the second order of the function f
according to ith and jth variable at a point a € G is

defined by
eof 3(%)(

8x,-8x,-(a)7 Ox; a)

If i = j then we use the notation 2% (a).
Similarly we define higher order partial derivatives.
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VII.3. Partial derivatives and tangent hyperplane

Remark
In general it is not true that -2 (a) = -2 _(a).

OXj0X; T Ox0x;
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VII.3. Partial derivatives and tangent hyperplane

Remark . ,
In general it is not true that ﬁng(a) = %(a).

Theorem 43 (interchanging of partial

derivatives)

Leti,j e {1,...,n} and suppose that a function f has both
partial derivatives ;22 and ;2= on a neighbourhood of a
point a € R™ and that these functions are continuous at a.
Then

o2 f (@) = o2 f (a)
oxio0x;~ ' oxox;-
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VII.3. Partial derivatives and tangent hyperplane

Definition

Let G € R” be an open set and k € N. We say that a
function f is of the class C* on G, if all partial derivatives
of f of all orders up to k are continuous on G. The set of
all of these functions is denoted by C*(G).
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VII.3. Partial derivatives and tangent hyperplane

Definition

Let G € R” be an open set and k € N. We say that a
function f is of the class C* on G, if all partial derivatives
of f of all orders up to k are continuous on G. The set of
all of these functions is denoted by C*(G).

We say that a function f is of the class C*> on G, if all
partial derivatives of all orders of f are continuous on G.
The set of all of these functions is denoted by C*(G).
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

VII.4. Implicit function theorem and Lagrange
multiplier theorem

Mathematics Il VII. Functions of several variables



VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 44 (implicit function)

LetGC R™'" beanopenset F: G— R, and X € R",
y € R such that [X, y] € G. Suppose that
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 44 (implicit function)

LetGC R™'" beanopenset F: G— R, and X € R",
y € R such that [X, y] € G. Suppose that

(i) Fe CY(G),
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 44 (implicit function)

LetGC R™'" beanopenset F: G— R, and X € R",
y € R such that [X, y] € G. Suppose that

(i) FeCYG),
(i) F(x,y) =0,
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 44 (implicit function)

LetGC R™'" beanopenset F: G— R, and X € R",
y € R such that [X, y] € G. Suppose that

(i) Fe CY(G),

(i) F(%.5) =0,
i) 5 (.9) £ 0.
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 44 (implicit function)
LetGC R™'" beanopenset F: G— R, and X € R",
y € R such that [X, y| € G. Suppose that
() FecC(a),
(i) F(X,y) =0,
i) 5 (.9) £ 0.
Then there exist a neighbourhood U C R" of the point X
and a neighbourhood V C R of the point y such that for

each x € U there exists a unique y € V satisfying
F(x,y)=0.
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 44 (implicit function)
LetGC R™'" beanopenset F: G— R, and X € R",
y € R such that [X, y| € G. Suppose that

() FecC(a),

(i) F(X,y) =0,

... OF .

(iii) a—y(x,y) # 0.

Then there exist a neighbourhood U C R" of the point X
and a neighbourhood V C R of the point y such that for
each x € U there exists a unique y € V satisfying
F(x,y) = 0. If we denote this y by p(x), then the resulting
function ¢ is in C'(U) and

<

00 4y _ B0

X)=—72——— forxeU,je{1,...,n}.

T
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VIl.4. Implicit function theorem and Lagrange multiplier theorem
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VII.4. Implicit function theorem and Lagrange multiplier theorem
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VIl.4. Implicit function theorem
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 45 (Lagrange multiplier theorem)

Let G C R? be an open set, f,g € C'(G),

M = {[x,y] € G; 9(x,y) = 0} and let [X, y] € M be a point
of local extremum of f with respect to M. Then at least
one of the following conditions holds:
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 45 (Lagrange multiplier theorem)

Let G C R? be an open set, f,g € C'(G),

M = {[x,y] € G; 9(x,y) = 0} and let [X, y] € M be a point
of local extremum of f with respect to M. Then at least
one of the following conditions holds:

() Vg(x,y) = o,
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 45 (Lagrange multiplier theorem)

Let G C R? be an open set, f,g € C'(G),

M = {[x,y] € G; 9(x,y) = 0} and let [X, y] € M be a point
of local extremum of f with respect to M. Then at least
one of the following conditions holds:

() Vg(x.y) = o,
(Il) there exists \ € R satisfying

of .. . 09 o o
a_X(X7y) Aa_x(xvy)_ou
of .. . 09, o
@(va) /\@(Xay)_o
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VII.4. Implicit function theorem and Lagrange multiplier theorem

XL
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VIl.4. Implicit function theorem and Lagrange multiplier theorem
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 46 (implicit functions)

LetmneN, ke NU{oo}, GC R™™ an open set,
Fi:G—Rforj=1,....mxcR", ycR" [X,y] € G.
Suppose that
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 46 (implicit functions)

LetmneN, ke NU{oo}, GC R™™ an open set,
Fi:G—Rforj=1,....mxcR", ycR" [X,y] € G.
Suppose that

(i) Fje CK(G) forallje{1,...,m},
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 46 (implicit functions)

LetmneN, ke NU{oo}, GC R™™ an open set,
Fi:G—Rforj=1,....mxcR", ycR" [X,y] € G.
Suppose that

(i) Fje CK(G) forallje{1,...,m},
(i) Fi(x,y)=0foralljec{1,...,m},
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 46 (implicit functions)

LetmneN, ke NU{oo}, GC R™™ an open set,
Fi:G—Rforj=1,....mxcR", ycR" [X,y] € G.
Suppose that

(i) Fje CK(G) forallje{1,...,m},
(i) Fi(x,y)=0foralljec{1,...,m},

LX) . g (%)
(i) : | #£0.
n(%,7) ... Un(%,)
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 46 (implicit functions)
LetmneN, ke NU{oo}, GC R™™ an open set,
Fi:G—Rforj=1,....mxcR", ycR" [X,y] € G.
Suppose that

(i) Fje CK(G) forallje{1,...,m},

(i) Fi(x,y)=0foralljec{1,...,m},

35:( V) o Ga(x )
(iii) : : £ 0.
%’;T(X ) - 8F’"(x y)

Then there are a neighbourhood U C R" of X and a
neighbourhood V C R™ of y such that for each x € U
there exists a unique y € V satisfying F;j(x,y) = 0 for
eachje{1,...,m}.
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 46 (implicit functions)
LetmneN, ke NU{oo}, GC R™™ an open set,
Fi:G—Rforj=1,....mxcR", ycR" [X,y] € G.
Suppose that

(i) Fje CK(G) forallje{1,...,m},

(i) Fi(x,y)=0foralljec{1,...,m},

35:( ¥) . &)
(ii) . | xo0
%;"’(x ) - 8F"’(x y)

Then there are a neighbourhood U C R" of X and a
neighbourhood V C R™ of y such that for each x € U
there exists a unique y € V satisfying F;j(x,y) = 0 for
eachj e {1,..., m}. If we denote the coordinates of this y
by ¢j(x), then the resulting functions ; are in C(U).
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Remark
The symbol in the condition (iii) of Theorem 46 is called a
determinant. The general definition will be given later.
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Remark
The symbol in the condition (iii) of Theorem 46 is called a

determinant. The general definition will be given later.
For m =1 we have |a\ = a, a € R. In particular, in this
case the condition (iii) in Theorem 46 is the same as the
condition (iii) in Theorem 44.

Form:2wehave"z Z‘ =ad—bc, a,b,c,d cR.
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 47 (Lagrange multipliers theorem)

Letm,ne N, m< n, GCR" an open séet,
f.01,...,9m € CY(G),

M={zeG; g(2)=0,0.(2) =0,...,9m(2) = 0}

and let z € M be a point of local extremum of f with
respect to the set M. Then at least one of the following
conditions holds:
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 47 (Lagrange multipliers theorem)

Letm,ne N, m< n, GCR" an open séet,
f.01,...,9m € CY(G),

M={zeG; g(2)=0,0.(2) =0,...,9m(2) = 0}

and let z € M be a point of local extremum of f with
respect to the set M. Then at least one of the following
conditions holds:

() the vectors

V9i1(2),Vg:(2),...,Vgm(2)
are linearly dependent,
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Theorem 47 (Lagrange multipliers theorem)

Letm,ne N, m< n, GCR" an open séet,
f.01,...,9m € CY(G),

M={zeG; g(2)=0,0.(2) =0,...,9m(2) = 0}

and let z € M be a point of local extremum of f with
respect to the set M. Then at least one of the following
conditions holds:

() the vectors

V9i1(2),Vg:(2),...,Vgm(2)
are linearly dependent,

(Il) there exist numbers A\, Xz, ..., A\m € R satisfying

Vf(i) + >\1Vg1 (2) + /\QVQQ(Z) + - F /\ngm(Z) = 0.



VIl.4. Implicit function theorem and Lagrange multiplier theorem

Remark

@ The notion of linearly dependent vectors will be
defined later.
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Remark
@ The notion of linearly dependent vectors will be
defined later.

For m = 1: One vector is linearly dependent if it is the
zero vector.

For m = 2: Two vectors are linearly dependent if one
of them is a multiple of the other one.
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VIl.4. Implicit function theorem and Lagrange multiplier theorem

Remark

@ The notion of linearly dependent vectors will be
defined later.
For m = 1: One vector is linearly dependent if it is the
zero vector.
For m = 2: Two vectors are linearly dependent if one
of them is a multiple of the other one.

@ The numbers \q, ..., A\, are called the Lagrange
multipliers.
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VII.5. Concave and quasiconcave functions
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®

®

Mathematics Il VII. Functions of several variables



VII.5. Concave and quasiconcave functions

Mathematics Il VII. Functions of several variables



VII.5. Concave and quasiconcave functions

a=1-a+0-b=a+0-(b—a)

Mathematics Il VII. Functions of several variables



VII.5. Concave and quasiconcave functions

O X

b=0-a+1-b=a+1-(b—a)
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VII.5. Concave and quasiconcave functions

3 1 1
Z~a+‘—1~b_a+z-(b—a)
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VII.5. Concave and quasiconcave functions

1 1 1
§~a+§~b_a+§-(b—a)
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VII.5. Concave and quasiconcave functions

-a+—-b=a+—-(b—a)

AW
MW

1
4
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VII.5. Concave and quasiconcave functions

t-a+(1-t)-b=a+(1-1t)-(b—a)
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VII.5. Concave and quasiconcave functions

Definition
Let M C R". We say that M is convex if

Vx,y e Mvte [0,1]: tx+ (1 -ty e M.
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VII.5. Concave and quasiconcave functions

Definition
Let M ¢ R"” be a convex set and f a function defined
on M. We say that f is

@ concave on M if

Va,b € Mvt e [0,1]: f(ta+(1—t)b) > tf(a)+(1—1t)f(b),
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VII.5. Concave and quasiconcave functions

Definition
Let M ¢ R"” be a convex set and f a function defined
on M. We say that f is

@ concave on M if
Va,b € Mvt e [0,1]: f(ta+(1—t)b) > tf(a)+(1—1t)f(b),

@ strictly concave on M if

Va,be M,a+ bVvte (0,1):
f(ta+ (1 —t)b) > tf(a) + (1 — H)f(b).
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VII.5. Concave and quasiconcave functions

Definition
Let M ¢ R"” be a convex set and f a function defined
on M. We say that f is

@ concave on M if
Va,b € Mvt e [0,1]: f(ta+(1—t)b) > tf(a)+(1—1t)f(b),

@ strictly concave on M if

Va,be M,a+ bVvte (0,1):
f(ta+ (1 —t)b) > tf(a) + (1 — H)f(b).

Remark
By changing the inequalities to the opposite we obtain a
definition of a convex and a strictly convex function.
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VII.5. Concave and quasiconcave functions

Remark

A function f is convex (strictly convex) if and only if the
function —f is concave (strictly concave).

All the theorems in this section are formulated for concave
and strictly concave functions. They have obvious
analogies that hold for convex and strictly convex
functions.
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VII.5. Concave and quasiconcave functions

Remark

@ If a function f is strictly concave on M, then it is
concave on M.
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VII.5. Concave and quasiconcave functions

Remark
@ If a function f is strictly concave on M, then it is
concave on M.

@ Let f be a concave function on M. Then f is strictly
concave on M if and only if the graph of f “does not
contain a segment”, i.e.

—-(3a,be M.,a+b, vt [0,1]:
f(ta+ (1 —t)b) = tf(a) + (1 — t)f(b))
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VII.5. Concave and quasiconcave functions

Theorem 48
Let f be a function concave on an open convex set
G C R". Then f is continuous on G.
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VII.5. Concave and quasiconcave functions

Theorem 48
Let f be a function concave on an open convex set
G C R". Then f is continuous on G.

Theorem 49 (characterisation of strictly concave
functions of the class C')

Let G C R" be a convex open set and f € C'(G). Then
the function f is strictly concave on G if and only if

VX, y e G x#£y: f(y) < f(x) + Zﬂ(x)(y,- — X)).
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VII.5. Concave and quasiconcave functions

Theorem 50 (characterisation of concave
functions of the class C')

Let G C R" be a convex open set and f € C'(G). Then
the function f is concave on G if and only if

", of

: < —_—
Vx,y € G: f(y) < f(x)+ 2 x

() (yi = x).
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VII.5. Concave and quasiconcave functions

Theorem 50 (characterisation of concave
functions of the class C')

Let G C R" be a convex open set and f € C'(G). Then
the function f is concave on G if and only if

", of

: < —_—
Vx,y € G: f(y) < f(x)+ 2 x

() (yi = x).

Corollary 51

Let G C R" be a convex open set, f € C'(G), and let
a € G be a critical point of f (i.e. Vf(a) = 0). If f is
concave on G, then a is a maximum point of f on G.
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VII.5. Concave and quasiconcave functions

Theorem 50 (characterisation of concave
functions of the class C')

Let G C R" be a convex open set and f € C'(G). Then
the function f is concave on G if and only if

", of

: < —_—
Vx,y € G: f(y) < f(x)+ 2 x

() (yi = x).

Corollary 51

Let G C R" be a convex open set, f € C'(G), and let

a € G be a critical point of f (i.e. Vf(a) = 0). If f is
concave on G, then a is a maximum point of f on G. If f is
strictly concave on G, then a is a strict maximum point of f
on G.
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VII.5. Concave and quasiconcave functions

Theorem 52 (level sets of concave functions)

Let f be a function concave on a convex set M c R". Then
for each a € R the set Q, = {x € M; f(x) > a} is convex.
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Definition
Let M ¢ R" be a convex set and let f be a function
defined on M. We say that f is

@ quasiconcave on M if

va,b c MVt c [0,1]: f(ta+(1—-t)b) > min{f(a),f(b)},
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Definition
Let M ¢ R" be a convex set and let f be a function
defined on M. We say that f is

@ quasiconcave on M if
Va,b e MVt e [0,1]: f(ta+(1—t)b) > min{f(a), f(b)},
@ strictly quasiconcave on M if

Va,be M,a+# b, Vt € (0,1):
f(ta+ (1 — t)b) > min{f(a), f(b)}.
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VII.5. Concave and quasiconcave functions

Definition
Let M ¢ R" be a convex set and let f be a function
defined on M. We say that f is

@ quasiconcave on M if
Va,b e MVt e [0,1]: f(ta+(1—t)b) > min{f(a), f(b)},
@ strictly quasiconcave on M if

Va,be M,a+# b, Vt € (0,1):
f(ta+ (1 — t)b) > min{f(a), f(b)}.

Remark

By changing the inequalities to the opposite and changing
the minimum to a maximum we obtain a definition of a
quasiconvex and a strictly quasiconvex function.
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VII.5. Concave and quasiconcave functions

Remark

A function f is quasiconvex (strictly quasiconvex) if and
only if the function —f is quasiconcave (strictly
quasiconcave).

All the theorems in this section are formulated for
quasiconcave and strictly quasiconcave functions. They
have obvious analogies that hold for quasiconvex and
strictly quasiconvex functions.
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VII.5. Concave and quasiconcave functions

Remark

@ If a function f is strictly quasiconcave on M, then it is
quasiconcave on M.
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VII.5. Concave and quasiconcave functions

Remark

@ If a function f is strictly quasiconcave on M, then it is
quasiconcave on M.

@ Let f be a quasiconcave function on M. Then fis
strictly quasiconcave on M if and only if the graph of f
“does not contain a horizontal segment”, i.e.

~(3a,b e M,a+#b, vt e [0,1]: f(tatr(1-t)b) = f(a)).
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VII.5. Concave and quasiconcave functions

Remark
Let M ¢ R"” be a convex set and f a function defined
on M.
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VII.5. Concave and quasiconcave functions

Remark
Let M ¢ R"” be a convex set and f a function defined
on M.

@ If fis concave on M, then f is quasiconcave on M.
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VII.5. Concave and quasiconcave functions

Remark
Let M ¢ R"” be a convex set and f a function defined
on M.

@ If fis concave on M, then f is quasiconcave on M.

@ If f is strictly concave on M, then f is strictly
quasiconcave on M.
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VII.5. Concave and quasiconcave functions

Remark
Let M ¢ R"” be a convex set and f a function defined
on M.

@ If fis concave on M, then f is quasiconcave on M.

@ If f is strictly concave on M, then f is strictly
quasiconcave on M.
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VII.5. Concave and quasiconcave functions

Remark
Let M ¢ R"” be a convex set and f a function defined
on M.

@ If fis concave on M, then f is quasiconcave on M.

@ If f is strictly concave on M, then f is strictly
quasiconcave on M.

Theorem 53 (characterization of quasiconcave
functions using level sets)

Let M C R" be a convex set and f a function defined
on M. Then f is quasiconcave on M if and only if for each
a € R the set Q, = {x € M; f(x) > o} is convex.
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VII.5. Concave and quasiconcave functions

Theorem 54 (a uniqueness of an extremum)

Let f be a strictly quasiconcave function on a convex set

M C R". Then there exists at most one point of maximum
of f.
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VII.5. Concave and quasiconcave functions

Theorem 54 (a uniqueness of an extremum)

Let f be a strictly quasiconcave function on a convex set
M C R". Then there exists at most one point of maximum
of f.

Corollary

Let M C R" be a convex, closed, bounded and nonempty
set and f a continuous and strictly quasiconcave function
on M. Then f attains its maximum at exactly one point.
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VII.5. Concave and quasiconcave functions

Theorem 55 (sufficient condition for concave
and convex functions in R?)
Let G C R? be convex and f € C?(G).

2
If 55 <0, 21 <0,and 5 5F - (gfafy) > 0 hold on G,
then f is concave on G.
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VII.5. Concave and quasiconcave functions

Theorem 55 (sufficient condition for concave
and convex functions in R?)

Let G C R? be convex and f € C?(G).
2

92f 92f 92f O2f 92f
Ifﬁgoya_yzgo,andma—yg— (m) ZOhO/donG,
then f is concave on G. )

i i 92f Of i
2> 0, 25> 0,and 5 21 — (22" >0 hold on G,
then f is convex on G.
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VII.5. Concave and quasiconcave functions

Let f € C3(G). Then the matrix

d?f P ?f
8_)(12(X) 8X1 an (X) e 8X1 Oxn (X)
92 f Pf ?f
X (X e
Hf(X) — 8X28)f1 ( ) 8X22( ) O0Xo0Xn (X)
82f. 2f. . zf'
OXnOX (x) a)f:,axz (x) ... ai_ﬁxg(x)

is called Hessian matrix of f.
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VII.5. Concave and quasiconcave functions

Let f € C3(G). Then the matrix

8%f il & f
8_)(12(X) 8X1 an (X) e 8X1 Oxn (X)
5%f il & f
X — (X c..
i) = | ) o) a7, (X
82f. 82f. . zf.
OXnOXq (X) OXpOXo (X) e B?(_ﬁxz(x)

is called Hessian matrix of f.

Theorem 56

Let G C R" be convex and f € C?(G). If the Hessian
matrix of f is positive semidefinite for every x € G, then f
is convex on G.
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VII.5. Concave and quasiconcave functions

Let f € C3(G). Then the matrix

d?f P ?f
8_)(12(X) 8X1 an (X) e 8X1 Oxn (X)
92 f Pf ?f
X (X e
Hf(X) — 8X28)f1 ( ) 8X22 ( ) O0Xo0Xn (X)
82f. 82f. . Bzf.
OXnOXq (X) OXpOXo (X) e Bx_ﬁ)(g(x)

is called Hessian matrix of f.

Theorem 56

Let G C R" be convex and f € C?(G). If the Hessian
matrix of f is positive semidefinite for every x € G, then f
is convex on G. If the Hessian matrix of f is positive
definite for every x € G, then f is strictly convex on G.

Mathematics Il VII. Functions of several variables
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VIIl.1. Antiderivatives

VIIIl.1. Antiderivatives

Definition
Let f be a function defined on an open interval I. We say
that a function F: | — R is an antiderivative of f on [ if for

each x € | the derivative F'(x) exists and F’(x) = f(x).
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VIIl.1. Antiderivatives

VIIIl.1. Antiderivatives

Definition

Let f be a function defined on an open interval I. We say
that a function F: | — R is an antiderivative of f on I if for
each x € [ the derivative F’(x) exists and F'(x) = f(x).

Remark
An antiderivative of f is sometimes called a function
primitive to f.
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VIIl.1. Antiderivatives

VIIIl.1. Antiderivatives

Definition

Let f be a function defined on an open interval I. We say
that a function F: | — R is an antiderivative of f on I if for
each x € [ the derivative F’(x) exists and F'(x) = f(x).

Remark

An antiderivative of f is sometimes called a function
primitive to f.

If Fis an antiderivative of f on /, then F is continuous on /.
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VIIl.1. Antiderivatives

VIIIl.1. Antiderivatives

Definition

Let f be a function defined on an open interval I. We say
that a function F: | — R is an antiderivative of f on I if for
each x € [ the derivative F’(x) exists and F'(x) = f(x).

Remark

An antiderivative of f is sometimes called a function
primitive to f.

If Fis an antiderivative of f on /, then F is continuous on /.

Theorem 57 (Uniqueness of an antiderivative)

Let F and G be antiderivatives of f on an open interval .
Then there exists ¢ € R such that F(x) = G(x) + ¢ for
each x € I.

Mathematics I VIII. Antiderivatives and Riemann integral



VIIl.1. Antiderivatives

Remark
The set of all antiderivatives of f on an open interval / is

denoted by
/ f(x)dx.
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VIIl.1. Antiderivatives

Remark
The set of all antiderivatives of f on an open interval / is

denoted by
/ f(x)dx.

The fact that F is an antiderivative of f on / is expressed
by
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VIIl.1. Antiderivatives

Table of basic antiderivatives
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VIIl.1. Antiderivatives

Table of basic antiderivatives

n+1
T on R for n € NU {0}; on (—o0,0)

andon (0,00) forne Z, n < —1,

o [ x"dx £
n
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VIIl.1. Antiderivatives

Table of basic antiderivatives

n+1
T on R for n € NU {0}; on (—o0,0)

andon (0,00) forne Z, n < —1,

o [ x"dx £
n

c Xa+1
° “dx = + -
/x dx 7 on (0,400) fora e R\ {—1},
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VIIl.1. Antiderivatives

Table of basic antiderivatives
n+1

+1
andon (0,00) forne Z, n < —1,

on R for n € NU {0}; on (—o0,0)

o [ x"dx £
n

c Xa+1
° “dx = + -
/x dx 7 on (0,400) fora e R\ {—1},

1
° /}dx = log|x| on (0, +oc) and on (—oo, 0),
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VIIl.1. Antiderivatives

Table of basic antiderivatives
n+1

+1
andon (0,00) forne Z, n < —1,

° x”dxén on R for n € NU {0}; on (—o0,0)

N < Xa+1

° /x dx = P on (0,+o0) fora € R\ {—1},
1

° /}dx = log|x| on (0, +oc) and on (—oo, 0),

° /e"dxée"onR,
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VIIl.1. Antiderivatives

Table of basic antiderivatives

n+1
T on R for n € NU {0}; on (—o0,0)

andon (0,00) forne Z, n < —1,

o [ x"dx £
n

c Xa+1
° “dx = + -
/x dx 7 on (0,400) fora e R\ {—1},

1
° /}dx = log|x| on (0, +oc) and on (—oo, 0),
° /e"dxé e* on R,
<} /sinXdXé —cosx on R,
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VIIl.1. Antiderivatives

Table of basic antiderivatives
n+1
on R for n € NU {0}; on (—o0,0)

o [ x"dx £
n

+1
and on (0, oo)forneZ,n<—1,
x < _
_a+1 on (0, +o0) for « € R\ {—1},

dx = log|x| on (0, 400) and on (—oo0, 0),

x| =

Xdx < e on R,

(4
1))

() szdX——cosxon]R

) cos xdx =< sinx on R,

AL
/
/
/
/
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VIIl.1. Antiderivatives

1
° / -— dx < tg x on each of the intervals
Cos~ X
(=5 +Kkm, 5+ k), k € Z,
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VIIl.1. Antiderivatives

1
° / -— dx < tg x on each of the intervals
Cos~ X
(=5 +Kkm, 5+ k), k € Z,

1
° / —— dx £ — cotg x on each of the intervals
sin® X
(km,m+ kn), k € Z,
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VIIl.1. Antiderivatives

1
° / -— dx < tg x on each of the intervals
Cos~ X
(=5 +Kkm, 5+ k), k € Z,

1
° / —— dx £ — cotg x on each of the intervals
sin® X
(km,m+ kn), k € Z,

1 c
° /1 TP dx = arctg x on R,

Mathematics I VIII. Antiderivatives and Riemann integral



VIIl.1. Antiderivatives

1 .
° / -— dx < tg x on each of the intervals
Cos~ X
(=5 +Kkm, 5+ k), k € Z,

1 .
° / —— dx £ — cotg x on each of the intervals
sin® X
(km,m+ kn), k € Z,

1 c
° /1 TP dx = arctg x on R,

° dx = arcsinx on (—1,1),

| =
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VIIl.1. Antiderivatives

1 .
° / -— dx < tg x on each of the intervals
Cos~ X
(=5 +Kkm, 5+ k), k € Z,

1 .
° / —— dx £ — cotg x on each of the intervals
sin® X
(km,m+ kn), k € Z,

1 c
° /1 TP dx = arctg x on R,

1 ¢ .
) ————dx =arcsinxon (—1,1),
/ — i (=1,1)
1 c
) ————dx =arccosxon (—1,1).
/ — (=1,1)
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VIIl.1. Antiderivatives

Theorem 58 (Existence of an antiderivative)

Let f be a continuous function on an open interval I. Then
f has an antiderivative on |.

Mathematics Il VIII. Antiderivatives and Riemann integral



VIIl.1. Antiderivatives

Theorem 59 (Linearity of antiderivatives)
Suppose that f has an antiderivative F on an open
interval I, g has an antiderivative G on I, and let o, 8 € R.

Then the function oF + G is an antiderivative of af + g
onl.
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VIIl.1. Antiderivatives

Theorem 60 (substitution)
(i) Let F be an antiderivative of f on (a, b). Let
¢: (o, B) — (@, b) have a finite derivative at each
point of («, 3). Then

[ 1(£00)¢(0dx 2 F(e(x)  on(a.5).
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VIIl.1. Antiderivatives

Theorem 60 (substitution)
(i) Let F be an antiderivative of f on (a, b). Let
¢: (o, B) — (@, b) have a finite derivative at each
point of («, 3). Then

[ 1(£00)¢(0dx 2 F(e(x)  on(a.5).

(i) Let be a function with a finite derivative in each
point of («, ) such that the derivative is either
everywhere positive or everywhere negative, and
such that o((«, 8)) = (a, b). Let f be a function
defined on (a, b) and suppose that

[ few)svat =6 on(en)
Then

/ f(x)dx < G(p'(x)) on(ab).
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VIIl.1. Antiderivatives

Theorem 61 (integration by parts)

Let | be an open interval and let the functions f and g be
continuous on I. Let F be an antiderivative of f on | and G
an antiderivative of g on |. Then

/f(X)G(X) dx = F(x)G(x) —/F(x)g(x) dx onl.

Mathematics Il VIII. Antiderivatives and Riemann integral



VIIl.1. Antiderivatives

Example

Denote /, = / ~dx, neN. Then

(1+x?)

[ X . 2n —1
" 2n(1+x2)" T 2n
Iy £ arctg x, x € R.

Ih,x€eR, neN,
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VIIl.1. Antiderivatives

Definition
A rational function is a ratio of two polynomials, where the
polynomial in the denominator is not a zero polynomial.
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VIIl.1. Antiderivatives

Definition
A rational function is a ratio of two polynomials, where the
polynomial in the denominator is not a zero polynomial.

Theorem (“fundamental theorem of algebra”)
LetneN, ay,...,a, € C, a, # 0. Then the equation

a,z"+ap 12" '+ +az+a=0

has at least one solution z € C.
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VIIl.1. Antiderivatives

Lemma 62 (polynomial division)

Let P and Q be polynomials (with complex coefficients)
such that Q is not a zero polynomial. Then there are
uniquely determined polynomials S and R satisfying:

@ deg R < deg Q,
@ P(x) = S(x)Q(x)+ R(x) forall x € C.
If P and Q have real coefficients then so have S and R.
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VIIl.1. Antiderivatives

Lemma 62 (polynomial division)

Let P and Q be polynomials (with complex coefficients)
such that Q is not a zero polynomial. Then there are
uniquely determined polynomials S and R satisfying:

@ deg R < deg Q,
@ P(x) = S(x)Q(x)+ R(x) forall x € C.
If P and Q have real coefficients then so have S and R.

Corollary

If P is a polynomials and X\ € C its root (i.e. P(\) = 0),
then there is a polynomial S satisfying P(x) = (x — A\)S(x)
for all x € C.
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VIIl.1. Antiderivatives

Theorem 63 (factorisation into monomials)
Let P(x) = apx"+---+ a1 x + ay be a polynomial of degree
n € N. Then there are numbers X1, ..., x, € C such that

P(x)=an(x — x1)---(x — X5), xe€C.
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VIIl.1. Antiderivatives

Theorem 63 (factorisation into monomials)
Let P(x) = apx"+---+ a1 x + ay be a polynomial of degree
n € N. Then there are numbers X1, ..., x, € C such that

P(x)=an(x — x1)---(x — X5), xe€C.

Definition

Let P be a polynomial that is not zero, A\ € C, and k € N.
We say that X is a root of multiplicity k of the polynomial P
if there is a polynomial S satisfying S(\) # 0 and

P(x) = (x — \)¥S(x) for all x € C.
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VIIl.1. Antiderivatives

Theorem 64 (roots of a polynomial with real
coefficients)

Let P be a polynomial with real coefficients and X € C a
root of P of multiplicity k € N. Then the also the conjugate
number X is a root of P of multiplicity k.

Mathematics I VIII. Antiderivatives and Riemann integral



VIIl.1. Antiderivatives

Theorem 65 (factorisation of a polynomial with
real coefficients)

Let P(x) = apx" + --- + a1 x + ap be a polynomial of
degree n with real coefficients. Then there exist real

numbers Xy, ..., Xk, a1, ...,qp B, ..., 3 and natural
numbers py, ..., Pk, Gi,-..,q such that

@ P(x) = an(x — xq)P - (X — Xk )P(X2 + a1 X + 1)%
"'(Xz—f-Oé/X—f-ﬁ/)q’,
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VIIl.1. Antiderivatives

Theorem 65 (factorisation of a polynomial with
real coefficients)

Let P(x) = apx" + --- + a1 x + ap be a polynomial of
degree n with real coefficients. Then there exist real

numbers Xy, ..., Xk, a1, ...,qp B, ..., 3 and natural
numbers py, ..., Pk, Gi,-..,q such that

@ P(x) = ap(x — x1)P' - (X — xk)Pe(X2 + asx + B1)%
(62 + anx + ),

@ no two polynomials from x — X1, X — Xo, ..., X — Xk,
X%+ ayX + B1,..., X% + aux + 3, have a common root,
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VIIl.1. Antiderivatives

Theorem 65 (factorisation of a polynomial with
real coefficients)
Let P(x) = apx" + --- + a1 x + ap be a polynomial of
degree n with real coefficients. Then there exist real
numbers Xy, ..., Xk, a1, ...,qp B, ..., 3 and natural
numbers py, ..., Pk, Gi,-..,q such that
@ P(x) = an(x — xq)P - (X — Xk )P(X2 + a1 X + 1)%
... (X2 + aix + ﬁl)ql,
@ no two polynomials from x — X1, X — Xo, ..., X — Xk,
X2+ ayX + By, ..., X% + a;x + B have a common root,
@ the polynomials x? + a1 x + 34, ..., X% + ayx + f3; have
no real root.
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VIIl.1. Antiderivatives

Theorem 66 (decomposition to partial fractions)

Let P, Q be polynomials with real coefficients such that
deg P < deg Q and let

Q(x) = ap(x—x; )P ...(X_Xk)pk(x2+&1x+51)q1 ---(X2+a/x+6,)q’

be a factorisation of from Theorem 65. Then there exist

unique real numbers Aj, ... Al ... Af ... AL,

1 1 1 1 / / / /
Bi,Ci,....Bg,Cq,s -, By, Gy, .., By, Cg, such that
P(x) _

Qlx)

Mathematics Il VIII. Antiderivatives and Riemann integral



VIIl.1. Antiderivatives

Theorem 66 (decomposition to partial fractions)

Let P, Q be polynomials with real coefficients such that
deg P < deg Q and let

Q(x) = ap(x—x; )P ...(X_Xk)pk(x2+&1x+51)q1 ---(X2+a/x+6,)q’

be a factorisation of from Theorem 65. Then there exist

unique real numbers Aj, ... Al ... Af ... AL,
B}.C{,....B;.C}.....B},C},..., By, Cl, such that

P(x) _ Al AL
aw = Gexg T G
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VIIl.1. Antiderivatives

Theorem 66 (decomposition to partial fractions)

Let P, Q be polynomials with real coefficients such that
deg P < deg Q and let

Q(x) = ap(x—x; )P ...(X_Xk)pk(x2+&1x+51)q1 ---(X2+a/x+6,)q’

be a factorisation of from Theorem 65. Then there exist

unique real numbers Aj, ... Al ... Af ... AL,
B}.C{,....B;.C}.....B},C},..., By, Cl, such that

P(x) Al Al Ak Al
B =t et et

+
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VIIl.1. Antiderivatives

Theorem 66 (decomposition to partial fractions)

Let P, Q be polynomials with real coefficients such that
deg P < deg Q and let

Q(x) = ap(x—x; )P ...(X_Xk)pk(x2+&1x+51)q1 ---(X2+a/x+6,)q’

be a factorisation of from Theorem 65. Then there exist
unique real numbers Aj, ... Al ... Af ... AL,

B}.C{,....B;.C}.....B},C},..., By, Cl, such that

Px) _ Al Al Al Ak
m_m_k..._kﬁ_k..._|__1_|_..._|__(X_§I!:)pk+

(x—x)
B} x+C] B}, x+Cq,
T omrats) T T GEranaeym T

+
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VIIl.1. Antiderivatives

Theorem 66 (decomposition to partial fractions)

Let P, Q be polynomials with real coefficients such that
deg P < deg Q and let

Q(x) = ap(x—x; )P ...(X_Xk)pk(x2+&1x+51)q1 ---(X2+a/x+6,)q’

be a factorisation of from Theorem 65. Then there exist

unique real numbers Aj, ... Al ... Af ... AL,
B}.C{,....B;.C}.....B},C},..., By, Cl, such that
P(x) _ Al Al Ak Al
a0 = o) T T G o T ey T e T
Bl x+C] 3‘171 X+C‘171
T (x+a1x+51) Tt (x+agx+p1)% Tt
Bix+Cj Bf, x+C}
+m+---+m,xeR\{x1,...,xk}.

Mathematics Il VIII. Antiderivatives and Riemann integral



VIIl.2. Riemann integral

VIIl.2. Riemann integral

Mathematics I VIII. Antiderivatives and Riemann integral



VIIl.2. Riemann integral

Mathematics I VIII. Antiderivatives and Riemann integral



VIIl.2. Riemann integral

Mathematics I VIII. Antiderivatives and Riemann integral



VIIl.2. Riemann integral

Mathematics I VIII. Antiderivatives and Riemann integral



VIIl.2. Riemann integral

Mathematics I VIII. Antiderivatives and Riemann integral



VIIl.2. Riemann integral

Mathematics I VIII. Antiderivatives and Riemann integral



VIIl.2. Riemann integral

Mathematics Il VIII. Antiderivatives and Riemann integral



VIIl.2. Riemann integral

Mathematics I VIII. Antiderivatives and Riemann integral



©
S
(@)
[0
2
5
c
c
©
i
Q0
o
&
>

VIII. Antiderivatives and Riemann integral

»
L
©
£
5
=
©
=




VIIl.2. Riemann integral

Mathematics Il VIII. Antiderivatives and Riemann integral



VIIl.2. Riemann integral

Mathematics Il VIII. Antiderivatives and Riemann integral



VIIl.2. Riemann integral

Mathematics Il VIII. Antiderivatives and Riemann integral



VIIl.2. Riemann integral

Mathematics Il VIII. Antiderivatives and Riemann integral



VIIl.2. Riemann integral

Mathematics Il VIII. Antiderivatives and Riemann integral



VIIl.2. Riemann integral

Mathematics Il VIII. Antiderivatives and Riemann integral



VIIl.2. Riemann integral

Definition
A finite sequence {x;}_, is called a partition of the
interval [a, b] if

a=Xg< Xy <---<Xp=b.

The points X, . . ., X, are called the partition points.
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VIIl.2. Riemann integral

Definition
A finite sequence {x;}_, is called a partition of the
interval [a, b] if

a=Xg< Xy <---<Xp=b.

The points X, . . ., X, are called the partition points.

We say that a partition D’ of an interval [a, b] is a
refinement of the partition D of [a, b] if each partition point
of D is also a partition point of D'.
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Definition
Suppose that a,b € R, a < b, the function f is bounded on
[a, b], and D = {x;}_, is a partition of [a, b]. Denote

Z Mi(x; — x;_1), where M; = sup{f(x); x € [x;_1, x]},
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Definition
Suppose that a,b € R, a < b, the function f is bounded on
[a, b], and D = {x;}_, is a partition of [a, b]. Denote

Z Mi(x; — x;_1), where M; = sup{f(x); x € [x;_1, x]},

S(f, D) = ij — Xx;_1), where m; = inf{f(x); x € [x_1, x]]},
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Definition
Suppose that a,b € R, a < b, the function f is bounded on
[a, b], and D = {x;}_, is a partition of [a, b]. Denote

Z Mi(x; — x;_1), where M; = sup{f(x); x € [x;_1, x]},

S(f, D) = ij — Xx;_1), where m; = inf{f(x); x € [x_1, x]]},

)
/ f = inf{S(f, D); Dis a partition of [a, b] },
a
b
/ f = sup{S(f, D); Dis a partition of [a, b] }.
Ja_
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VIIl.2. Riemann integral

Definition
We say that a function f has the Riemann integral over
the interval [a, b] if [Cf = [2F.
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VIIl.2. Riemann integral

Definition

We say that a function f has the Riemann integral over
the interval [a, b] if f:f = f:f. The value of the integral of
f over [a, b] is then equal to the common value of

b b
= [t
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VIIl.2. Riemann integral

Definition

We say that a function f has the Riemann integral over
the interval [a, b] if f:f = f:f. The value of the integral of
f over [a, b] is then equal to the common value of

— b
f:f:f:f. We denote itby/ f.
- a
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VIIl.2. Riemann integral

Definition
We say that a function f has the Riemann integral over

the interval [a, b] if f:f = f:f. The value of the integral of
f over [a, b] is then equal to the common value of

- b
[2f = [°f. We denote it by / f. If a > b, then we define
- a

b a b
/ f:—/ f,andincasethata:bweput/ f=0.
a b a
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VIIl.2. Riemann integral

Remark
Let D, D’ be partitions of [a, b], D’ refines D, and let f be a
bounded function on [a, b]. Then

S(f,D) < 8(f,D') < 8(f,D') < S(f, D).
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VIIl.2. Riemann integral

S(f, D) < S(f,D') < S(f, D) < §(f, D).

Ny

/
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S(f, D) < S(f,D') < S(f, D) < §(f, D).
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S(f, D) < S(f,D') < S(f, D) < §(f, D).
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S(f, D) < S(f,D') < S(f, D) < §(f, D).
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S(f, D) < S(f,D') < S(f, D) < §(f, D).
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VIIl.2. Riemann integral

Remark
Let D, D’ be partitions of [a, b], D’ refines D, and let f be a
bounded function on [a, b]. Then

S(f,D) < 8(f,D') < 8(f,D') < S(f, D).
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VIIl.2. Riemann integral

Remark
Let D, D’ be partitions of [a, b], D’ refines D, and let f be a

bounded function on [a, b]. Then
S(f, D) < S(f, D') < 8(f, D) < S(f, D).

Suppose that Dy, D, are partitions of [a, b] and a partition
D' refines both Dy and D.. Then

S(f,Dy) < S(f. D') < S(f, D') < S(f, Dy).
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VIIl.2. Riemann integral

Remark
Let D, D’ be partitions of [a, b], D’ refines D, and let f be a
bounded function on [a, b]. Then

S(f,D) < 8(f,D') < 8(f,D') < S(f, D).

Suppose that Dy, D, are partitions of [a, b] and a partition
D' refines both Dy and D.. Then

S(f,Dy) < S(f. D') < S(f, D') < S(f, Dy).

It easily follows that [°f < [°f.
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VIIl.2. Riemann integral

Theorem 67

(i) Suppose that f has the Riemann integral over [a, b]
and let [c,d] C [a, b]. Then f has the Riemann
integral also over [c, d|.
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VIIl.2. Riemann integral

Theorem 67

(i) Suppose that f has the Riemann integral over [a, b]
and let [c,d] C [a, b]. Then f has the Riemann
integral also over [c, d|.

(i) Suppose that c € (a,b) and f has the Riemann
integral over the intervals [a, c] and [c, b]. Then f has
the Riemann integral over |a, b] and

/abf:/:f+/cbf. (1)
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VIIl.2. Riemann integral

Theorem 67

(i) Suppose that f has the Riemann integral over [a, b]
and let [c,d] C [a, b]. Then f has the Riemann
integral also over [c, d|.

(i) Suppose that c € (a,b) and f has the Riemann
integral over the intervals [a, c] and [c, b]. Then f has
the Riemann integral over |a, b] and

/abf:/:f+/cbf. (1)

Remark
The formula (1) holds for all a, b, ¢ € R if the integral of f
exists over the interval [min{a, b, ¢}, max{a, b, c}].
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VIIl.2. Riemann integral

Theorem 68 (linearity of the Riemann integral)

Let f and g be functions with Riemann integral over [a, b]
and leta € R. Then

(i) the function of has the Riemann integral over [a, b]

and
b b
/ af:a/ f,
a a
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VIIl.2. Riemann integral

Theorem 68 (linearity of the Riemann integral)

Let f and g be functions with Riemann integral over [a, b]
and leta € R. Then

(i) the function of has the Riemann integral over [a, b]

and
b b
/ af:a/ f,
a a

(i) the function f + g has the Riemann integral over |a, b]

and
b b b
/f+g—/ f+/ g.
a a a
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VIIl.2. Riemann integral

Theorem 69
Leta,be R, a< b, and let f and g be functions with
Riemann integral over [a, b]. Then:

(i) Iff(x) < g(x) for each x € |a, b], then

b b
[refs
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VIIl.2. Riemann integral

Theorem 69
Leta,be R, a< b, and let f and g be functions with
Riemann integral over [a, b]. Then:

(i) Iff(x) < g(x) for each x € |a, b], then

b b
[refs

(i) The function |f| has the Riemann integral over [a, b]

and
b b
/ f g/ .
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VIIl.2. Riemann integral

Theorem 70
Let f be a function continuous on an interval [a, b],
a.b € R. Then f has the Riemann integral on [a, b].
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VIIl.2. Riemann integral

Theorem 71
Let f be a function continuous on an interval (a, b) and let
X

c € (a b). If we denote F(x) = / f(t)dt for x € (a, b),

then F'(x) = f(x) for each x € (a,b). In other words, F is
an antiderivative of f on (a, b).
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VIIl.2. Riemann integral

Theorem 72 (Newton-Leibniz formula)

Let f be a function continuous on an interval (a — e, b+ ¢),
abeR,a< b, >0 andlet F be an antiderivative of f
on(a—e,b+c¢). Then

/ i f(x)dx = F(b) — F(a). )
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VIIl.2. Riemann integral

Theorem 72 (Newton-Leibniz formula)

Let f be a function continuous on an interval (a — e, b+ ¢),
abeR,a< b, >0 andlet F be an antiderivative of f
on(a—e,b+c¢). Then

/ i f(x)dx = F(b) — F(a). )

Remark
The Newton-Leibniz formula (2) holds even if b < a (if
F'=fon(b—¢,a+e¢)).
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VIIl.2. Riemann integral

Theorem 72 (Newton-Leibniz formula)

Let f be a function continuous on an interval (a — e, b+ ¢),
abeR,a< b, >0 andlet F be an antiderivative of f
on(a—e,b+c¢). Then

/ i f(x)dx = F(b) — F(a). )

Remark
The Newton-Leibniz formula (2) holds even if b < a (if
F'=fon(b—e,a+c¢)). Let us denote

[Fl2 = F(b) - F(a).
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VIIl.2. Riemann integral

Theorem 73 (integration by parts)

Suppose that the functions f, g, ' a g’ are continuous on
an interval [a, b]. Then

b b
/ f'g =9l - / fg'
a a
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VIIl.2. Riemann integral

Theorem 73 (integration by parts)

Suppose that the functions f, g, ' a g’ are continuous on
an interval [a, b]. Then

b b
/ f'g =9l - / fg'
a a

Theorem 74 (substitution)

Let the function f be continuous on an interval [a, b].
Suppose that the function ¢ has a continuous derivative
on [«, 5] and ¢ maps [«, 8] into the interval [a, b]. Then

©(B)

B
/ Fo(x)) ' (x) dx = / (£ dt.

w(a)
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