Barrier Options

Lukas Ernst

December 11, 2025

Lukas Ernst Barrier Options December 11, 2025 1,

Introduction to Barrier Options

Definition

A barrier option is a **path-dependent** derivative where the payoff depends on whether the underlying asset price S_t reaches a specific barrier level H during the time interval [0, T].

Mathematical Distinction:

- **Vanilla Option:** Payoff depends only on terminal value S_T .
- Barrier Option: Payoff depends on S_T AND the path extrema:

$$M_T = \max_{0 \le t \le T} S_t$$
 or $m_T = \min_{0 \le t \le T} S_t$

Key Property

Strictly cheaper than vanilla options because the probability of a positive payoff is strictly lower (subset of the sample space).

Classification: The Fundamental Parity

Barrier options are classified by the **Barrier Event**:

- **1 Knock-Out:** Option is extinguished (ceases to exist) if S_t touches H.
- **2 Knock-In:** Option activates (comes into existence) only if S_t touches H.

The Static Replication (Arbitrage Relationship)

For a given Strike K and Barrier H, a standard vanilla option is the sum of the Knock-In and Knock-Out versions:

$$V_{\mathsf{Vanilla}} = V_{\mathsf{Knock-In}} + V_{\mathsf{Knock-Out}}$$

3/10

Lukas Ernst Barrier Options Dec

The 8 Combinations: Mathematical Payoffs

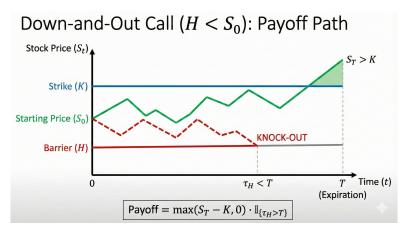
Let $\tau_H = \inf\{t : S_t = H\}$ be the first hitting time. The payoff depends on the final price S_T and whether the barrier was hit $(\tau_H \leq T)$ or not $(\tau_H > T)$.

Barrier Type	Option	Barrier Condition	Payoff Formula at T
Up-and-Out	Call Put	$H > S_0$ $H > S_0$	$(S_T - K)^+ \cdot \mathbb{I}_{\{ au_H > T\}} \ (K - S_T)^+ \cdot \mathbb{I}_{\{ au_H > T\}}$
Up-and-In	Call Put	$H > S_0$ $H > S_0$	$(S_T - K)^+ \cdot \mathbb{I}_{\{\tau_H \le T\}} \ (K - S_T)^+ \cdot \mathbb{I}_{\{\tau_H \le T\}}$
Down-and-Out	Call Put	$H < S_0$ $H < S_0$	$(S_T - K)^+ \cdot \mathbb{I}_{\{\tau_H > T\}} \ (K - S_T)^+ \cdot \mathbb{I}_{\{\tau_H > T\}}$
Down-and-In	Call Put	$H < S_0$ $H < S_0$	$(S_T - K)^+ \cdot \mathbb{I}_{\{\tau_H \le T\}} \ (K - S_T)^+ \cdot \mathbb{I}_{\{\tau_H \le T\}}$

*Note: $(x)^+ = \max(x, 0)$ and \mathbb{I}_A is equal to 1 if event A occurs, 0 otherwise. Barrier Options

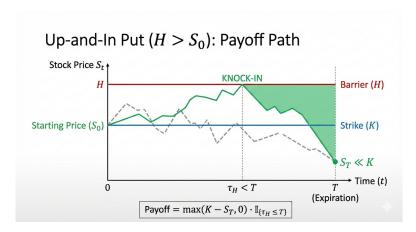
Example 1: Down-and-Out Call $(H < S_0)$

This option ceases to exist ("knocks out") if the asset price S_t touches or falls below the barrier level H at any time before expiration.



Example 2: Up-and-In Put $(H > S_0)$

This option is inactive and worthless until the asset price S_t touches or rises above the barrier level H, at which point it "knocks in" and becomes a standard put option.



Lukas Ernst Barrier Options December 11, 2025 6 / 10

Valuation: The Analytical Formula

We cannot use the standard Black-Scholes formula alone because it ignores the risk of the option being "Knocked Out."

The Logic:

Barrier Value = Vanilla Value - Value of "Knock-Out" Paths

The Formula (Merton, 1973): For a Down-and-Out Call $(H < S_0)$, the price is:

$$V_{BO} = C_{BS}(S_0) - \left(\frac{S_0}{H}\right)^{1 - \frac{2r}{\sigma^2}} C_{BS}\left(\frac{H^2}{S_0}\right)$$

- We subtract the value of a hypothetical option starting at the **Reflected Spot Price** $S' = H^2/S_0$.
- The term $\left(\frac{S_0}{H}\right)^{\dots}$ represents the probability of hitting the barrier based on drift (r) and volatility (σ) .

Valuation: Numerical Methods

Analytical formulas only work for constant barriers and constant volatility. For complex real-world contracts, we use:

Monte Carlo Simulation:

- Simulate *N* paths (e.g., 10,000) using Geometric Brownian Motion.
- Discard paths that touch H.
- Average the payoff of surviving paths.

$$V \approx e^{-rT} \frac{1}{N} \sum_{i=1}^{N} \mathsf{Payoff}_{i} \cdot \{\min S_{t} > H\}$$

Finite Difference Method (The "Grid" Approach):

- We discretize the world into a grid of Prices vs. Time.
- **Step 1:** Start at Maturity (where values are known).
- Step 2: Work backwards day-by-day to calculate today's price.
- Barrier handling: We manually set the grid nodes at the barrier level H to Zero.

Advanced Barrier Conditions

In practice, barriers are often more complex than a simple continuous line.

- Monitoring Frequency (Discrete vs. Continuous):
 - Continuous: Triggered if S_t hits H at any moment. (Risky, cheaper).
 - **Discrete:** Triggered only if Closing Price hits *H*. (Safer, expensive).
 - Note: Discrete barriers reduce "intraday noise" risk.

Ouble Barriers:

- Two barriers: Upper (H_{up}) and Lower (H_{low}) .
- Option is knocked out if price exits the "Tunnel."
- Used for betting on low volatility (Range Trading).

Parisian Options ("Soft" Barriers):

- The barrier only triggers if the price *stays* beyond *H* for a specific duration (e.g., 24 hours).
- Protects against temporary price spikes or manipulation.

Thank You

Questions?