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Study programme: Mathematics

Specialization: Mathematical analysis

Prague 2011



Acknowledgment

I owe a great debt of gratitude to my supervisor Dalibor Pražák. This work would
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e-mail vedoucı́ho: Dalibor.Prazak@mff.cuni.cz

Abstrakt: Zkoumáme systém nelineárnı́ch parciálnı́ch diferenciálnı́ch rovnic, kon-
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vyklými metodami dokázat existenci a jednoznačnost řešenı́, zlepšenou regularitu a
předevšı́m existenci kompaktnı́ invariantnı́ množiny pro celý systém.
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Abstract: We investigate a system of nonlinear partial differential equations, specifi-
cally the so-called Ladyzhenskaya model, in three spatial dimensions. It will be shown
that after inclusion of a perturbation of a higher order, the model exhibits a consider-
ably better behavior, in particular it will become quite straightforward to prove dif-
ferentiability of solutions with respect to the initial condition. Due to this fact we
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Introduction
Keeping rigorous definitions for a later time (see Definition 2.1 below), we analyze the
following perturbed incompressible fluid model of Ladyzhenskaya:

∂tu− ε∆3u− divx S(Du) + divx(u⊗ u) +∇x p = f

divx u = 0
in (0, T )× Ω, (1)

with a sufficiently smooth domain Ω ⊂ R3. The equation is accompanied with the
boundary condition

u|∂Ω = 0 in (0, T )

and the initial condition

u(0) = u0 in Ω.

The stress tensor S is considered in the form

S(X) = ν0X+ ν1 |X|r−2X, X ∈ R3×3,

with constant viscosities ν0, ν1 > 0 and a parameter r that will be expounded on later.

The main aim of the present thesis is to verify that the perturbed model (i.e. ε > 0)
admits an exponential attractor whose qualities (certain regularity, rate of attraction
and, most importantly, the dimension estimate) are independent of ε > 0. A closer
look at the proofs reveals that the induced ε-regularity is only needed in justification
of a certain technical tool (which is the differentiability of the solution operator), while
the core estimate is meaningful and independent of it.

Unfortunately, it still remains an open (and possibly difficult) problem to assess
whether these estimates remain valid also for ε = 0. If so, it would be a significant
improvement of the estimates delivered in [1] (and then assimilated into [6]), where a
different approach (the method of trajectories) was used.

From the very beginning it should also be emphasized that the only estimates’
quality we are interested in is their dependency on ε or a lack thereof. Their exact
form in terms of data is otherwise nearly always neglected. From this point of view
we do count on a superior nature of the method we use here and the estimates it de-
livers, as opposed to those derived by means of the method of trajectories. The reason
for doing so is to make the presentation as lucid as possible. The only instance of
breaking this habit will occur in Remark 4.6.

Let us conclude this brief introduction with a few bibliographical remarks. Although
the problem studied in this thesis is new (to the best of our knowledge), the tech-
niques we adopt are by no means original in the literature. First of all, the so-called
Ladyzhenskaya model of incompressible fluid – i.e. the system (1), or more precisely
(2.1), with ε = 0, was first suggested by Ladyzhenskaya [8], who also provided the
basic theory. Our presentation in section 2.4, including higher regularity with respect
to time, follows mostly the ideas of chapter 5 in [9].

The attractor part (chapters 3 and 4) is based on the general presentation given in
chapter 2 of [6]. But, once again, these techniques and concepts are nowadays classical.
Exponential attractors date back at least to the survey book [4]. Lyapunov exponents
are treated extensively also in [10] or [12]. Regarding the construction of exponential
attractors using Lyapunov exponents, see [3].
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1. Preliminaries
Before we delve deep into the productive part of the work, we have to first present
few topics and tools used to varying degrees later.

1.1 Symbolism in use

The following notation is for the most part not elucidated elsewhere and as such it is
usually taken for granted.

ci a constant dependent only on f , Ω, r, T , ν0, ν1 and u0

u, v, etc. u = (u1, u2, u3), v = (v1, v2, v3), etc.
u′, ∂tu , d

dtu the generalized time derivative introduced in Definition 1.4
D the symmetric gradient, 1/2(∇x +∇T

x )

Ω ∈ C3(R3) Ω ∈ C3 and Ω ⊂ R3 bounded and open
V , H , Vr, V 3 the function spaces from Definition 1.2

X∗ the (topological) dual space to X

D′(Ω) the space of distributions on Ω

L(X) the space of all continuous linear operators on X

⟨· , ·⟩X∗,X duality between X∗ and X

(· , ·) the scalar product on L2(Ω), L2(Ω,R3) or L2(Ω,R3×3)

(· , ·)X the scalar product on X

⟨⟨· , ·⟩⟩ the scalar product on W 3,2
0 (Ω) defined in Note 1.139·9 the norm on W 3,2

0 (Ω) defined in Note 1.13
δij Kronecker’s delta

span{. . .} linear hull
N the set of positive integers
R the set of real numbers

X : Y
∑d

i,j=1 xijyij , X = {xij}di,j=1, Y = {yij}di,j=1

a⊗ b {aibj}di,j=1, a = (a1, . . . , ad), b = (b1, . . . , bd)

↪→ continuous embedding
d
↪→ dense and continuous embedding

↪→↪→ compact embedding
supp ϕ the support of ϕ
B(0, δ) {x ∈ X; ∥x∥ < δ}, where X is a space in question
A+B {a+ b; a ∈ A, b ∈ B}

r′ r/(r−1) (or a different letter as the case may be)
Ai ↗ B monotone pointwise convergence of the sets {Ai} a.e. to B

|A| the (correspondingly-dimensional) Lebesgue measure of A
I the identity R3×3×3×3-tensor

{aj} an infinite sequence of real numbers {aj}∞j=1

l2(R)
{
{ai}; ∀i ∈ N : ai ∈ R,

∑∞
i=1 |ai|2 < ∞

}
A⊥ the orthogonal complement of A
⇒ uniform convergence

2



Note 1.1 On many occasions, we will make a tacit use of the following elementary
equality holding for any d ≥ 2:

1

2

(
X+ XT

)
: Y =

1

2

(
X+ XT

)
:
1

2

(
Y+ YT

)
, X,Y ∈ Rd×d. (1.1)

1.2 Divergence-free functions

As we will most often treat functions with zero divergence, the first supplementary
step consists of defining the appropriate function spaces. For more information on
this topic consult e.g. [13].

Definition 1.2 The following spaces will be used extensively throughout this work:

V =
{
φ; φ ∈ C∞

c (Ω,R3), divxφ = 0
}
,

H = closure of V in L2(Ω,R3),

Vp = closure of V in W 1,p(Ω,R3),

V 3 = closure of V in W 3,2(Ω,R3).

H , Vp and V 3 are considered with the topology of the corresponding closure.

The next theorem will be applied on such a regular basis that its invocation will
not even be explicitly mentioned in the text.

Theorem 1.3 (Green’s theorem, [13], Theorem 1.1.2)
If Ω ∈ C2(R3), the following formula is true for all u ∈ W 1,2

0 (Ω,R3×3) and v ∈ W 1,2(Ω,R3),
or u ∈ W 1,2

0 (Ω,R3) and v ∈ W 1,2(Ω), respectively:

(u,∇xv) = −(divx u, v).

1.3 Vector-valued functions

In this auxiliary section, we are not going to introduce Bochner spaces from scratch
but merely mention several results that will play a major role in what is to come. For
a self-contained introduction into the theory of vector-valued functions, refer to e.g.
[14] (a quick initiation) or [7] (a thorough treatment).

In what follows, consider T > 0.

Definition 1.4 Let V be a Hilbert space and X be a Banach space satisfying X
d
↪→ V .

Let u ∈ L1
loc(0, T ;X). We define its generalized time derivative, denoted by u′, ∂tu or d

dtu,
as a distribution on C∞

c (0, T ;X) given by the formula

⟨u′, v⟩ = −
∫ T

0
(u(t), v′(t))V dt, v ∈ C∞

c (0, T ;X).

Lemma 1.5 ([14], Lemma 2.2.3)
Let X satisfy the conditions from the above definition and u be a distribution on C∞

c (0, T ;X)
with u′ ∈ Lp(0, T ;X), 1 ≤ p ≤ ∞. Then u ∈ C([0, T ];X) (modulo a representative) and the
following representation takes place:

u(t) = u(0) +

∫ t

0
u′(s) ds, t ∈ (0, T ).
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Lemma 1.6 Assume X is a Banach space and 1 < p < ∞. The space (Lp(0, T ;X))∗ is
isometrically isomorphic to Lp′(0, T ;X∗) and for every χ ∈ (Lp(0, T ;X))∗ the corresponding
u ∈ Lp′(0, T ;X∗) satisfies

⟨χ, v⟩Λ∗,Λ =

∫ T

0
⟨u(t), v(t)⟩X∗,X dt (1.2)

for every v ∈ Λ = Lp(0, T ;X).

Remark 1.7 In view of the previous lemma, the two isomorphic spaces will always be
identified here. In this fashion, replacing χ with u in (1.2) would be legitimate. Hence
we also observe u = 0 in Λ∗ if and only if u(t) = 0 in X∗ a.e. in (0, T ).

Theorem 1.8 (Aubin-Simon lemma, [11], Corollary 4)
Assume X , Y , Z are Banach spaces related via X ↪→↪→ Y ↪→ Z. Let 1 ≤ p, q < ∞ and
F ⊂ Lp(0, T ;X) satisfy

sup
u∈F

∥u∥Lp(0,T ;X) < ∞,

sup
u∈F

∥∂tu∥Lq(0,T ;Z) < ∞.

Then F is relatively compact in Lp(0, T ;Y ).

Theorem 1.9 ([5], Corollary 2.1)
Let V be a separable Hilbert space and un : [0, T ] → V , n ∈ N, be a sequence of strongly
measurable functions (i.e. a pointwise limit of simple functions) satisfying

(i) sup
n∈N

sup ess
t∈[0,T ]

∥un(t)∥V < ∞;

(ii) There exists a dense subset F ⊂ V such that the functions (un(t), ϕ)V : [0, T ] → R,
n ∈ N, are equicontinuous for every ϕ ∈ F .

Then a function u ∈ Cw([0, T ];V ) exists and a subsequence of {un} (without loss of generality
the original one) fulfilling

un → u in Cw([0, T ];V ).

That is to say (un(t), ϕ)H ⇒ (u(t), ϕ)H on [0, T ] for every ϕ ∈ V .

Theorem 1.10 (a proof completely analogous to [13], Lemma 3.1.2)
Let V be a Hilbert space and X , Y be Banach spaces mutually injected as X ↪→ Y ↪→ V .
Suppose 1 < p ≤ q < ∞ and u ∈ Lp(0, T ;X) ∩ Lq(0, T ;Y ) with its generalized time
derivative u′ ∈ Lp′(0, T ;X∗) + Lq′(0, T ;Y ∗). Then the following properties are in effect:

(i) u ∈ C([0, T ];V ) up to a representative;

(ii) For any 0 ≤ t1 < t2 ≤ T one has∫ t2

t1

⟨u′(s), u(s)⟩ ds = 1

2
∥u(t2)∥2V − 1

2
∥u(t1)∥2V ,

where ⟨· , ·⟩ denotes the duality between X∗ + Y ∗ and X ∩ Y .

Lemma 1.11 Let V be a separable Hilbert space, X a Banach space such that V
d
↪→ X and

1 < p < q < ∞. Then functions of the form
∑n

i=1 αi(t)βi, αi(t) ∈ Lq(0, T ), βi ∈ V , are
dense in Lp(0, T ;V ) ∩ Lq(0, T ;X).
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Proof. We will show that functions of the prescribed form are dense in Lq(0, T ;V ),
which is clearly dense in Lp(0, T ;V ) ∩ Lq(0, T ;X) due to density of V in X .

Denote (· , ·)V the scalar product on V , ∥·∥V its induced norm and let {βi} be an
orthonormal basis in V . Take and fix v ∈ Lq(0, T ;V ). Since

∑n
i=1(v(t), βi)V βi → v(t),

n → ∞, in V for a.e. t ∈ (0, T ), we construct the temporal part as αi(t) = (v(t), βi)V .
Cauchy-Schwartz inequality implies αi(t) ∈ Lq(0, T ). Invoking Bessel’s inequality,
∥
∑n

i=1 αi(t)βi∥V ≤ ∥v(t)∥V a.e. in (0, T ) and the proof of density is thus finished using
Lebesgue’s dominated convergence theorem. �

1.4 Existence of a basis

In order to successfully proceed with the Galerkin approximation scheme later on, it is
crucial to have a basis of a suitable function space. This section is devoted to proving
existence of a set of functions that form an orthonormal basis in H and an orthogonal
basis in V 3 for Ω ∈ C3(R3).

To begin with, we report a result with crucial significance throughout the work.

Theorem 1.12 ([10], Proposition 6.18, 6.19)
If Ω ∈ C3(R3), there are constants K1,K2 satisfying for any f ∈ W 3,2

0 (Ω) the inequality

K1 ∥∇x∆f∥2 ≤ ∥f∥3,2 ≤ K2 ∥∇x∆f∥2 .

Note 1.13 In light of this theorem, we are allowed to define an equivalent norm 9·9
on W 3,2

0 (Ω) (and naturally also on V 3) induced by the scalar product

⟨⟨f, g⟩⟩ = (∇x∆f,∇x∆g) , f, g ∈ W 3,2
0 (Ω).

Considering all reference to W 3,2
0 (Ω) in this work will take place with the use of 9·9,

we will treat W 3,2
0 (Ω) as though implicitly equipped with this norm.

Customarily enough, the said basis will be sought via Hilbert-Schmidt theorem.
To pave the way for its invocation, we study the problem of finding u ∈ V 3 that for
a fixed f ∈ H and any v ∈ V 3 satisfies

⟨⟨u,v⟩⟩ = (f ,v) . (1.3)

Thanks to Note 1.13 and imbedding H ↪→
(
V 3
)∗, we can handle the problem easily

via Riesz representation theorem to obtain a unique such u ∈ V 3 with

9u9 ≤ K ∥f∥H .

The constant K does not depend on f or u. Now define the solution operator

Γ : H −→ V 3 ↪→↪→ H,

f 7−→ u

where u is the solution to (1.3) corresponding to f . Thus we obtained a compact, linear
operator, which is self-adjoint too, since for Γf = u, Γg = v, an easy computation
yields

(Γf , g) = (u, g) = ⟨⟨u,v⟩⟩ = (f ,v) = (f ,Γg) for any f , g ∈ H.

It is obvious that V ⊂ Γ (H). Invoking Hilbert-Schmidt theorem thus guarantees exis-
tence of {wj} ⊂ V 3, a set of eigenfunctions of Γ and an orthonormal system in H that
is complete due to density of V in H .

5



We also observe

⟨⟨λjwj ,wi⟩⟩ = ⟨⟨Γwj ,wi⟩⟩ = (wj ,wi) = δij , i, j ∈ N,

where λj are the corresponding eigenvalues. Note that although λj → 0+ modulo
rearrangement, the sequence remains non-zero. Finally, let φ ∈ V 3 be such that

⟨⟨wj ,φ⟩⟩ = 0 for all j.

Then φ = 0 because

0 = λj ⟨⟨wj ,φ⟩⟩ = ⟨⟨Γwj ,φ⟩⟩ = (wj ,φ) for all j.

Hence we see that {wj} is also a complete orthogonal system in V 3 with

9wj9 = λ
−1/2
j −→ ∞, j −→ ∞.

The last few words of this part will touch the L2-orthogonal projections to this
basis. For u ∈ H and n ∈ N introduce

Pnu =
n∑

i=1

(u,wi)wi.

As {wj} is an orthonormal basis in H , we immediately obtain the bound

∥Pn∥L(H) ≤ 1. (1.4)

Now take v ∈ V 3. Parseval’s identity asserts

∞∑
i=1

⟨⟨
v, λ

1/2
i wi

⟩⟩2
= 9v92 .

Therefrom we observe

9Pnv92 =
n∑

i=1

(wk,v)
2 9wk92 =

n∑
i=1

λ2
i ⟨⟨wk,v⟩⟩2 λ−1

i ≤ 9v92 .

Thus we have deduced another bound, this time

∥Pn∥L(V 3) ≤ 1. (1.5)

6



2. Solution
Definition 2.1 Let Ω ∈ C3(R3), f ∈ L2(Ω;R3), ε > 0, r ≥ 5/2, T > 0 and u0 ∈ H .
Denote

Υ = Lr (0, T ;Vr) ∩ L2
(
0, T ;V 3

)
.

We will call u a weak solution to the problem

∂tu− ε∆3u− divx S(Du) + divx(u⊗ u) +∇x p = f

divx u = 0

}
in (0, T )× Ω,

u = ∆u = 0

∂u

∂n
= 0

 on (0, T )× ∂Ω, (2.1)

u = u0 on {t = 0} × Ω,

if u ∈ Υ, ∂tu ∈ Υ∗ and for any v ∈ Υ the following integral identity holds true:

⟨∂tu,v⟩Υ∗,Υ +

∫ T

0

∫
Ω
ε∇x∆u :∇x∆v + S(Du) :∇xv − (u⊗ u) :∇xv dx dt

=

∫ T

0

∫
Ω
f ·v dx dt. (2.2)

We also want u to attain the initial condition in the form

lim
t→0+

∥u0 − u(t, · )∥2 = 0.

Note 2.2 Although the pressure term p seemingly disappeared in (2.2), it can be recon-
structed from the weak solution. Generally, we will not spent more time discussing
pressure than absolutely necessary in this work. For more information concerning this
topic, we refer the reader to [13], p. 180.

Remark 2.3 Thanks to Theorem 1.10, our definition of a solution guarantees it has
a representative satisfying u ∈ C([0, T ];H). Firstly, this fact renders the require-
ment for attainment of the initial condition meaningful. We could even demand only
u0(x) = u(0, x) a.e. in Ω. Secondly, the definition has therefore eschewed a redundant
requirement u ∈ L∞(0, T ;H). In the existence theorem we would, however, be able to
prove boundedness of ∥u(t)∥2 in time easily even without knowledge of continuity.

Note 2.4 With so many data in the Definition 2.1, shedding some light on a measure
of their changeability throughout the work is in place. The entities Ω and f remain
static permanently and no further discussion concerning these entities will be ever
done. The number ε is also given, yet we will often toy with the idea of what would
happen should it tend to zero. The number r is fixed as well, although the entire
interval whence it is picked, i.e. [5/2,∞), must always be taken into account. The initial
condition and terminal time, on the other hand, will change often in the later chapters
so as to suit our immediate desires.

Theorem 2.5 There exists a unique weak solution to (2.1). Furthermore, the solution enjoys
a higher local regularity

u ∈ L∞ (δ, T ;Vr) ∩ L∞ (δ, T ;V 3
)
,

∂tu ∈ L2 (δ, T ;H)

7



for any δ > 0. We may set δ = 0 provided u0 ∈ V 3.

Remark 2.6 In the limit case ε = 0, this result holds as well (see [6], [9]), including con-
tinuity of the solution in H . The definition of Υ would then consist only of Lr (0, T ;Vr)
and the only boundary condition would be u|Ω = 0. In addition, we would have to
part with u belonging into L∞ (δ, T ;V 3

)
.

Remark 2.7 The impending proof shall be lengthy and arduous, at times almost un-
necessarily. The motives for going into such details are to use the improved regularity
brought about by ε∆3u as scarcily as possible. Even in the statement alone, wanting
to rely strongly on the ε-term, we could have taken r ≥ 12/5. In such a case, however,
the proof of uniqueness would rest completely on the ε-term, which would obviously
have a negative effect if we later wanted ε → 0+.

In a similar manner, the improved regularity is presented seemingly superfluously,
having V 3 ↪→ Vr. We will be again very careful not to make use of ε-induced regularity
gratuitously.

2.1 Galerkin approximation

Here and in what follows, let the notation from section 1.4 be in force. Following
the standard procedure, the sought-after solution will be constructed as a limit of a
sequence of functions that solve a certain approximative problem. In this case, we
first try to find a function un(t, x) built with the help of {w1, . . . ,wn} as

un(t, x) =

n∑
k=1

dnk(t)wk(x).

What to require of dnk(t)? Imagine we want un to solve

∂tun(t)− ε∆3un(t)− Pndivx S (Dun(t)) + Pndivx (un(t)⊗ un(t)) = Pnf (2.3)

as an equation in Υ∗, more specifically

(∂tun(t),v) + ε ⟨⟨un(t),v⟩⟩+ (S (Dun(t)) ,∇x Pnv)− (un(t)⊗ un(t),∇x Pnv)

= (f ,Pnv) (2.4)

holds for any v ∈ V 3 a.e. in (0, T ). Applying (2.4) to wk, we deduce immediately the
equations for dnk(t):

d

dt
dnk + ελ−1

k dnk +
(
S(Dun)− un ⊗ un,∇xwk

)
= fk, k = 1, . . . , n, (2.5)

where fk =
∫
Ω f ·wk dx. We complete the setting with the initial condition

dnk(0) =

∫
Ω
u0·wk dx, k = 1, . . . , n. (2.6)

Note that
(
S(Dun) − un ⊗ un,∇xwk

)
is a continuous function in dn1 , . . . , d

n
n. Hence

we are allowed to employ the classical theory of ordinary differential equations to
guarantee existence of a continuously differentiable (dn1 , . . . , d

n
n) defined on some short

time interval (0, T ∗
n) and satisfying (2.5) and (2.6).
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2.2 Apriori estimates of un

To show that T ∗
n = T , we have to verify dn1 , . . . , d

n
n remain bounded. From the def-

inition of un, the task is tantamount to checking boundedness of ∥un(t)∥2 on (0, T ).
Apart from that, the desired passing to the limit later necessitates bounds on un in
various spaces, independently of n. This section adresses deduction of all these uni-
form estimates. Where no confusion threatens, the time argument will be omitted for
the sake of a more transparent notation.

First, let us rewrite (2.5) equivalently as:

(∂tun,wk) + ε ⟨⟨un,wk⟩⟩+ (S(Dun)− un ⊗ un,∇xwk) = (f ,wk), k = 1, . . . , n.

Now multiply corresponding equations by dnk and sum over k to obtain

1

2

d

dt
∥un∥22 + ε9un92 +(S(Dun),Dun)− (un ⊗ un,∇xun) = (f ,un). (2.7)

This is the first time we actually used (1.1). Before approaching to estimates, terms in
(2.7) must be slightly refined:

• The definition of S (page 1) and Korn’s inequality (6.1) yield

(S(Dun),Dun) ≥ c1

(
∥Dun∥22 + ∥Dun∥rr

)
≥ c2

(
∥∇xun∥22 + ∥∇xun∥rr

)
.

• Next, remember divx un = 0 and un|∂Ω = 0. A straightforward computation
yields

(v ⊗ u) :∇xv =
1

2
u ·∇x|v|2. (2.8)

By virtue of these three properties and Green’s theorem 1.3, we have disclosed
(un ⊗ un,∇xun) = 0.

• The term (f ,un) is easily estimated with the help of Young’s and Poincaré’s
inequality.

(f ,un) ≤
c2
2
∥∇xun∥22 + c3 ∥f∥22 .

Inserting these observations into (2.7) indicates a promising outcome

1

2

d

dt
∥un∥22 + ε9un92 +c2 ∥∇xun∥rr ≤ c3 ∥f∥22 .

Choose 0 < t ≤ T and integrate this inequality over (0, t) to finally obtain

sup
t∈[0,T ]

∥un(t)∥22 + ε ∥un∥2L2(0,T ;V 3) + c2 ∥∇xun∥rLr(0,T ;Vr)

≤ c4

(
∥f∥22 + ∥un(0)∥22

)
≤ c4

(
∥f∥22 + ∥u(0)∥22

)
.

(2.9)

The last inequality is due to un(0) = Pnu0 and (1.4).

Note 2.8 Remark that with the bound on the norm of ε1/2un in L2
(
0, T ;V 3

)
there

is no chance controlling the L2
(
0, T ;V 3

)
-norm of mere u, should we ever want ε to

approach zero. In this fashion, if we denote uε the solution (as yet undiscovered)
corresponding to a given value of ε, we could somewhat oddly write

uε ∈
1

ε
L2
(
0, T ;V 3

)
, (2.10)
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whereby we mean there exists c > 0 such that

sup
ε>0

ε ∥uε∥2L2(0,T ;V 3) ≤ c.

2.3 Apriori estimates of ∂tun

Time derivative in our setting can be bounded very easily. At this moment, we will
not estimate its norm in Υ∗. A bound in Ψ∗, where

Ψ = Lr
(
0, T ;V 3

)
,

will be sufficient for passing to the limit n → ∞.
Note the fact that with (2.5) at our disposal, we are allowed to pair the equation

with Pnφ of an arbitrary φ ∈ V 3. Therefore, we have for any v ∈ Ψ∫ T

0
(∂tun,Pnv) dt

=

∫ T

0

(
(f ,Pnv)− ε ⟨⟨un,Pnv⟩⟩ − (S(Dun),∇x Pnv)− (un ⊗ un,∇x Pnv)

)
dt. (2.11)

Considering orthogonality of {wj} in H and V 3, we have both∫ T

0
(∂tun,Pnv) dt =

∫ T

0
(∂tun,v) dt and

∫ T

0
⟨⟨un,Pnv⟩⟩ dt =

∫ T

0
⟨⟨un,v⟩⟩ dt.

We are now prepared to plunge ourselves into estimates of the terms constitut-
ing (2.11). In the following, we will make good, yet silent, use of classical Sobolev
embeddings.

• By Hölder’s inequality and (1.4)∣∣∣∣∫ T

0
(f ,Pnv) dt

∣∣∣∣ ≤ c5 ∥f∥2 ∥v∥Ψ .

• By means of Hölder’s inequality itself∣∣∣∣∫ T

0
ε ⟨⟨un,v⟩⟩ dt

∣∣∣∣ ≤ ε ∥un∥L2(0,T ;V 3) ∥v∥Ψ .

Recall here that ε1/2 ∥un∥L2(0,T ;V 3) is bounded, so there is no harm relying on the
V 3-regularity at all.

• Dealing with
∫ T

0
(S(Dun),∇x Pnv) dt is similarly simple due to V 3-continuity of

Pngiven in (1.5):∣∣∣∣∫ T

0
(S(Dun),∇x Pnv) dt

∣∣∣∣
≤
∫ T

0

(
ν0 ∥Dun∥2 ∥∇x Pnv∥2 + ν1 ∥Dun∥r−1

r ∥∇x Pnv∥r
)
dt

≤ c6 ∥un∥Lr(0,T ;Vr)
∥Pnv∥Lr(0,T ;Vr)

≤ c7 ∥un∥Lr(0,T ;Vr)
∥v∥Ψ .

(2.12)
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• Even the convective term is estimated painlessly. We will investigate the worst
case, i.e. r < 3. Note that 6/(5r−6) ≤ 1:∣∣∣∣∫ T

0
(un ⊗ un,∇x Pnv) dt

∣∣∣∣ ≤ ∫ T

0
∥un∥22r

r−1
∥∇x Pnv∥r dt

≤ c8

∫ T

0
∥un∥

10r−18
5r−6

2 ∥un∥
6

5r−6

1,r ∥∇x Pnv∥r dt

≤ c9

∫ T

0

(
1 + ∥un∥r−1

1,r

)
∥∇x Pnv∥r dt (2.13)

≤ c10 ∥v∥Ψ .

Everything being taken into account and utilizing (2.9), we have obtained:

sup
n∈N

∥∂tun∥Ψ∗ < ∞. (2.14)

Before moving on to new estimates, let us write down one more observation stemming
from the calculations above:

sup
n∈N

( ∥Pndivx S(Dun)∥Ψ∗ + ∥Pndivx(un ⊗ un)∥Ψ∗) < ∞. (2.15)

2.4 Apriori estimates for improved regularity

A great advantage of the equation (2.3) is that, unlike the original problem (2.2), it
can be paired with (or “tested” by) the time derivative. Given that ∂tun(t) ∈ V 3 for
all t ∈ [0, T ] by definition, it is evidently an admissible function (in the sense of
testability). On account of this fact, we will include into the approximation scheme
also uniform bounds in

L∞ (δ, T ;Vr) ∩
1

ε
L∞ (δ, T ;V 3

)
for un (see the eccentric notation introduced in (2.10)) and in

L2 (δ, T ;H)

for ∂tun(t), where δ > 0 is arbitrarily small.
Before the estimates commence, we first introduce S , the potential of S:

S : R3×3 −→ R

X 7−→ ν0
2
|X|2 + ν1

r
|X|r .

Clearly ∇S (X) = S(X). For the sake of avoiding visual confusion, we will replace
∇S with ∂XS , so that we have ∂XS (Du) = S(Du).

Having been got acquainted with S , we are prepared to begin with an approach
whose gist originates from [9]. As it has already been hinted, we apply (2.11) with
v = ∂tun. Remember Pn∂tun = ∂tun.

∥∂tun∥22 + ε ⟨⟨un, ∂tun⟩⟩+ (S(Dun),D∂tun)− (un ⊗ un,∇x∂tun) = (f , ∂tun). (2.16)

Defining an auxiliary quantity

Yn(t) = 1 +
ε

2
9un(t)92 +

∫
Ω
S (Dun(t)) dx, t ∈ (0, T ), (2.17)
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we observe Yn(t) ≥ 1 and

Y ′
n = ε ⟨⟨un, ∂tun⟩⟩+ (S(Dun),D∂tun) .

Since Korn’s and Hölder’s inequality imply

c11Yn(t) ≤ 1 + ε9un(t)92 + ∥∇xun(t)∥rr ≤ c12Yn(t), (2.18)

boundedness of Yn ensures boundedness of ε1/29un9 and ∥∇xun∥r in turn. We will
pursue the former, i.e. bounding Yn. Note here two crucial observations:

(i) Thanks to (2.9) we have

sup
n∈N

∥Yn∥L1(0,T ) < ∞. (2.19)

(ii) The same apriori estimates warrant for any δ > 0 and n ∈ N existence of some
tn ∈ [0, δ] such that

sup
n∈N

Yn(tn) = Y0 < ∞. (2.20)

Y0 may, obviously, worsen with diminishing δ. Note also that in the event of
u0 ∈ V 3, all tn may be set zero due to (1.5).

The next step will be reached by two simple estimates:

• Due to Hölder’s and Young’s inequality:

|(f , ∂tun)| ≤
1

4
∥∂tun∥22 + ∥f∥22 . (2.21)

• Observing

divx(u⊗ v) = (u ·∇x)v + (divx u)v,

with divx un = 0 we have

(un ⊗ un,∇x∂tun) = − (divx(un ⊗ un), ∂tun)

= − ((un·∇x)un, ∂tun)− ((divx un)un, ∂tun)

= − (∂tun ⊗ un,∇xun) .

Like in the previous point, we estimate

|(∂tun ⊗ un,∇xun)| ≤
1

4
∥∂tun∥22 + ∥un∥22r

r−2
∥∇xun∥2r . (2.22)

Inserting (2.17), (2.21) and (2.22) into (2.16) produces

1

2
∥∂tun∥22 + Y ′

n ≤ ∥un∥22r
r−2

∥∇xun∥2r + ∥f∥22 . (2.23)

The major obstacle here is, of course, the term ∥un∥22r/(r−2)
. Supposing we wanted to

be unadventurous, we could resort to its estimating by means of 9un9 but, again, the
resultant bound would undesirably worsen with fading ε.

The course of action will fork into two branches, depending on the value of r.
Both follow the very same lines, although due to certain subtleties, they have to stand
separately.
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r ≥ 3: Sobolev embedding Vr ↪→ L
2r
r−2 (Ω,R3) and Poincaré’s inequality yield

∥un∥22r
r−2

∥∇xun∥2r ≤ c13 ∥∇xun∥4r , (2.24)

and inserting this result into (2.23) and invoking (2.18) gives

Y ′
n ≤ c14Y

4
r
n + ∥f∥22 .

If 4/r ≤ 1 then Y
4
r
n ≤ Yn. Otherwise multiply the inequality by Y 1− 4

r and bear in
mind this quantity is bounded from above by 1. In either case we obtain

d

dt
Y β
n ≤ c15Yn + c16 ∥f∥22 , (2.25)

where β = 1 in the former case and β = 2 − 4/r in the latter. Come what may,
β ∈ (0, 1]. Next integrate (2.25) from tn to t, while recollecting (2.19) and (2.20):

sup
t∈(0,T )

Y β
n (t) ≤ Y0 +

∫ T

0

(
c17Yn + c18 ∥f∥22

)
dt ≤ c19, (2.26)

where c19 does not depend on n, wherefore the supremum may be taken also
over all n ∈ N. That amounts to bounding ∥un∥Vr

and ε9un92. The remaining
bound on ∂tun then follows from integration of (2.23) between δ and T , while
applying (2.18), (2.24) and (2.26).

r < 3: This option suggests to invoke

Vr ↪→ L
3r
3−r (Ω).

The fact that r ≥ 5/2 also guarantees

3r

3− r
≥ 2r

r − 2
.

The weaker assumption on r from Remark 2.7 actually stemmed from this con-
dition. Using usual interpolation and (2.9), we obtain

∥un∥22r
r−2

≤ c20 ∥un∥1−α
2 ∥∇xun∥αr ≤ c21 ∥∇xun∥αr ,

where α = 6
5r−6 ∈ (0, 1). Like before, hence we infer

Y ′
n ≤ c22 ∥∇xun∥

10r
5r−6
r + ∥f∥22 ≤ c23Y

10
5r−6
n + ∥f∥22 .

To conclude, multiply the inequality by Y
5r−16
5r−6 , which is again less or equal to 1

thanks to −1 < 5r−16
5r−6 < 0.

d

dt
Y

1+ 5r−16
5r−6

n ≤ c24Yn + c25 ∥f∥22 .

The rest would be reasoned in the same manner as in the preceding variant.
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2.5 Passing to limit

Now it is time to finally utilize all the uniform estimates we have deduced so far.
Firstly, reflexivity of Υ and (2.9) guarantee existence of u ∈ Υ such that a subsequence
of {un}, without loss of generality the original sequence, fulfills

un −→ u weakly in Υ. (2.27)

Secondly, invoking Banach-Alaoglu theorem and the bounds (2.14) and (2.15), we are
presented with v, F , G ∈ Ψ∗ satisfying (modulo subsequence again)

∂tun −→ v

Pndivx S(Dun) −→ F

Pndivx(un ⊗ un) −→ G

weakly-∗ in Ψ∗.

Thirdly, with the help of the same theorem, the promised higher regularity holds true
as well:

u ∈ L∞ (δ, T ;Vr) ∩ L∞ (δ, T ;V 3
)
,

v ∈ L2 (δ, T ;H)

for any δ > 0, with δ = 0 provided u0 ∈ V 3.
It is not immediately obvious that ∂tu = v. Nevertheless, showing it is rather

simple. Let φ ∈ C∞
c (0, T ;V). Then

⟨∂tun,φ⟩Ψ∗,Ψ −→ ⟨v,φ⟩Ψ∗,Ψ

by weak-∗ convergence and at the same time by definition and (2.27)

⟨∂tun,φ⟩Ψ∗,Ψ = −
∫ T

0
(un, ∂tφ) dt −→ −

∫ T

0
(u, ∂tφ) dt = ⟨∂tu,φ⟩Ψ∗,Ψ.

Hence ∂tu = v as elements of Ψ∗.
By reason of Υ ↪→ L2(0, T ;Vr) and Ψ∗ ↪→ Lr′(0, T ; (V 3)∗), we may apply Aubin-

Simon lemma 1.8 with the space triplet Vr ↪→↪→ H ↪→ (V 3)∗ and suppose

un −→ u in Lr(0, T ;H),

un −→ u a.e. in (0, T )× Ω.
(2.28)

Convergence on the part of f is clear since
∫ T
0 (Pnf ,v) dt →

∫ T
0 (f ,v) dt for any

v ∈ Υ ⊃ Ψ owing to Pnv → v in L2(Ω). Finally,
∫ T
0 ⟨⟨un,v⟩⟩ dt →

∫ T
0 ⟨⟨u,v⟩⟩ dt for

any v ∈ Υ by reason of
∫ T
0 ⟨⟨· ,v⟩⟩ dt ∈ Υ∗. On the whole, we have reached an equality

holding for any v ∈ Ψ:

⟨∂tu,v⟩Ψ∗,Ψ +

∫ T

0
ε ⟨⟨u,v⟩⟩ dt− ⟨F,v⟩Ψ∗,Ψ + ⟨G,v⟩Ψ∗,Ψ =

∫ T

0
(f ,v) dt.

Next we will show ∂tu ∈ Υ∗, for which it evidently suffices to establish the same
for F and G. As far as G is concerned, recall (2.13) to readily deduce

sup
n∈N

∥divx(un ⊗ un)∥(Lr(0,T ;Vr))
∗ < ∞. (2.29)

We may hence suppose divx(un⊗un) → G̃ weakly-∗ in (Lr(0, T ;Vr))
∗. Since G̃ = G

on a dense set (see Lemma 1.11) of Υ
d
↪→ Lr(0, T ;Vr), we have G ∈ (Lr(0, T ;Vr))

∗. The
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argument with F would be quite analogous with recollection of (2.12). Accordingly,
∂tu ∈ Υ∗ and u ∈ C([0, T ];H) by Theorem 1.10.

There is apparantly still much to prove before existence can be triumphantly an-
nounced. The main task is to show

⟨F,v⟩Υ∗,Υ = −
∫ T

0
(S(Du),∇xv) dt

⟨G,v⟩Υ∗,Υ = −
∫ T

0
(u⊗ u,∇xv) dt

v ∈ Υ.

Before getting down to verifying this, however, we will first have a look at one more
kind of convergence that might be required of un. Recalling Theorem 1.9 with V =H ,
we know that its first assumption is satisfied. As for the second, let the countable
dense set be linear combinations of wj with rational coefficients. For the sake of
more comprehensible notation, the spatial argument will be shamefully omitted. Let
0 ≤ t1 < t2 ≤ T :

|(un(t2),wj)− (un(t1),wj)| ≤
∫ t2

t1

|(∂tun(s),wj)| ds ≤ λ
− 1

2
j

∫ t2

t1

∥∂tun(s)∥(V 3)∗ ds

≤ c26 ∥∂tun∥Ψ∗ |t2 − t1|
1
r ≤ c27|t2 − t1|

1
r .

We exploited (2.14) in the last inequality. The estimate may possibly worsen with in-
creasing j but it does not bother us. For a fixed j the real-valued functions (un(t),wj)
are equicontinuous on (0, T ). Consequently, above and over what we have told about
u, we may also assume

(un(t),v) ⇒ (u(t),v) on [0, T ] (2.30)

for any v ∈ H .

2.6 Attainment of the initial condition

As even this point will turn out quite helpful in a short time, we present it before
convergence of nonlinearities too.

Since u ∈ C([0, T ];H), the task reduces to showing u(0) = u0 a.e. in Ω. From
(2.30) we know (un(0),u(0) − u0) → (u(0),u(0) − u0), n → ∞. At the same time,
un(0) = Pnu0 → u0 in H , n → ∞. Therefore (u0,u(0) − u0) = (u(0),u(0) − u0),
which is actually tantamount to u(0) = u0 a.e. in Ω.

2.7 Convergence of the convective term

In order to show ⟨G,v⟩Υ∗,Υ = −
∫ T
0 (u⊗ u,∇xv) dt, v ∈ Υ, we will avail ourselves of

verifying∫ T

0
(un ⊗ un,∇xv) dt −→

∫ T

0
(u⊗ u,∇xv) dt, n −→ ∞, for any v ∈ Υ. (2.31)

According to the discussion below (2.29), this is sufficient. We will be so bold as to pair
with v ∈ Lr(0, T ;Vr). Given that (un⊗un) → (u⊗u) a.e. in (0, T )×Ω, utilizing a weak
version of dominated convergence theorem, i.e. Lemma 6.2, presents itself. We only
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need to prove supn ∥un∥L2r′ ((0,T )×Ω) < ∞. Like once before in (2.13), assume without
loss of generality r < 3, for that represents the scenario with worse regularity.∫ T

0

∫
Ω
|un|

2r
r−1 dx dt ≤ c28

∫ T

0
∥un∥

5r−9
5r−6

· 2r
r−1

2 ∥un∥
3

5r−6
· 2r
r−1

1,r dt

≤ c29

∫ T

0

(
1 + ∥un∥r1,r

)
dt ≤ c30

due to apriori estimates and 6
(5r−6)(r−1) ≤ 1. Hence the convergence is assured by

Lemma 6.2.

2.8 Convergence of stress tensor: a cunning variant

Our usual scruples about summoning V 3-regularity notwithstanding, it would be a
shame to not present a streamlined proof of ⟨F,v⟩Υ∗,Υ = −

∫ T
0 (S(Du),∇xv) dt, v ∈ Υ,

which is possible only due to the ε-term. Like in the previous section, we will concen-
trate foremost on showing∫ T

0
(S(Dun),Dv) dt −→

∫ T

0
(S(Du),Dv) dt for any v ∈ Υ. (2.32)

Enrichment with Pnwould be analogous to what follows (2.29), like above. A sine qua
non here will be Lemma 6.2 again.

On account of V 3 ↪→↪→ Vr, Aubin-Simon lemma actually lets us assume

un −→ u in L2(0, T ;Vr),

∇xun −→ ∇xu a.e. in (0, T )× Ω,

and therefore

S(Dun) −→ S(Du) a.e. in (0, T )× Ω.

Since for any φ ∈ Lr((0, T )× Ω,R3×3) we have (see 2.13 for greater clarity)∣∣∣∣∫ T

0
(S(Dun), φ) dt

∣∣∣∣ ≤ c31 ∥un∥Lr(0,T ;Vr)
∥φ∥Lr((0,T )×Ω,R3×3)

≤ c32 ∥φ∥Lr((0,T )×Ω,R3×3) ,

(2.33)

we obtain from Lemma 6.2∫ T

0
(S(Dun), φ) dt −→

∫ T

0
(S(Du), φ) dt for any φ ∈ Lr((0, T )× Ω,R3×3). (2.34)

Bringing into play common knowledge Lr((0, T ) × Ω,R3×3) = Lr(0, T ;Lr(Ω,R3×3)),
(2.32) holds true as a special case of (2.34).

2.9 Convergence of stress tensor: an ε-independent variant

When longing for independence from ε, we must have recourse to what is known as
the Minty’s trick. To begin with, recall (2.33), which allows us to write divx F instead
of F (so that now, in fact, F ∈ Lr′(0, T ;Lr′(Ω,R3×3))). As u has become an admissible
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test function, let us test with it the equation we have nurtured so far. We cannot do
without Theorem 1.10 anymore.

1

2
∥u(T )∥22 −

1

2
∥u(0)∥22 + ε

∫ T

0
9u92 dt+ ⟨F,∇xu⟩Υ∗,Υ −

∫ T

0
(u⊗ u,∇xu) dt

=

∫ T

0
f ·u dt. (2.35)

The last term on the left is zero by (2.8) and ⟨F,∇xu⟩Υ∗,Υ = ⟨F,Du⟩Υ∗,Υ from symme-
try of S(Dun). At the same time, integration of (2.7) yields

1

2
∥un(T )∥22 −

1

2
∥un(0)∥22 + ε

∫ T

0
9un92 dt+

∫ T

0
(S(Dun),Dun) dt =

∫ T

0
f ·un dt. (2.36)

A computation with X,Y ∈ R3×3 and Zs = Y+ s(X− Y) reveals

S(X)− S(Y) =
∫ 1

0

d

ds
S(Zs) ds

=

(∫ 1

0

(
ν0 + ν1|Zs|r−2

)
I⊗ I+ ν1(r − 2)|Zs|r−4Zs ⊗ Zs ds

)
(X− Y).

(2.37)

And so, taking v ∈ Υ arbitrary,

0 ≤
∫ T

0
(S(Dun)− S(Dv),Dun − Dv) dt

=

∫ T

0
(S(Dun),Dun) dt−

∫ T

0
(S(Dun),Dv) dt−

∫ T

0
(S(Dv),Dun − Dv) dt.

Next, insert (2.36):

1

2
∥un(T )∥22 −

1

2
∥un(0)∥22 + ε

∫ T

0
9un92 dt

≤
∫ T

0
f ·un dt−

∫ T

0
(S(Dun),Dv) dt−

∫ T

0
(S(Dv),Dun − Dv) dt.

Let n → ∞. From (2.30) it follows ∥u(T )∥2 ≤ lim infn ∥un(T )∥2 and likewise with∫ T
0 9un92 dt. Using further strong convergence of the initial conditions and weak

convergence in the rest, we obtain

1

2
∥u(T )∥22 −

1

2
∥u(0)∥22 + ε

∫ T

0
9u92 dt

≤
∫ T

0
f ·u dt− ⟨F,Dv⟩Υ∗,Υ −

∫ T

0
(S(Dv),Du− Dv) dt.

Finally, compare the inequality with (2.35):

0 ≤ ⟨F,Du⟩Υ∗,Υ − ⟨F,Dv⟩Υ∗,Υ −
∫ T

0
(S(Dv),Du− Dv) dt.

In other words

0 ≤ ⟨F − S(Dv),Du− Dv⟩Υ∗,Υ.
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Setting v = u− µφ, µ > 0, φ ∈ Υ arbitrary, the inequality takes on the form

0 ≤ µ⟨F − S(Du− µDφ),Dφ⟩Υ∗,Υ.

The proof is finished with division by µ and sending it to zero. As φ was arbitrary, we
have F = S(Du) (in the sense of Υ∗). Notice that we would have done no harm picking
test functions from Lr(0, T ;Vr) instead of only Υ as the higher regularity conferred in
the latter space was not used.

2.10 Uniqueness

The last step of our grand theorem consists of verifying that there cannot exist any
other solution save u. The property of possible solutions to serve as testing functions
in the weak formulation (2.2) will prove indispensable here.

Let u and v be two weak solutions and w = u − v. We will insert u and v into
(2.2), while tested by w. After subtraction of the resultant identities and recollection
of Theorem 1.10, we obtain an equality holding for a.e. t ∈ (0, T ):

1

2

d

dt
∥w∥22 + ε9w92 +(S(Du)− S(Dv),Du− Dv) = (u⊗ u− v ⊗ v,∇xw). (2.38)

Combining (2.37) with Korn’s inequality, we infer

(S(Du)− S(Dv),Du− Dv) ≥ c33 ∥∇xw∥22 .

We may carry on inserting this into (2.38):

1

2

d

dt
∥w∥22 + ε9w92 +c33 ∥∇xw∥22 ≤ (u⊗ u− v ⊗ v,∇xw)

= (u⊗w +w ⊗ v,∇xw)

= (u⊗w,∇xw),

(2.39)

where we used (2.8) in the last equality. Next, Green’s theorem and acute observation
divulge

(u⊗w,∇xw) = −(divx(u⊗w),w) = −((w·∇x)u,w) = −(w ⊗w,∇xu). (2.40)

Not even here will we want to break what has become a tradition, i.e. avoiding un-
needed use of V 3-regularity. Therefore, the best we can require of ∇xu is belonging
into Lr(Ω,R3×3) and the following Hölder’s inequality will take that into account.

|(w ⊗w,∇xu)| ≤ ∥w∥22r
r−1

∥∇xu∥r .

Employing usual interpolation, continuous embedding, Poincaré’s and Young’s in-
equalities yield

∥w∥22r
r−1

∥∇xu∥r ≤ ∥w∥
2r−3

r
2 ∥w∥

3
r
6 ∥∇xu∥r ≤ c34 ∥w∥

2r−3
r

2 ∥∇xw∥
3
r
2 ∥∇xu∥r

≤ c33 ∥∇xw∥22 + c35 ∥w∥22 ∥∇xu∥
2r

2r−3
r .
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After insertion of this result into (2.39) we finally get

d

dt
∥w∥22 + ε9w92 ≤ c36 ∥w∥22 ∥∇xu∥

2r
2r−3
r . (2.41)

We will find this form with ε9w92 useful in the future. Because r ≥ 5/2 guarantees

time integrability of ∥∇xu∥
2r

2r−3
r , the proof is finished using Gronwall’s inequality:

∥w(t)∥22 ≤ ∥w(0)∥22 exp

(
c36

∫ t

0
1 + ∥∇xu(s)∥rr ds

)
. (2.42)

2.11 Recapitulation

The existence theorem has thus been successfully proven. Along the way we tried
persistently to keep out of calling down ε-induced regularity of the solution. In fact,
under closer look it would now be very easy to prove existence and uniqueness for the
case ε = 0 (see Remark 2.6). Without the requirement of uniqueness, we could have
taken r ≥ 12/5, and if we did not want solution to possess higher regularity guaranteed
in statement of the existence theorem, even r ≥ 11/5 would be adequate. For a more
general treatment of the problem without any ε-term, see [9], chapter 5.
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3. Solution semigroup
In this chapter, we will focus on the notions of dynamical systems and attractors. Still,
at heart remains the model whose solution we constructed in the previous chapter.
As such, new definitions will serve only as starters for proofs, which are to show
that our model possesses the given property. The exposition follows closely [6]. In
reality, the ε-term, by which our models differs from one investigated in the book, is
very well behaved in terms of its not interfering with any of the beneficial properties
manifested by the model lacking any ε. The list of presented notions tries by no means
to be exhaustive, it offers only the minimum necessary for upcoming procedures. For
getting a better insight to the theory of dynamical systems, consult e.g. the cited source
or [10].

3.1 Dynamical systems

Definition 3.1 Let X be a Banach space or its closed subset. We call the family of
operators S(t) : X → X , t ≥ 0, a semigroup provided

(i) S(0)x = x,

(ii) S(t+ s)x = S(t)S(s)x for any x ∈ X and s, t ≥ 0.

If, in addition, the mapping S(·)· : [0,∞) × X → X is continuous, we call the couple
(S(t), X) a dynamical system.

Note that due to uniqueness of solutions for our model, it gives rise to a so-called
solution semigroup on H defined as S(t)u0 = u(t), where u is the unique solution with
the initial condition u0. In addition, this solution semigroup happens to be also a
dynamical system. Indeed, if tn → t and un

0 → u0 in H , we have

∥S(tn)un
0 − S(t)u0∥2 ≤ ∥S(tn)un

0 − S(tn)u0∥2 + ∥S(tn)u0 − S(t)u0∥2 .

The first term tends to zero by (2.42) and ∇xu ∈ Lr((0, T )×Ω), where u is the solution
with the initial condition u0. The second follows from continuity of S(·)u0 on [0, T ].

Definition 3.2 Let {S(t), t ≥ 0} be a semigroup on X . We term a set B ⊂ X

• positively invariant, if S(t)B ⊂ B for all t ≥ 0. If inclusion may be replaced with
the set equality for all t ≥ 0 then B is called invariant.

• uniformly absorbing, if for every bounded E ⊂ X there is a time t∗ ≥ 0 such that
S(t)E ⊂ B for all t ≥ t∗.

A fundamental concept of the entire work is that of a global and exponential at-
tractor.

Definition 3.3 We say a dynamical system (S(t), X) admits the global attractor, if there
is A ⊂ X that

(i) is compact in X ;

(ii) is invariant;
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(iii) attracts bounded sets of X , i.e. for every δ > 0 and every bounded B ⊂ X there
is t∗ ≥ 0 such that S(t)B ⊂ A+B(0, δ) for all t ≥ t∗.

Notice that the definite article before global attractor is in place, for its properties
bestow the quality of uniqueness upon it. Before moving on to yet another sort of
attractor, we have to first define what is known as fractal dimension.

Definition 3.4 Let A be a relatively compact subset of X . The fractal dimension of A is
defined as

dimX
fA = lim sup

δ→0+

logNX(A, δ)

− log δ
,

where NX(A, δ) denotes the smallest number of balls with radius δ necessary for cov-
ering A.

Lastly we introduce a so-called exponential attractor. In comparison with the
global attractor it may be “larger” but, on the other hand, we have control over its
rate of attraction. First and foremost, nonetheless, this kind we will treat here. It can
be shown that existence of an exponential attractor entails that of the global attractor
([6], Theorem 2.1).

Definition 3.5 We say a dynamical system (S(t), X) admits an exponential attractor,
assuming there exists M ⊂ X that

(i) is compact in X ;

(ii) is positively invariant;

(iii) attracts bounded sets of X exponentially, i.e. for every B ⊂ X there is C > 0
such that S(t)B ⊂ M + B(0, Ce−γt) for all t ≥ 0, where γ = γ(M) is a constant
independent of B;

(iv) has a finite fractal dimension.

3.2 Absorbing set

From now on, let {S(t)}t≥0 = (S(t),H) be the solution semigroup arising from the
system (2.1). Like before and in most cases at the later time, we will write u(t) instead
of u(t, ·).

Theorem 3.6 There exists a compact set B ⊂ H that is positively invariant and uniformly ab-
sorbing for {S(t)}t≥0. Furthermore, for solutions u with initial conditions in B the following
estimates hold true: for a fixed T > 0:

(i) sup
u∈B

(
ε9u92 + ∥∇xu∥r

)
≤ c1;

(ii)
∫ T

0
∥∂tu(t)∥22 dt ≤ c2.

The bounding constant c2 is uniform for all solutions starting from B.
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Proof. Recalling definition of (2.1) and Theorem 1.10, we test with the solution itself to
obtain an inequality holding for a.e. t ∈ [0, T ]:

1

2

d

dt
∥u(t)∥22 + ε9u(t)92

2 +ν0 ∥Du(t)∥22 + ν1 ∥Du(t)∥rr ≤ ∥f∥2 ∥u(t)∥2 . (3.1)

By Korn’s and Poincaré’s inequality:

d

dt
∥u(t)∥22 + c3 ∥u(t)∥22 ≤ 2 ∥f∥2 ∥u(t)∥2

d

dt
∥u(t)∥22 ≤ ∥u(t)∥2 (2 ∥f∥2 − c3 ∥u(t)∥2) .

Hence, setting c0 = 1 + 2c−1
3 ∥f∥2 we have a positively invariant and uniformly ab-

sorbing set B0 = B(0, c0) (as a ball in H). The sought-after set will be defined as

B =
∪
t≥1

S(t)B0

H

.

The rest of the proof will take verification of the set’s announced properties. Uniform
absorption is checked effortlessly. As for positive invariance, the set B′ =

∪
t≥1 S(t)B0

fulfills the property obviously. Furthermore, S(t) : B0 → B0 is continuous for every
t > 0. This result is due to (2.9), (2.42) and weak lower semicontinuity of the norm.
In other words

∫ T
0 ∥∇xu(t)∥rr dt is bounded for L2-bounded initial conditions. Subse-

quently, we infer

S(t)B = S(t)B′ ⊂ S(t)B′ ⊂ B′ = B,

with all closures taken in H .
Properties (i) and (ii) will first be investigated only on B′. Right from its definition

and local higher regularity of solutions, we know that every solution starting in B′

belongs to L∞ (0, T ;Vr) ∩ L∞ (0, T ;V 3
)

with time derivative in L2(0, T ;H). Since this
regularity was in fact deduced from L2-norm of the initial condition (not mentioning
T and other static data, see Note 2.4), we obtain a uniform bound in these spaces for
all solutions originating in B′.

Now let u(t) be a solution with the initial value in B. There are un(0) ∈ B′ con-
verging to u(0) in H and from (2.42) we even know that the corresponding solutions
un converge to u strongly in C([0, T ];H). As un clearly satisfies (i) and (ii), so does u
by Banach-Alaoglu theorem and weak lower semicontinuity of the norm.

Finally, B is compact from Vr ↪→↪→ H and (i). �

Note 3.7 The definition of B0 conspicuously warrants for any u0 existence of a time
t∗ = t∗(∥u0∥2) such that S(t)u0 ∈ B for every t ≥ t∗. Therefore, B seems like a
promising candidate for an exponential attractor. This, however, we cannot determine
for there is no telling if dimH

f B < ∞. Expectedly enough, the sought-after exponential
attractor will in the end turn out to be a subset of B.

We conclude this section with a few simple observations about further properties
of B indispensable during our forthcoming advance.

Corollary 3.8 Let u,v be two solutions starting from B, let T > 0 and t, t1, t2 ∈ [0, T ]. Then

(i) ∥u(t)− v(t)∥2 ≤ c4 ∥u(0)− v(0)∥2 ;
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(ii) ∥u(t1)− u(t2)∥2 ≤ c5 |t1 − t2|
1/2 ;

(iii) ε

∫ T

0
9u(t)− v(t)92 dt ≤ c6 ∥u(0)− v(0)∥22 .

Again, the bounding constants are uniform for all solutions starting in B.

Proof. (i) is immediately obtained from (2.42) and Theorem 3.6 (i).
Recalling that we have set up the relation (2.41), it is now due integrating from 0

to T . Invoking Theorem 3.6 (i) once again, we reveal

ε

∫ T

0
9w(t)92 dt ≤ c7 ∥w(0)∥22 + c8

∫ T

0
∥w(t)∥22 ∥∇xu(t)∥

2r
2r−3
r dt

≤ ∥w(0)∥22
(
c7 + c9

∫ T

0
exp

(
c10

∫ T

0
1 + ∥∇xu(s)∥rr ds

)
dt

)
≤ c11 ∥w(0)∥22 .

In the second inequality we exploited (2.42) as well as boundedness of ∥∇xu(t)∥r in
time. Hence (iii) is proved.

In order to verify (ii), we make use of Theorem 3.6 (ii) and also Theorem 1.5. Sup-
pose t2 > t1:

u(t2) = u(t1) +

∫ t2

t1

∂tu(s) ds,

and thence

∥u(t2)− u(t1)∥2 ≤
∫ t2

t1

∥∂tu(s)∥2 ds ≤ |t2 − t1|
1/2

(∫ T

0
∥∂tu(s)∥22 ds

)1/2

≤ c12 |t2 − t1|
1/2 .

�

3.3 Differentiability

Definition 3.9 Let W be a (not necessarily open) subset of a Banach space X . We say
the mapping T : W → X is uniformly Fréchet differentiable (on W ) if there exists a family
of compact, linear operators {Lx : X → X; x ∈ W} such that

lim
δ→0+

sup
x,y∈W

0<∥x−y∥X<δ

∥T (y)− T (x)− Lx(y − x)∥X
∥y − x∥X

= 0.

Notice that due to the abandoned requirement for W being open, the operators Lx

may not be uniquely determined. This is the price to be paid for working on a com-
pact set B. We will apply the definition to seek an appropriate kind of a derivative of
S(t) : B → B, which will, in the final chapter, impose bounds on the fractal dimension
of the exponential attractor. Now that we know what it should fulfill, we have yet to
offer a candidate, for which to prove the quality of being a uniform Fréchet derivative
of S(t).
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We will now heuristically deduce Gâteaux differential of the equation (2.1) with re-
spect to the initial condition in the direction ξ ∈ H . Less vaguely, fix u0 ∈ H and
rewrite (2.1) as

∂tu(t,x,u0) = F (u(t,x,u0),x)

divx u(t,x,u0) = 0

}
in (0, T )× Ω,

+ boundary conditions.

Next, fix ξ ∈ H and denote

U(t) = lim
δ→0

u(t,x,u0 + δξ)− u(t,x,u0)

δ
.

Assuming that all we do is correct and meaningful, U(t) is expected to satisfy a so-
called first variation equation:

∂t U = ∂uF(u,x)U
divx U = 0

}
in (0, T )× Ω,

U =
∂U
∂n

= ∆U = 0 on (0, T )× ∂Ω, (3.2)

U(0) = ξ in Ω.

Expanding F(u,x) as

F(u,x) = ε∆3u+ divx S(Du)− divx(u⊗ u)−∇x p+ f

reveals what ∂uF(u,x)U looks like, namely

∂uF(u,x)U = ε∆3 U + divx(∂DS(Du)DU)− divx(U ⊗ u)− divx(u⊗ U)−∇xq,
(3.3)

where

∂DS : R3×3 −→ R3×3×3×3

X 7−→
(
ν0 + ν1|X|r−2

)
I⊗ I+ ν1(r − 2)|X|r−4X⊗ X.

Before this informal intermezzo on the first variation equation has been brought to
its end, two remarks are in place. Firstly, the pressure term did not vanish like external
forces f . Even though it is explicitly a function (a distribution in fact) of the temporal
and spatial variables only, in reality, it is constructed from the weak solution itself.
Therefore, pressure is actually dependent on u and by this reason it left a descendant
in (3.3). Like in the original equation, we will deal with the term ∇xq in so far as
by saying that it disappears in the weak formulation but can be recreated from the
weak solution U . Keep in mind this disappearance takes place only when testing by
zero-divergence functions.

Secondly it will soon be useful to know how ∂DS(Du) act:

∂DS(Du)DU =
(
ν0 + ν1 |Du|r−2

)
·DU + ν1(r − 2) |Du|r−4 (Du⊗ Du) ·DU ,

∂DS(Du)DU : DU =
(
ν0 + ν1 |Du|r−2

)
|DU|2 + ν1(r − 2) |Du|r−4 (Du : DU)2 .

(3.4)

Thus we have a linear problem (3.2) to solve. Denoting U its solution, we will subse-
quently show that U(t) is a uniform Fréchet differential of S(t).
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Definition 3.10 We call the problem (3.2) the linearized equation on a neighbourhood of
u.

Although we should name it rather linearization of Ladyzhenskaya model with
a higher order perturbation, given that we investigate no other equation here, our
simplified designation ought not to be a source of any perplexion.

Definition 3.11 Let u be a fixed weak solution to (2.1) and ξ ∈ H . A function U will
be termed a weak solution to the linearized equation in a neighbourhood of u (3.2), if

U ∈ L2(0, T ;V 3), ∂t U ∈ L2(0, T ; (V 3)∗)

and for every v ∈ L2(0, T ;V 3) the following identity is satisfied:∫ T

0
⟨∂t U ,v⟩(V 3)∗,V 3 + ε ⟨⟨U ,v⟩⟩+ (∂DS(Du)DU ,Dv)− (u⊗ U + U ⊗ u,∇xv) dt = 0.

(3.5)

The initial condition is attained in the form

ξ = U(0) a.e. in Ω,

which is sensible as U ∈ C([0, T ];H) by Theorem 1.10.

Theorem 3.12 For any ξ ∈ H there exists a unique weak solution to the linearized equation
in a neighbourhood of u, where u starts from B.

Proof. The proof might follow the very lines of Theorem 2.5, only with some consid-
erable simplification such as linearity of all terms and boundedness of |Du| due to
Theorem 3.6 (i). Ergo, we dare to skip it. �

Remark 3.13 It is easy to see directly from the weak formulation (3.5) that apriori
estimates analogous to sections 2.2 and 2.3 are again accompanied by deleterious effect
of ε → 0+ on the norm of U and ∂t U in their native spaces. To add salt to injury, we
are not even able to secure bounds in less regular, yet still practical spaces such as
L2(0, T ;V2), liberated from ε. The reason is the necessity to control |Du| somehow,
which was done by means of an ε-dominated estimate.

Remark 3.14 Continuing in the tracks of analogy, it is worth reminding that for any
index set I the set {

ξα ∈ H; α ∈ I, sup
α

∥ξα∥2 < ∞
}

gives rise to a family of weak solutions to the linearized problem {(Uα, ∂t Uα); α ∈
I, Uα(0) = ξα}, which is bounded in L2(0, T ;V 3) × L2(0, T ; (V 3)∗). Consequently, by
Aubin-Simon lemma the set of solutions

A = {Uα;α ∈ I, Uα(0) = ξα}

is precompact in L2(0, T ;H).
Now, due to temporal continuity of solutions in H , it makes sense to ask whether

{Uα(T ); Uα ∈ A} is precompact in H . Positive answer would be guaranteed if the
mapping T : A → H , defined as T (Uα) = Uα(T ), was Lipschitz continuous, which we
will show presently. With regard to later applications and tantalising simplification,
we will require u to originate from B.

Generally speaking, this is only a brief glance into what is known as the method of
trajectories (see [6], chapter 2).
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Lemma 3.15 Let u starts in B. The mapping T is then Lipschitz continuous.

Proof. Let U ,V ∈ A, and set W = U − V . We will show ∥W(T )∥2 ≤ c13 ∥W∥L2(0,T ;H).
The bounding constant is of course universal for entire A. Subtracting the equalities
for U and V while tested by W yields

1

2

d

dt
∥W∥22 + ε9W92

2 +(∂DS(Du)DW,DW) = (u⊗W +W ⊗ u,∇xW)

= −(W ⊗W,∇xu)

a.e. in (0, T ). The last equality is thanks to (2.8) and (2.40). Invoking Theorem 3.6 (i)
and (3.4), we continue:

d

dt
∥W∥22 ≤ c14 ∥W∥22 .

By Gronwall inequality, for any 0 < s < T :

∥W(T )∥22 ≤ c15 ∥W(s)∥22 .

Finally, integrate over (0, T ):

∥W(T )∥2 ≤ c13 ∥W∥L2(0,T ;H) .

�

Uniqueness of solutions to the linearized problem again lets us introduce a solu-
tion semigroup {Lu(t)}t≥0 on H defined as Lu(t)ξ = U(t), where U is the unique weak
solution to the linearized equation on a neighbourhood of u with the initial condition
ξ. With this candidate for the pursued uniform Fréchet derivative of S(t), most effort
will be made to prove that it really is one. Be forewarned that ε > 0 will be crucial
here and the result cannot be shown for ε = 0 in the presented manner.

Theorem 3.16 Lu(t) is a uniform Fréchet derivative of S(t) on B for a.e. t > 0. In other
words

lim
δ→0+

sup
u0,v0∈B

0<∥u0−v0∥H<δ

∥S(t)v0 − S(t)u0 − Lu(t)(v0 − u0)∥H
∥v0 − u0∥H

= 0,

where u0 = u(0).

Proof. Lu(t) is evidently a linear operator in H . Compactness was actually corrobor-
rated in Remark 3.14 as there is no problem to set T = t.

Fix δ > 0 and v0 ∈ B such that 0 < ∥u0 − v0∥H < δ. Denote

v(t) = S(t)v0,

w(t) = v(t)− u(t),

U(t) = Lu(t)(v0 − u0),

η(t) = w(t)− U(t).

We will find β > 0 such that ∥η∥2 ≤ c16 ∥w(0)∥1+β
2 , where β and c16 do not depend on

the initial condition (or any other undesired quantity with the exception of ε, for that
matter). The statement will thus be proved. We may assume without loss of generality
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that t ∈ (0, T ). As η(s) ∈ V 3 a.e. in (0,T), we will make use of the pointwise alternative
of a weak solution in equations for v, u and U :

⟨∂tv,η⟩(V 3)∗,V 3 + ε ⟨⟨v,η⟩⟩+ (S(Dv),Dη) = (v ⊗ v,∇xη) + (f,η),

⟨∂tu,η⟩(V 3)∗,V 3 + ε ⟨⟨u,η⟩⟩+ (S(Du),Dη) = (u⊗ u,∇xη) + (f,η),

⟨∂t U ,η⟩(V 3)∗,V 3 + ε ⟨⟨U ,η⟩⟩+ (∂DS(Du)DU ,Dη) = (u⊗ U + U ⊗ u,∇xη)

almost everywhere in (0, T ). Next we subtract the second and the third equation from
the first one and also invoke Theorem 1.10 to handle the time derivative:

1

2

d

dt
∥η∥22 + ε9η9 +(S(Dv)− S(Du)− ∂DS(Du)DU ,Dη)

= (v ⊗ v − u⊗ u− u⊗ U − U ⊗ u,∇xη). (3.6)

We now have to foxily estimate the nonlinear terms

I = (S(Dv)− S(Du)− ∂DS(Du)DU ,Dη) ,
II = (v ⊗ v − u⊗ u− u⊗ U − U ⊗ u,∇xη) .

(3.7)

With help of the mean-value formula, we may write

S(Dv)− S(Du) = ∂DS(Du+ θ(Dv − Du))(Dv − Du), θ : (0, T )× Ω → (0, 1),

and combining with U = w − η, the term I will hence be treated as

I =

∫
Ω
∂DS(Du)Dη : Dη dx︸ ︷︷ ︸

I1

+

∫
Ω
(∂DS(Du+ θDw)− ∂DS(Du))Dw : Dη dx︸ ︷︷ ︸

I2

.

Korn’s inequality and (3.4) imply

I1 ≥ c17 ∥∇xη∥22 . (3.8)

As for I2, a computation with X,Y ∈ R3×3 yields

∂DS(X)− ∂DS(Y) =
∫ 1

0

d

ds
∂DS(Y+ s(X− Y)) ds.

Since V 3 ↪→↪→ V∞ and |∂DDS(X)| ≈ |X|r−3, invoking Theorem 3.6 (i) enables to bound
I2 as:

I2 ≤ c18 ε
(3−r)/2

∫
Ω
|Dw|2 |Dη| dx ≤ c17

2
∥∇xη∥22 + c19 ε

3−r∥∇xw∥44 . (3.9)

Let us now draw our attention to II . First, a slight readjustment is in place:

v ⊗ v = w ⊗w +w ⊗ u+ u⊗w + u⊗ u,

whence

v ⊗ v − u⊗ u− u⊗ U − U ⊗ u = w ⊗w + η ⊗ u+ u⊗ η.
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This form will be most convenient for the upcoming estimates. We are going to use
(2.8), Theorem 3.6 (i) and Poincaré’s inequality.

II = (w ⊗w + η ⊗ u+ u⊗ η,∇xη)

≤
∫
Ω

(
|w|2 |∇xη|+ |u| |η| |∇xη|

)
dx

≤ ∥w∥24 ∥∇xη∥2 + c20 ∥η∥2 ∥∇xη∥2

≤ c17
2

∥∇xη∥22 + c21 ∥∇xw∥44 + c22 ∥η∥22 .

(3.10)

Putting back together (3.6)–(3.10), we have obtained

1

2

d

dt
∥η∥22 + c17 ∥∇xη∥22 ≤ c17 ∥∇xη∥22 + c22 ∥η∥22 + c23 ε

3−r ∥∇xw∥44 ,

d

dt
∥η∥22 = c24 ∥η∥22 + c25 ε

3−r ∥∇xw∥44 .

The final series of steps begins with Gronwall’s inequality, while keeping in mind
η(0) = 0. The remainder rests on Theorems 3.6 (i) and Corollary 3.8 (i) and (iii):

sup
t∈[0,T ]

∥η(t)∥22 ≤ c26 ε
3−r

∫ T

0
∥∇xw(t)∥44 dt

≤ c26 ε
3−rsup ess

t∈[0,T ]
∥∇xw(t)∥22

∫ T

0
∥∇xw(t)∥2∞ dt

≤ c27 ε
3−rsup ess

t∈[0,T ]
∥∇xw(t)∥22

∫ T

0
9w(t)92

2 dt

≤ c28 ε
2−r∥w(0)∥22 sup ess

t∈[0,T ]
∥w(t)∥2 ∥∆w(t)∥2

≤ c29ε
(3−2r)/2∥w(0)∥32 .

In the third and the fifth inequality we recalled Sobolev’s imbeddings of V 3 and in the
fourth, the interpolation ∥∇xw∥22 ≤ ∥w∥2 ∥∆w∥2. We have thus discovered β = 1/2.
Note, however, that ε(3−2r)/2 → ∞ for ε → 0+. �
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4. Bounding the dimension
In the spirit of the existence theorem from chapter Solution, we have to first swerve
from the straight path and regale ourselves with a little basic information pertaining
to yet another function basis.

4.1 Eigenvalues of the Stokes operator

In section 1.4 we constructed an orthonormal basis in H , which, in addition, was also
an orthogonal basis in V 3. In a while we will make use of a similar set of functions,
forming an orthonormal basis in H and an orthogonal basis in V2. The procedure
how to find it would be completely analogous to that in the referred section, hence we
will mention only the starting point ultimately spawning the desired functions. The
problem posited is to find u ∈ V2 that for a fixed f ∈ H and any v ∈ V2 satisfies

(∇xu,∇xv) = (f ,v) .

Recall that (∇x· ,∇x·) is a scalar product on W 1,2
0 (Ω), inducing there a norm equivalent

to the original one and as such we may regard W 1,2
0 (Ω) as being innately equipped

with this “gradient norm”. Therefore, employing the very same reasoning as in pur-
suit of {wj}, we acquire a set {mj} with both desired properties and {κj}, tending
again monotonously to infinity and satisfying (κ−1

j ∇xmj ,∇xv) = (mj ,v) for any
j ∈ N and v ∈ V2. To nip confusion in the bud, κj corresponds to λ−1

j from the
above-mentioned section.

Unlike our {λj}, elements of {κj}, known as eigenvalues of the Stokes operator,
are well-documented in terms of their properties (see [2], Chapter 4). We will need
two of them, one elementary and the other via a citation only.

Lemma 4.1 The principal eigenvalue of the Stokes operator, κ1, satisfies the following two
properties:

(i) κ1 = min
{
∥∇xv∥22; v ∈ V2, ∥v∥2 = 1

}
;

(ii) κ1 is inversely proportional to |Ω|. In other words, κ1 can be made arbitrarily large by
means of shrinking Ω.

Proof. Let v ∈ V2 such that ∥v∥2 = 1. Since {mj} is an orthogonal basis in H , one has
∞∑
j=1

(mj ,v)
2 = 1. (4.1)

Similarly, {κ−1/2
j mj} is an orthonormal basis in V2 with the L2-gradient norm. Com-

bined with (κ−1
j ∇xmj ,∇xv) = (mj ,v) for every j ∈ N and (4.1), we have

∥∇xv∥22 =
∞∑
j=1

(κ
−1/2
j ∇xmj ,∇xv)

2 =

∞∑
j=1

κj(mj ,v)
2 ≥ κ1.

We reach the equality setting v = m1, whence (i) is proved. To conclude, we observe

κ1 = ∥∇xm1∥22 ≥ K ∥m1∥26 ≥ K |Ω|−2/3 ∥m1∥22 = K |Ω|−2/3 ,

where K1/2 is the constant from the Sobolev embedding W 1,2
0 (Ω) ↪→ L6(Ω), which is

scale invariant. Thus (ii) is verified too. �
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Note 4.2 In accordance with (2.2), replacing u(t, x) on Ω with u(t, αx) on α−1Ω for
α > 0 will not have any impinge on qualitative properties of the system. Subsequently
we may, without loss of generality, assume Ω is small enough so that to ensure κ1 ≥ 1.

Lemma 4.3 ([2], Theorem 4.11)
There exists a scale invariant constant K3 such that for every j ∈ N one has

κj
κ1

≥ K3 j
2/3.

We only remark that in a general dimension n, the estimate reads
κj
κ1

≥ Kn j
2/n.

4.2 Method of Lyapunov exponents

At long last we have reached the point of our utmost interest. Before we state the main
theorem whose assumptions for our model will be verified in the subsequent section,
some light should be cast on what the concept is all about. Since there is no point in
copying other books by chapter and verse, the introduction will only be motivational
and as such, bereft of rigor. What will matter is the said justification later on. Let an
interested reader consult [6] or other sources given in the bibliographical remarks on
the first page for getting a deeper understanding of the fuelling mechanisms.

The method of Lyapunov exponents is a powerful tool that, if accompanied by a
bit of more theory, provides us with a way to existence of an exponential attractor as
well as with bounds of its fractal dimension. Its core lies in a relatively simple obser-
vation about compact linear operators on Hilbert spaces. Such mappings image the
unit ball onto an ellipsoid with semiaxes shrinking to zero and such that the preim-
ages of its semiaxes are orthonormal. Hence we are able to deduce two things. Firstly,
n-dimensional cubes will be mapped on sets with well-known upper bounds of their
n-dimensional volume. Intuitively it is quite clear that the volume cannot be greater
than the product of the lengths of the n longest semiaxes of the ellipsoid. The fact is
also mathematically provable, indeed. Secondly, an ellipsoid with semiaxes shrinking
to zero can be covered with a well estimated number of balls, whose diamater is uni-
formly bounded from below by an arbitrarily small number. Therefore, so can be the
image of the unit ball under the mapping in question.

Now, if we have a uniformly Fréchet differentiable function on a subset of a Hilbert
space, then it behaves locally almost like a compact linear operator. In this way one is
capable of reaching the same two observations locally, which is enough due to the uni-
form nature of differentiability we have. Finally, let the function be further generalized
into a semigroup, not unlike the dynamical system of ours. Then also the correspond-
ing mappings assuring differentiability are in effect time-dependent. If it happens to
be proven that they image cubes from certain dimension higher on onto sufficiently
quickly dwindling sets, we could expect the discussed semigroup assumes over time
only a limitedly dimensional subset of its original domain. It really is the case and the
quality of quick dwindling is checked by a direct generalization of Liouville’s formula
that likewise, although precisely, expresses time evolution of volume.

Having absorbed this cursory tutorial whose full-fledged content constitutes sec-
tion 2.5 of [6], we can restore the mathematical precision by citing a couple of key
results from the same source.

The setting for the main theorem is as follows. We investigate an abstract evolutionary

30



problem on a Hilbert space X :

d

dt
u = F(u),

u(0) = u0 ∈ W,
(4.2)

with W a bounded and closed subset of X . Let the corresponding solution semigroup
(S(t),W ) be well-defined, i.e. there is a global, unique solution for every u0 ∈ W that
remains in W for all t ≥ 0. In addition, suppose there exists a ∈ (0, 1] such that for
every T > 0 we can find constants K1,K2 > 0 satisfying

∥S(t1)u0 − S(t2)v0∥X ≤ K1 ∥u0 − v0∥X +K2 |t1 − t2|a (4.3)

for all u0, v0 ∈ W and t1, t2 ∈ [0, T ].
Next, assume the first variation equation

d

dt
U =

d

du
F(u)U ,

U(0) = ξ ∈ X,

gives for any u, a solution to the original problem, rise to a correctly defined semigroup
(Lu(t), X). We will furthermore require U(t) ∈ Y for almost every t, where Y is a
Banach space densely and continuously embedded into X , and d

duF(u(t))ϕ ∈ Y ∗ for
any ϕ ∈ Y at almost every t.

Finally, we presuppose that Lu(t) is a uniform Fréchet derivative of S(t) on W for
almost every t > 0.

With the setting established, it is time to state the theorem ([6], Lemma 2.8 and
Theorem 2.9).

Theorem 4.4 Let there exist numbers A,B, σ, T > 0 such that the inequality

1

t

∫ t

0
sup
{ϕi}

k∑
i=1

⟨
d

du
F(u(s))ϕi, ϕi

⟩
Y ∗,Y

ds ≤ B −Akσ (4.4)

holds true for any t ≥ T , k ∈ N and any solution u of (4.2). The supremum is taken over all
families {ϕi} ⊂ Y that are orthonormal in X . Let m ∈ N be such that

m ≥
(
2B

A

)1/σ

.

Then the dynamical system (S(t),W ) admits an exponential attractor M satisfying

dimX
f M ≤ 3m+ 1

a
.

The rate of attraction γ (see Definition 3.5 (iii)) is bounded from below as follows:

γ ≥ log 48

max
{
T, mB log 192

} .
Note 4.5 As it might not be apparent at the very first sight, notice that quantities m
and γ are related proportionately, that is to say, the smaller m we take, the smaller the
lower bound on γ is. In other words, an attractor with a lower dimension is expected
to attract solutions at a slower rate and vice versa.
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4.3 Application to our model

This section will be devoted to verifying that our model (2.1) meets the assumptions
of Theorem 4.4. Despite the theorem’s relation only to the dynamical system (S(t),B),
we may extend the result to (S(t),H) owing to Note 3.7.

Mind that the model satisfies the setting completely with B = W ⊂ X = H and
Y = V 3. Condition (4.3) is guaranteed by Corollary 3.8. Some effort will have to be
made to show (4.4).

We only reiterate that we are not interested in precise bounds on the attractor di-
mension here, i.e. A, B and σ, in terms of equation data (Ω, ν0, r, etc.). After all, it is
not even possible due to our universal ci constants. What will matter, nevertheless,
is the fact that the bounds will not depend on ε, thence the dimension of our model’s
attractor is not affected in the process ε → 0+. Indeed, it does not imply the attractor
keeps its dimension even for ε = 0.

Now then, let us move on to the proof of (4.4).

Proof. Recalling (3.3), for any {vi}ki=1 ∈ V 3, {vi}ki=1 orthonormal in H , we express

1

t

∫ t

0

k∑
i=1

⟨
d

du
F(u(s))vi,vi

⟩
(V 3)∗,V 3

ds

=
1

t

∫ t

0

k∑
i=1

(
−ε9vi92 − (∂DS(Du)Dvi,Dvi) + (u⊗ vi + vi ⊗ u,∇xvi)

)
ds.

We have to estimate the terms under the sum:

• From (2.8) we traditionally observe

(vi ⊗ u,∇xvi) = 0. (4.5)

• In like fashion, we have already seen usage of Korn’s inequality and (3.4) to
deduce

−
k∑

i=1

(∂DS(Du)Dvi,Dvi) ≤ −
k∑

i=1

c0 ∥∇xvi∥22 . (4.6)

• The term (u⊗vi,∇xvi) will utilize usual interpolation, Hölder’s, Poincaré’s and
Young’s inequality and ∥vi∥2 = 1:

k∑
i=1

(u⊗ vi,∇xvi) ≤ ∥u∥15
k∑

i=1

∥vi∥ 30
13
∥∇xvi∥2

≤ c1 ∥∇xu∥ 5
2

k∑
i=1

∥∇xvi∥
6/5
2

≤ c1 ∥∇xu∥ 5
2
k

2/5

(
k∑

i=1

∥∇xvi∥22

)3/5

≤ c2 ∥∇xu∥
5/2
5
2

k +
c0
2

k∑
i=1

∥∇xvi∥22 .

(4.7)
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Recalling section 4.1 and the entities introduced therein, namely{mj} and {κj}, for
any i ∈ {1, . . . , k} we have

∥vi∥22 =
∞∑
j=1

(vi,mj)
2,

∥∇xvi∥22 =
∞∑
j=1

(∇xvi, κ
−1/2
j ∇xmj)

2 =

∞∑
j=1

κj(vi,mj)
2.

Since {κj} is a non-decreasing sequence and {(vi,mj)}∞j=1, i ∈ {1, . . . , k}, constitute
an orthonormal set in l2(R), we invoke algebraic Lemma 6.4 to further infer

k∑
i=1

∥∇xvi∥22 =
k∑

i=1

∞∑
j=1

κj(vi,mj)
2 ≥

k∑
i=1

κi. (4.8)

Next we apply κ1 ≥ 1 (see Note 4.2) and Lemma 4.3 to finalize this estimate as

k∑
i=1

κi ≥ κk1

k∑
i=1

κi
κ1

≥ c3

k∑
i=1

i
2/3 ≥ c4k

5/3. (4.9)

The last inequality is due to the integral approximation
∑k

i=1 i
2/3 ≥

∫ k
0 s2/3 ds.

Combining (4.5)–(4.9) and invoking Theorem 3.6 (i) yields

1

t

∫ t

0

k∑
i=1

⟨
d

du
F(u(s))vi,vi

⟩
(V 3)∗,V 3

ds ≤ 1

t

∫ t

0
c2 ∥∇xu∥

5/2
5
2

k − c5k
5/3 ds

≤ c6k − c5k
5/3

≤ B −Ak
5/3,

(4.10)

which was to be proven. �

Remark 4.6 With the primary task finished, we may yet try deducing a more explicit
form of A and B in terms of the viscosities ν0 and ν1 to corroborate the strength of
Theorem 4.4. We only remind that these two numbers are usually very small and so
their inverse values may be not quite amiable.

First, remembering the proof of Theorem 3.6, the diameter of B was of magnitude
∼ ν−1

0 , where the symbol “∼” purifies estimates from other data save ν0 and ν1.
Integrating the inequality (3.1) would reveal

1

t

∫ t

0
∥∇xu(s)∥rr ds ∼ ν−1

0 ν−1
1

for t large enough, with the right-hand side unaffected by t. Now, the estimate (4.6)
could replace c3 with ν0, which would make c5 from (4.7) ∼ ν−1

0 . Finally, inserting
all into (4.10), the integral term is ∼ ν−2

0 ν−1
1 and an easy computation divulges an

option B ∼
(
ν20ν1

)−5/2, which is naturally brought about by k5/3, and A unaffected by

viscosities altogether. All in all, the best estimates of dimension are ∼
(
ν20ν1

)−1/6.
Do not be deceived by an apparent absence of reliance on r. The worst possibility

we used for the estimates, i.e. r = 5/2, projected itself into σ = 5/3 and as such into the
bound of the fractal dimension as well.
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5. Epilogue
And so it came to pass that we managed to assure conditions for invoking the principal
Theorem 4.4. Even in spite of doing so without any dependency on the omnipresent
ε, some work has yet definitely to be done to show that the primordial model (i.e. case
ε = 0) enjoys an exponential attractor with an equally bounded fractal dimension.
A deterring example, suggesting that something could conceivably go wrong, is a
sequence of dilating lines in a plane. These obviously keep their fractal dimension
bounded but the limit set is not compact all the same.

A different matter is that the primordial model does possess an exponential at-
tractor (see [6], chapter 7), albeit its fractal dimension can be bounded only via less
efficient (though not less elaborate) manners such as the method of trajectories. The
fact of superior nature of the principle we used was taken wickedly for granted (with
the exception of Remark 4.6). It took place in a complete ignorance of bounding con-
stants ci. We entirely dismissed their precise form in terms of data hidden therein for
the sake of a maximally lucid presentation.

Should we want to keep a complete track of the constants, and consequently the
fractal dimension and the rate of attraction of the exponential attractor, we would have
naturally also wished for the best estimates in every step one could imagine. This way
it would transpire that not all of our estimates (if any) were the most efficient avail-
able. Cases in point are the oft-used consideration of only the worst case r = 5/2 or the
chain of inequalities (4.7) which might be pushed to a far higher level quantitatively
by means of what is known as Lieb-Thirring inequality ([6], Theorem 9.14). All these
isolated instances to explain would be to dive deeper than we can go.

We have witnessed that differentiability was the only point where the original model
failed to keep up with the perturbed model in pursuit of the method of Lyapunov ex-
ponents. On the other hand, in that aspect it failed utterly and incorrigibly. Not only
were we unable to prove that a certain mapping was a uniform Fréchet differential for
the solution semigroup of the limit problem, but we did not even have an appropriate
candidate for a derivative since the first variation equation became obstinate to beget
any solution at all. The key question is, nonetheless, how harmful such a property
is when investigating an attractor and if there is any reason why a hardly differen-
tiable solution semigroup should not possess an attractor closely similar to those of its
smooth relatives.

This work should pave the way for more serious attempts to use the higher level
perturbations for deduction of the attractor dimension bounds for the original La-
dyzhenskaya model. In fact, that should have formed the heart of this work and what
has been really proved ought to have been only a derivative, yet indispensable, extra.
The coveted aim has not been reached up to the present moment, although the work
is underway, daunting the task as it might appear.
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6. Appendix
This chapter contains several unrelated results whose inclusion elsewhere would re-
sult in a disruption of the continuous narrative.

6.1 Varied results

Theorem 6.1 (Korn’s inequality, [9], Theorem 1.10)
Let 1 < p < ∞, d ≥ 2 and Ω ∈ C 0,1(Rd). Then there is a constant K (a so-called Korn
constant of Ω) such that for any u ∈ W 1,p

0 (Ω,Rd) the inequality

∥u∥1,p ≤ K ∥Du∥p

is fulfilled.

Theorem 6.2 (A weak version of dominated convergence theorem, [10], Lemma 8.3.)

Let d1, d2 ∈ N, O ∈ Rd1 bounded, 1 < p < ∞ and zn, z ∈ Lp(O,Rd2) such that zn → z a.e.
in O and supn ∥zn∥p < ∞. Then zn → z weakly in Lp(O,Rd2).

Proof. Fix k ∈ N and define Ek = {x ∈ O; |zn(x) − z(x)| ≤ 1 for all n ≥ k}. From the
assumption on convergence, we have Ek ↗ O.

Next define Ak = {φ ∈ Lp′(O,Rd2); suppφ ⊂ Ek} and A =
∪

k Ak. Then A is
dense in Lp′(O,Rd2) and for any φ ∈ A we observe

∫
O(zn − z)·φdx → 0, n → ∞.

Indeed so, φ ∈ AK and for n ≥ K holds |(zn − z)·φ| ≤ |φ| by definition, wherefore we
may apply the classical dominated convergence theorem. For an arbitrary function
from Lp′(O,Rd2), the result is obtained by approximation and supn ∥zn∥p < ∞. �

6.2 Algebraic lemmas

Lemma 6.3 Let m ∈ N and {a1, . . . , am} be an orthonormal set in l2(R), ai = {aji}. Then
for any j ∈ N the inequality

∑m
i=1 |a

j
i |2 ≤ 1 holds true.

Proof. Without loss of generality assume j = 1. If we take an arbitrary n ∈ N and
{bij}ni,j=1 = B ∈ Rn×n an orthonormal matrix, then right from the definition it follows∑k

i=1 |bi1|2 ≤ 1 for any k ≤ n. This observation would serve as a proof in case each
element of {a1, . . . , am} contained only finitely many non-zero elements.

Otherwise, the above argument will provide an inspiration. Proceeding by con-
tradiction, suppose

∑m
i=1 |a1i |2 = α > 1. Take ϵ > 0 small enough to ensure 1 > ϵm.

From continuity of the scalar product in l2(R), there exists n ∈ N such that for any
ai, ai1 , ai2 ∈ {a1, . . . , am}, ai1 ̸= ai2 , we have∣∣∣∣∣∣

N∑
j=1

aji1a
j
i2

∣∣∣∣∣∣ < ϵ and 1−
N∑
j=1

|aji |
2 < ϵ (6.1)

for every N ≥ n. Assuming at the same time n is large so much so that vectors
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(a1i , . . . , a
n
i ), 1 ≤ i ≤ m, form a linearly independent set in Rn, we define a matrix

A =



a11 a21 a31 . . . an1
a12 a22 a32 . . . an2
...

...
...

. . .
...

a1m a2m a3m . . . anm
b11 b21 b31 . . . bn1
b12 b22 b32 . . . bn2
...

...
...

. . .
...

b1n−m b2n−m b3n−m . . . bnn−m


=



ã1
ã2
...

ãm
b̃1
b̃2
...

b̃n−m


where {b̃1, . . . , b̃n−m} is an orthonormal basis of {ã1, . . . , ãm}⊥ in Rn. Note that A is
regular and, hence, so is AT . An adventurous computation yields

AAT =



τ1 ϵ12 . . . ϵ1m 0 . . . 0
ϵ21 τ2 . . . ϵ2m 0 . . . 0
...

...
. . .

...
...

. . .
...

ϵm1 ϵm2 . . . τm 0 . . . 0
0 0 . . . 0 1 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 1


where |1− τi| < ϵ and |ϵij | < ϵ for all 1 ≤ i, j ≤ m according to (6.1). By this reason,
denoting Z = AAT−I and considering the usual operator norm for matrices n×n, one
infers ∥Z∥ < ϵm. The symbol I stands here for the n × n identity matrix. Regularity
of AT further implies ATZ(AT )−1 = ATA − I and we will try to bound the left-hand
side in terms of ϵ. We observe

∥∥ATx
∥∥2 = xTAATx = xT(Z + I)x

{
≤ (1 + ϵm) ∥x∥2

≥ (1− ϵm) ∥x∥2

and ∥∥ATZ(AT )−1
∥∥ ≤ ϵm

1 + ϵm

1− ϵm

accordingly. Inasmuch as
∑m

i=1 |a1i |2 ≤ (ATA)11, where (ATA)11 is the first row/column
element of ATA, we reach a contradiction setting ϵ so small that

ϵm
1 + ϵm

1− ϵm
< α− 1.

Notice that we never needed the value of the dimension n, so its possible increase does
not trouble us. �

Lemma 6.4 Let m ∈ N, {a1, . . . , am} be an orthonormal set in l2(R) and {γj} be a non-
decreasing sequence of real numbers. Then, with the notation ai = {aji}, we have

γ1 + . . .+ γm ≤
∞∑
j=1

γj

(
|aj1|

2 + . . .+ |ajm|2
)
.
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Proof. Elementary estimations yield:

∞∑
j=1

γj

(
|aj1|

2 + . . .+ |ajm|2
)

≥
m−1∑
j=1

γj

(
|aj1|

2 + . . .+ |ajm|2
)
+ γm

((
1−

m−1∑
j=1

|aj1|
2
)
+ . . .+

(
1−

m−1∑
j=1

|ajm|2
))

= mγm + (γ1 − γm)

m∑
i=1

|a1i |2 + . . .+ (γm−1 − γm)

m∑
i=1

|am−1
i |2

≥ mγm + (γ1 − γm) + . . .+ (γm−1 − γm) = γ1 + . . .+ γm,

where Lemma 6.3 was utilized in the last inequality. �
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3D flow of a non-Newtonian fluid, Commun. Pure Appl. Anal., vol. 8, 2009, 1503–
1520.

[2] P. Constantin, C. Foias: Navier-Stokes Equations, The University of Chicago Press,
Chicago, 1989.

[3] A. Eden, C. Foias, B. Nicolaenko: Exponential attractors of optimal Lyapunov di-
mension for Navier-Stokes equations, J. Dynam. Differential Equations, vol. 6, 1994,
301–323.

[4] A. Eden, C. Foias, B. Nicolaenko, R. Temam: Exponential attractors for dissipative
evolution equations, Masson, Paris, 1994.

[5] E. Feireisl: Dynamics of viscous compressible fluids, Oxford University Press, Ox-
ford, 2004.
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