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1 Introduction

Let us at first introduce the topic in a short and general way. Proper definitions of the
objects and relations mentioned in here are then summarized in the Preliminaries’ sec-
tion below.

The almost-compact embedding (denoted by
∗↪ and also called absolutely continuous

([9])) of function spaces can be naturally understood as an intermediate step between
the continuous and compact embedding, being stronger than the former but generally
weaker than the latter ([18]). Anyway, above all it represents a valuable tool for in-
vestigating compactness of embeddings of function spaces. Indeed, it has been shown
in [9] that W 1X ↪↪ Y is equivalent to W 1X

∗↪ Y for every pair of Banach function
spaces satisfying X = Xa and Y = Ya. Xa here stands for the set of functions with
absolute continuous norm (cf. [2]) and W 1X denotes the Sobolev space of functions
{f ∈ X; ▽f ∈ X}. That example shows that, under certain conditions, the questions
concerning compact embeddings, which are in general difficult to deal with, can be
transformed into problems of almost-compact embeddings which we hope to be easier
to solve.

However, only a little is still known about this type of embeddings. Some basic or
general topics have been recently investigated in [9], [18] but there is no general theory
providing a characterization of when X

∗↪ Y occurs. The exception are some necessary
or sufficient conditions ([9], [18]) and characterizations for limited special classes of
function spaces (trivial cases of Lebesgue spaces, Orlicz LA spaces; endpoint Lorentz
and Marcinkiewicz spaces in [18]). Therefore, it is reasonable to search for suitable
necessary and sufficient conditions for other classes of function spaces.

The presented thesis focuses on almost-compact embeddings of classical and weak
Lorentz spaces Λ and Γ. Classical Λ-spaces were first introduced by Lorentz in [13],
Γ-spaces then by Sawyer in [16]. The weak-type spaces were first used in [7]. Since the
class of Lorentz spaces is defined in terms of a general weight function, it covers a large
scale of common function spaces, ranging from Lebesgue spaces, over the two-parametric
Lorentz spaces Lp,q to Lorentz-Zygmund spaces ([1]), Zygmund classes etc.

An almost-compact embedding is usually defined in terms of Banach function spaces
in the sense of Luxemburg’s definition (see Section 2 below). The Lorentz “spaces” are,
however, in general not Banach function spaces (these problems were already studied in
[13], a complex insight then can be found in [8]). Therefore, we define the embeddings
for a generalized structure of r.i. lattices. This already covers a sufficient amount of
usable types of function “spaces” and as well such a generalization does not affect the
sense and nature of the embedding.

In Section 3, we state a characterization of an almost-compact embedding of an
arbitrary r.i. lattice into a Lorentz space in terms of an optimal constant of certain
continuous embeddings. Then we can proceed to the formulation of explicit characteri-
zations of almost-compact embeddings for the case of both the domain and range space
(lattice) being a Lorentz space, covering all the possible combinations of the subtypes.
For this task we use characterizations of the necessary continuous embeddings which
have been already known. Despite this, in some cases, these existing results do not
cover the problem in sufficient generality. If this happens, we at first prove the results
in the desired form, usually by techniques introduced by the original authors.
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2 Preliminaries

Throughout the text, the following notation will be used:
We write F ≲ G if F ≤ CG where C > 0 is a constant independent of appropriate

quantities in F and G. If both F ≲ G and G ≲ F are true, we write F ≃ G.
When p ∈ (0,∞)∖{1}, we set p′ ∶= p

p−1 (the conjugate exponent of p). Notice that p′

thus may take negative values as well.
If we mention (0,∞) in the sense of a measure space, it will always be meant to be

endowed with Lebesgue measure.
The usual symbol χE denotes the characteristic function of a set E.

Let (R,µ) be a σ-finite measure space. Let the symbol M (R,µ) denote the cone
of all µ-measurable functions f ∶R → [−∞,∞] which are finite µ-a.e. Moreover, let us
denote M+(R,µ) ∶= {f ∈ M (R,µ); f(R) ⊂ [0,∞]}.
Definition 2.1. A mapping % ∶ M+(R,µ) → [0,∞] is called a Banach function norm
(or simply a function norm) if, for all f, g, fn ∈ M+(R,µ), n ∈ N, for all constants a ≥ 0
and for all µ-measurable subsets E ⊂ R, the following properties hold:

(P1) %(f) = 0 ⇔ f = 0 µ -a.e., %(af) = a%(f), %(f + g) ≤ %(f) + %(g),
(P2) 0 ≤ g ≤ f µ -a.e. ⇒ %(g) ≤ %(f),
(P3) 0 ≤ fn ↑ f µ -a.e. ⇒ %(fn) ↑ %(f),
(P4) µ(E) < ∞ ⇒ %(χE) < ∞,

(P5) µ(E) < ∞ ⇒ ∫E f dµ ≤ CE%(f) for a constant CE depending on E and % but
independent of f .

Let % be a function norm. The collection X = X(%) of all f ∈ M (R,µ) such that
%(∣f ∣) < ∞ is called a Banach function space (BFS for short). For each f ∈ X, define
∥f∥X ∶= %(f).

For a given BFS X, its associate space X ′ consists of all g ∈ M (R,µ) for which the
associate norm

∥g∥X′ ∶= sup {∫
R
∣fg∣dµ, f ∈ X, ∥f∥X ≤ 1}

is finite.

It holds that X ′ is itself a BFS, X ′′ = (X ′)′ = X and the Hölder inequality holds:

∫
R
∣fg∣dµ ≤ ∥f∥X∥g∥X′ . (1)

A typical example of a BFS is the weighted Lp space over (0,∞) defined as follows:
Let 1 ≤ p ≤ ∞ and let u be a weight on (0,∞), i.e. a measurable function u∶ (0,∞) →
[0,∞). For f ∈ M (0,∞) we define

∥f∥Lp(u) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(∫
∞

0
∣f(x)∣pu(x)dx)

1
p

for p ∈ [1,∞),

ess sup
x∈(0,∞)

∣f(x)u(x)∣ for p = ∞.

(2)
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The space Lp(u) is then defined by Lp(u) ∶= {f ∈ M (0,∞); ∥f∥Lp(u) < ∞}. If the
weight u is moreover positive, i.e. u((0,∞)) ⊂ (0,∞), then Lp(u) is a BFS, otherwise
∥ ⋅ ∥Lp(u) is at least a seminorm. Notice that if u ≡ 1, we obtain the standard Lp space
over (0,∞).
Definition 2.2. Let (R,µ) be a σ-finite measure space. Given f ∈ M (R,µ), we define
its distribution function by

λf(t) ∶= µ({x ∈ R; ∣f(x)∣ > t}), t > 0,

and the nonincreasing rearrangement of f by

f∗(t) ∶= inf{s > 0; λf(s) ≤ t}, t ∈ (0, µ(R)).

Furthermore, if u is a positive weight on (0, µ(R)) and U(t) = ∫ t
0 u(s)ds, t ∈ (0, µ(R)),

we define
f∗∗u (t) ∶= U−1(t)P (f∗u)(t), t ∈ (0, µ(R)),

where P ∶M+(R,µ) →M+(R,µ) is the Hardy operator given by

Ph(t) ∶= ∫
t

0
h(s)ds, t ∈ (0, µ(R)).

If u ≡ 1, we denote simply

f∗∗(t) = 1
t
∫

t

0
f∗(s)ds, t ∈ (0, µ(R)),

which function is called the maximal function of f∗.

Remark 2.3. If f, g ∈ M (R,µ), the Hardy-Littlewood inequality holds (cf. [2, Section
2, Theorem 2.2]):

∫
R
∣fg∣dµ ≤ ∫

µ(R)

0
f∗(t)g∗(t)dt. (3)

For an arbitrary f ∈ M (R,µ), a positive weight u and t > 0, it holds

f∗(t) = U−1(t)∫
t

0
f∗(t)u(x)dx ≤ U−1(t)∫

t

0
f∗(x)u(x)dx = f∗∗u (t), (4)

therefore we obtain from (3) and (4)

∫
R
∣fg∣dµ ≤ ∫

µ(R)

0
f∗∗u (t)g∗∗u (t)dt (5)

for all f, g ∈ M (R,µ) and every fixed positive weight u.

Definition 2.4. We say that a BFS X is rearrangement-invariant (usually abbreviated
r.i.) if ∥f∥X = ∥g∥X for all f, g ∈ X which are equimeasurable, i.e. for which f∗ = g∗.

Definition 2.5. Let (R,µ) be a nonatomic σ-finite measure space and let X be an r.i.
BFS over (R,µ). According to the Luxemburg representation theorem (cf. [2, Section
2, Theorem 4.10]), there exists a not necessarily unique r.i. BFS X over [0, µ(R)) such
that ∥f∥X = ∥f∗∥X for every f ∈ M (R,µ). The space X is called the representation
space of X.
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Definition 2.6. Let (R,µ) be a nonatomic σ-finite measure space and let X be a set
of functions from M (R,µ), containing characteristic functions of sets of finite measure,
endowed with a homogenous functional ∥ ⋅ ∥X defined for every f ∈ M (R,µ) and such
that f ∈ X if and only if ∥f∥X < ∞. We say that X has the lattice property if ∥f∥X ≤ ∥g∥X

for all f, g ∈ M (R,µ) such that 0 ≤ f ≤ g. If, moreover, it holds ∥f∥X = ∥g∥X whenever
f∗ = g∗, then we call X to be a rearrangement-invariant lattice.

It may be seen easily that since the functional ∥ ⋅ ∥X from above is homogeneous,
every r.i. lattice X is a homogeneous set, i.e. it satisfies

f ∈ X ⇔ cf ∈ X for all c ∈ R.

We may also notice that the weighted Lp space given by (2) is an r.i. BFS if and only
if u is a positive constant. However, if we replace f by f∗ in the p ∈ [1,∞) case of
(2) (then we have to change the integration domain to (0, µ(R)), as well), we obtain
a Λp(u) space which will be defined in Section 3. This structure is always an r.i. lattice
and under some additional restrictions on u it is even an r.i. BFS. (Details may be found
in [8].)

Definition 2.7. Let X be an r.i. lattice over (R,µ). If X is an r.i. lattice over (0, µ(R))
such that ∥f∥X = ∥f∗∥X for every f ∈ M (R,µ), then X is called to be a representation
lattice for X.

Definition 2.8. Let X,Y be r.i. lattices over (R,µ). We say that X is continuously
embedded into Y and write X ↪ Y , if for all f ∈ X it holds

∥f∥Y ≤ C∥f∥X

where C > 0 is a constant independent of f . The constant C is then called optimal for
X ↪ Y if

Opt (X,Y ) ∶= sup
f∈X

∥f∥Y

∥f∥X
= C.

Here we adhere to the convention 0/0 ∶= 0, x/0 ∶= ∞, x > 0, thus the definition is correct
and corresponds to the notion of a continuous embedding.

Definition 2.9. For a given (R,µ), an arbitrary sequence {En}n∈N of µ-measurable
subsets of R satisfying En ↓ ∅ µ-a.e. is called a test sequence.

Definition 2.10. Let X,Y be r.i. lattices over (R,µ). We say that X is almost-
compactly embedded into Y and write X

∗↪ Y if for every test sequence {En}n∈N it holds
that

lim
n→∞ sup

∥f∥X≤1
∥fχEn∥Y = 0. (6)

Remark 2.11. Consider the following example: For every measurable f ∶ (0,1) → R,
let us define

∥f∥X ∶= f∗ (3
4
)

and
∥f∥Y ∶= f∗ (1

2
) .
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As usual, X and Y are defined as the sets of all those f ∈ M (0,1) for which ∥f∥X < ∞
and ∥f∥Y < ∞, respectively. Both X and Y are then r.i. lattices. Moreover, it holds
that X

∗↪ Y , since ∥fχE∥Y = 0 for every f ∈ M (0,1) and every E ⊂ (0,1) such that
∣E∣ < 1

2 . On the other hand, we see that X 0 Y (consider fn ∶= nχ[0, 2
3
]).

The previous example shows that if X and Y are only r.i. lattices, the implication
X

∗↪ Y ⇒ X ↪ Y is not necessarily true. However, in the sequel we will focus on such
r.i. lattices for which it is true. The following proposition shows that it is moreover
natural to restrict ourselves to r.i. lattices over a space of finite measure:

Proposition 2.12. Let (R,µ) be a σ-finite nonatomic measure space with µ(R) = ∞
and let X,Y be r.i. lattices over it, such that X ↪ Y . Suppose that there exists a µ-
measurable set E ⊂ R such that µ(E) ∈ (0,∞) and ∥χE∥Y > 0. Then X

∗↪ Y if and only
if X = {0}.

Proof. Obviously {0} ∗↪ Y . Conversely, assume that X ≠ {0}, therefore also Y ≠ {0}
since X ↪ Y . Using the r.i. property, we get the following: There exists a µ-measurable
E ⊂ R with µ(E) = ε > 0 such that ∥χE∥X , ∥χE∥Y ∈ (0,∞). We can assume ∥χE∥X = 1.
Moreover, there is a sequence {En} of pairwise disjoint µ-measurable subsets of R such
that µ(En) = ε for all n ∈ N. Clearly, Ẽn ∶= ⋃k≥n Ek is a test sequence. Thus, fn ∶= χEn

satisfy ∥fn∥X = 1 but ∥fnχẼn
∥ ↛ 0. Thus, X

∗0 Y .

Proposition 2.13. Let X,Y be r.i. lattices over a nonatomic measure space (R,µ)
such that µ(R) < ∞. Then it is equivalent:

(i) X
∗↪ Y ,

(ii) lim
s→0+

sup
∥f∥X≤1

∥f∗χ[0,s]∥Y = 0.

Proof. A proof is done in [18, Lemma 5.1] for BFS and it is correct for r.i. lattices as
well. Let us show a sketch of another proof:

“(ii)⇒(i)”: Let {En} be a test sequence. For all f ∈ M (R,µ) and n ∈ N it holds
that

(fχEn)∗ ≤ f∗χ[0,µ(En)].

Thus, we obtain

lim
n→∞ sup

∥f∥X≤1
∥fχEn∥Y =

= lim
n→∞ sup

∥f∥X≤1
∥(fχEn)∗∥Y ≤

≤ lim
n→∞ sup

∥f∥X≤1
∥f∗χ[0,µ(En)]∥Y

and the last part is equal to zero according to (ii).
“(i)⇒(ii)”: It suffices to realize that for every f ∈ M (R,µ) and a given scalar

t ∈ (0, µ(R)] there exists a µ-measurable set E ⊂ R such that µ(E) = t and

(fχE)∗ = f∗χ[0,t).
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A precise construction which proves this assertion may be found in the proof of [2,
Chapter 2, Lemma 2.5].

Definition 2.14. Let X be an r.i. lattice over a nonatomic measure space (R,µ). For
each finite t ∈ [0, µ(R)] let E be a subset of R such that µ(E) = t, and ϕX(t) = ∥χE∥X .
The function ϕX so defined is called the fundamental function of X.

Remark 2.15. Notice that the above definition is correct: At first, existence of a µ-
measurable set E ⊂ R such that µ(E) = t is granted for every t ∈ [0, µ(R)] since (R,µ) is
nonatomic. Furthermore, if µ(E1) = µ(E2) = t, then χ∗E1

= χ∗E2
, thus ∥χE1∥X = ∥χE2∥X

from the r.i. property.

Lemma 2.16. Let X, Y be r.i. lattices over a measurable space (R,µ) such that µ(R) <
∞. Assume that X

∗↪ Y . Then it holds

lim
t→0+

ϕY (t)
ϕX(t) = 0. (7)

Proof. It does no harm to assume that ϕX(t) > 0 for all t ∈ [0, µ(R)] and the same
holds for ϕY . Indeed, if this is not true, then ∥ ⋅ ∥X ≡ 0. Next, let {En}n∈N be a sequence
of µ-measurable subsets of R, such that En → ∅ µ-a.e. We may assume that {En} is
even a test sequence, i.e. the convergence is monotone. (If not, replace En by ⋃k≥n Ek.)
Let us denote tn ∶= µ(En), n ∈ N. For each function fn ∶= χEn/∥χEn∥X (n ∈ N) it holds
∥fn∥X = 1 and fnχEn = fn. Hence, from (6) we obtain

lim
n→∞

ϕY (tn)
ϕX(tn)

= lim
n→∞

∥χEn∥Y

∥χEn∥X
= 0.

Since tn may be an arbitrary sequence of positive numbers decreasing to zero (recall
again that (R,µ) is nonatomic), (7) must be true.
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3 Classical and weak Lorentz spaces

Let (R,µ) be a nonatomic measure space with µ(R) < ∞, without loss of generality we
assume µ(R) = 1. We recall that a weight is a measurable function v∶ (0,1) → [0,∞).
We denote V (t) ∶= ∫ t

0 v(x)dx and Vs(t) ∶= ∫ t
0 v(x)χ[0,s](x)dx for t, s ∈ (0,1].

Definition 3.1. We say that a weight v is admissible if

0 < V (t) < ∞ (8)

for all t ∈ (0,1]. In particular, every admissible weight is integrable on [0,1].

Definition 3.2. For 0 < p < ∞, an admissible weight v and a positive integrable weight
u we define the following function spaces:

Λp(v) ∶=
⎧⎪⎪⎨⎪⎪⎩

f ∈ M (R,µ); ∥f∥Λp(v) ∶= (∫
1

0
(f∗(t))pv(t)dt)

1
p < ∞

⎫⎪⎪⎬⎪⎪⎭
,

Λp,∞(v) ∶= { f ∈ M (R,µ); ∥f∥Λp,∞(v) ∶= sup
0<t<1

f∗(t)V 1
p (t) < ∞} ,

Γp
u(v) ∶=

⎧⎪⎪⎨⎪⎪⎩
f ∈ M (R,µ); ∥f∥Γp

u(v) ∶= (∫
1

0
(f∗∗u (t))pv(t)dt)

1
p < ∞

⎫⎪⎪⎬⎪⎪⎭
,

Γp,∞
u (v) ∶= { f ∈ M (R,µ); ∥f∥Γp,∞

u (v) ∶= sup
0<t<1

f∗∗u (t)V 1
p (t) < ∞} .

The spaces Λp(v) and Γp
u(v) are called classical Lorentz spaces and the spaces Λp,∞(v)

and Γp,∞
u (v) are called weak Lorentz spaces. Altogether, we will denote by L(R,µ) the

family of all the Lorentz spaces of these four types. In case of Γ-spaces, if the symbol
u is omitted and it is written just Γp(v),Γp,∞(v), it means that u ≡ 1. The weight v
appearing in the above definition may be called the main weight of the corresponding
Lorentz space.

Remark 3.3. (i) If f belongs to a Γ-type Lorentz space X with an admissible weight,
then f ∈ L1(R,µ).

(ii) A Lorentz space X ∈ L(R,µ) does not have to be a Banach function space. In
a general case, the functional ∥ ⋅ ∥X , as defined above, does not have to be a Banach
function norm, even the set {f ∈ M (R,µ); ∥f∥X < ∞} does not have to be linear. For
examples to this situation and a detailed treatment of the problem, see [8]. However, it
can be checked easily that every Lorentz space is at least an r.i. lattice. Anyway, we will
use the term “space” even if the particular Lorentz-type structure is not really a space
in the standard sense. Similarly, we will always call the functional ∥ ⋅ ∥X a “norm”.

(iii) As the Lorentz spaces are defined directly in terms of the nonincreasing rear-
rangement, the nature of their corresponding representation spaces (precisely, lattices)
is obvious. Indeed, for X ∈ L(R,µ), the corresponding representation space (lattice) X
is a Lorentz space of the same type over [0,1] (with Lebesgue measure).

Integrability of the main weight ensures that a characteristic function of R lies in
the particular Lorentz space, so the latter one is then an r.i. lattice. Now we put some
light on why we add the admissibility requirement (in the sense of Definition 3.1).
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Proposition 3.4. Let X be an r.i. lattice and Y be a Lorentz space with an admissible
main weight w. Assume that X

∗↪ Y . Then X ↪ Y .

Proof. For a contradiction, suppose that X
∗↪ Y but X 0 Y .

Suppose at first that Y = Γq
u(w) for a q ∈ (0,∞) and a positive integrable u. Since

X 0 Y , there exists a sequence {fn}n∈N of functions such that

∥fn∥X ≤ 1 and ∫
1

0
((fn)∗∗u )q(x)w(x)dx > n + 1

for every n ∈ N. On the other hand, by Proposition 2.13, X
∗↪ Y yields that there exists

S ∈ (0,1) such that

∫
S

0
((fn)∗∗u )q(x)w(x)dx ≤ ∥f∗χ[0,S]∥Y ≤ 1 (9)

for all n ∈ N, hence

∫
1

S
((fn)∗∗u )q(x)w(x)dx > n, n ∈ N.

By the monotonicity of (fn)∗∗u we have

1 ≥ ∫
S

0
((fn)∗∗u )q(x)w(x)dx ≥ ((fn)∗∗u )q(S)W (S)

and

n < ∫
1

S
((fn)∗∗u )q(x)w(x)dx ≤ ((fn)∗∗u )q(S)∫

1

S
w(x)dx ≤ ((fn)∗∗u )q(S)W (1).

By putting these inequalities together we obtain

W (S) < W (1)
n

for all n ∈ N.

This yields W (S) = 0 which contradicts the assumption of admissibility of w.
If Y = Λq(w), the first two expressions in (9) are even equal and the rest is carried

out in the same way. Cases of weak-type spaces are analogous.

Now we will mention an easy result about some continuous embeddings involving
weak Lorentz spaces which will be useful in the sequel.

Proposition 3.5. Let X be an r.i. lattice, p, q ∈ (0,∞) and let v,w be admissible
weights. Let u be a positive integrable weight.

(i) The embedding Λp,∞(v) ↪X holds if and only if

A(10) ∶= ∥V − 1
p ∥X < ∞. (10)

Moreover, Opt (Λp,∞(v),X) = A(10).

9



(ii) The embedding X ↪ Γq,∞
u (w) holds if and only if

A(11) ∶= sup
0<t<1

U−1(t)W 1
q (t)Opt (X,Λ1(uχ[0,t])) < ∞. (11)

Moreover, Opt (X,Γq,∞
u (w)) = A(11).

(iii) The embedding X ↪ Λq,∞(w) holds if and only if

A(12) ∶= sup
0<t<1

W
1
q (t)ϕ−1

X (t) < ∞ (12)

where ϕX denotes the fundamental function of X (see Definition 2.14). Moreover,
Opt (X,Λq,∞(w)) = A(12).

Proof. (i) This is a particular case of [19, Proposition 2.7], it can be also found in [5,
Theorem 2.6(i)].

(ii) By changing the suprema, we obtain

Opt (X,Γq,∞
u (w)) = sup

∥f∥X≤1
sup
0<t<1

f∗∗u (t)W 1
q (t) =

= sup
0<t<1

U−1(t)W 1
q (t) sup

∥f∥X≤1
∫

t

0
f∗(s)u(s)ds =

= A(11).

(iii) This part is proved in [5, Theorem 2.6(iii)].

Now we proceed to stating the essential result of this chapter. In the case of the
“range” space (lattice) being a Lorentz space, it transforms the problem of the almost-
compact embedding just into a question of an optimal constant which is then quite easy
to deal with.

Theorem 3.6. Let X be an r.i. lattice and let Y ∈ L(R,µ). Let w be an admissible
weight and let u be a positive weight. Then

(i) If Y = Λq(w) then X
∗↪ Y if and only if

lim
s→0+

Opt (X,Λq(wχ[0,s])) = 0. (13)

(ii) If Y = Λq,∞(w) then X
∗↪ Y if and only if

lim
s→0+

Opt (X,Λq,∞(wχ[0,s])) = 0. (14)

(iii) If Y = Γq
u(w) then X

∗↪ Y if and only if

lim
s→0+

Opt (X,Γq
u(wχ[0,s])) = 0 (15)

and

lim
s→0+

Opt (X,Λ1(uχ[0,s])) ⋅ (∫
1

s
U−q(x)w(x)dx)

1
q = 0. (16)
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(iv) If Y = Γq,∞
u (w) then X

∗↪ Y if and only if

lim
s→0+

Opt (X,Γq,∞
u (wχ[0,s])) = 0 (17)

and
lim
s→0+

Opt (X,Λ1(uχ[0,s])) sup
s<t<1

W
1
q (t)U−1(t) = 0. (18)

Proof. (i) Assume Y = Λq(w). By the definition, X
∗↪ Y means that, for every test

sequence {En}, it holds
lim
n→∞ sup

∥f∥X≤1
∥fχEn∥Y = 0. (19)

This is further equivalent to

lim
s→0+

sup
∥f∥X ≤1

∥f∗χ[0,s]∥Y = 0 (20)

according to Proposition 2.13. Furthermore, (20) clearly holds if and only if

lim
s→0+

sup
f∈X

∥f∗χ[0,s]∥Y

∥f∥X
= 0. (21)

Here we adhere to the convention 0/0 ∶= 0, x/0 ∶= ∞ for x > 0. The supremum in (21) is
an optimal constant for a certain continuous embedding. Precisely, for every f ∈ Y and
s ∈ (0,1) it holds

∥f∗χ[0,s]∥Y = ∥f∥Λq(wχ[0,s]), (22)

therefore

sup
f∈X

∥f∗χ[0,s]∥Y

∥f∥X
= Opt (X,Λq(wχ[0,s]))

and the claim is proved.
(ii) Suppose that f ∈ M (R,µ) and 0 < s < 1. Since f∗ is nonincreasing and W is

continuous, it holds

sup
t∈[s,1)

f∗(t)W
1
q

s (t) = sup
t∈[s,1)

f∗(t)W
1
q

s (s) = f∗(s)W
1
q

s (s) ≤ sup
t∈(0,s)

f∗(t)W
1
q

s (t),

hence we obtain

sup
t∈(0,1)

f∗(t)W
1
q

s (t) = sup
t∈(0,s)

f∗(t)W
1
q

s (t) = sup
t∈(0,s)

f∗(t)W 1
q (t).

Therefore, it holds

∥f∗χ[0,s]∥Λq,∞(w) = sup
0<t<s

f∗(t)W 1
q (t) = sup

0<t<1
f∗(t)W

1
q

s (t) = ∥f∗χ[0,s)∥Λq,∞(wχ[0,s]).

The rest of the proof is then the same as in (i).
(iii) Now Y = Γq

u(w). As we observe, for 0 < s < t < 1 and f ∈ L1(R,µ) it holds

(f∗χ[0,s])∗∗u (t) = U−1(t)∫
s

0
f∗(x)u(x)dx = f∗∗u (s)U(s)U−1(t).
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Thus, for each f ∈ Γq
u(w) we obtain

∥f∗χ[0,s]∥q

Γq
u(w) = ∫

s

0
(f∗∗u (x))qw(x)dx + ∫

1

s
[f∗∗u (s)U(s)]q U−q(x)w(x)dx ≃

≃ ∥f∥q

Γq
u(wχ[0,s]) + [f∗∗u (s)U(s)]q ∫

1

s
U−q(x)w(x)dx

which yields

∥f∗χ[0,s]∥Γq
u(w) ≃ ∥f∥Γq

u(wχ[0,s]) + f∗∗u (s)U(s) (∫
1

s
U−q(x)w(x)dx)

1
q

. (23)

We recall
f∗∗u (s)U(s) = ∫

s

0
f∗(x)u(x)dx = ∥f∥Λ1(uχ[0,s]),

so we finally obtain

sup
∥f∥X≤1

∥f∥Γq
u(wχ[0,s]) = sup

f∈X

∥f∥Γq(wχ[0,s])
∥f∥X

= Opt (X,Γq
u(wχ[0,s]))

and

sup
∥f∥X≤1

f∗∗u (s)U(s) (∫
1

s
U−q(t)w(t)dt)

1
q = sup

f∈X

∥f∥Λ1(uχ[0,s])
∥f∥X

(∫
1

s
U−q(t)w(t)dt)

1
q =

= Opt (X,Λ1(uχ[0,s])) ⋅ (∫
1

s
U−q(t)w(t)dt)

1
q

which together with (23) gives the result.
(iv) This part is proved analogously as (iii), using the relation

∥f∗χ[0,s]∥Γq,∞
u (w) = max{∥f∥Γq,∞

u (wχ[0,s]); f∗∗u (s)U(s) sup
s<t<1

W
1
q (t)U−1(t)} . (24)

Remark 3.7. Let us show how Theorem 3.6 will be usually applied. Let X be an r.i.
lattice, let 0 < q < ∞ and denote by A the set of all admissible weights. Suppose
there exists a functional Φ∶A → [0,∞] such that, for w ∈ A, X ↪ Λq(w) if and only
if Φ(w) < ∞ and it holds Opt (X,Λq(w)) ≃ Φ(w). Then Theorem 3.6(i) yields that
X

∗↪ Λq(w) occurs if and only if

lim
s→0+

Φ(wχ[0,s]) = 0.

When dealing with the other types of Lorentz spaces, the same approach can be adopted.

Theorem 3.6 provides us with a useful tool for describing almost-compact embed-
dings of the Lorentz spaces. In fact, mutual continuous embeddings of all Lorentz type
spaces are characterized using such functional Φ as seen above in Remark 3.7, therefore
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we obtain simple characterizations of the corresponding almost-compact embeddings.

In the following part we are going to use known results about continuous embeddings.
Most of them are contained in the survey paper [5] but partly in an incomplete or a bit
outdated form. Some of these were later significantly improved and extended in [11].
One missing case is also solved in [4]. As we will see, some cases will also need to be
re-proved in a generalized version at first.

3.1 Embeddings of type Λ
∗↪ Λ

Lemma 3.8. Let v,w be admissible weights and p, q ∈ (0,∞).
(i) Let 0 < p ≤ q < ∞. Then Λp(v) ↪ Λq(w) if and only if A(25) < ∞ where

A(25) ∶= sup
0<t<1

W
1
q (t)V − 1

p (t). (25)

Moreover, Opt (Λp(v),Λq(w)) = A(25).

(ii) Let 0 < q < p < ∞. Then Λp(v) ↪ Λq(w) if and only if A(26) < ∞ where

A(26) ∶= (∫
1

0
W

r
p (x)V − r

p (x)w(x)dx)
1
r

(26)

where r = pq
p−q . Moreover, Opt (Λp(v),Λq(w)) ≃ A(26).

This lemma is a direct consequence of the result below. Here comes also one of the
occasions on which we use weights defined on (0,∞).
Lemma 3.9. Suppose that v,w ∈ L1(0,∞) are nonnegative and satisfy V (t),W (t) > 0
for all t > 0. Let p, q ∈ (0,∞). Just for purpose of this lemma, suppose that Λp(v) and
Λq(w) are defined over a σ-finite nonatomic measure space (S, ν) with ν(S) = ∞, i.e.

Λp(v) ∶=
⎧⎪⎪⎨⎪⎪⎩

f ∈ M (S, ν); ∥f∥Λp(v) ∶= (∫
∞

0
(f∗(t))pv(t)dt)

1
p < ∞

⎫⎪⎪⎬⎪⎪⎭
,

similarly for Λq(w).
(i) Let 0 < p ≤ q < ∞. Then Λp(v) ↪ Λq(w) if and only if Ã(25) < ∞ where

Ã(25) ∶= sup
t>0

W
1
q (t)V − 1

p (t).

Moreover, Opt (Λp(v),Λq(w)) = Ã(25).

(ii) Let 0 < q < p < ∞. Then Λp(v) ↪ Λq(w) if and only if Ã(26) < ∞ where

Ã(26) ∶= (∫
∞

0
W

r
p (x)V − r

p (x)w(x)dx)
1
r

.

where r = pq
p−q . Moreover, Opt (Λp(v),Λq(w)) ≃ Ã(26).
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Proof. This result is proved in [16, Remark (i), p. 148] for 1 < p, q < ∞ and in [20,
Proposition 1] for 0 < p, q < ∞.

For a while, let us keep the setting from the previous lemma but consider the ex-
pression Ã(25) for q < p as well. Then, in fact, it holds Ã(25) ≲ Ã(26). We summarize this
in the proposition below. The result appears also in [20, Lemma, p. 176].

Proposition 3.10. Let v,w be weights over (0,∞) such that (8) holds for every t > 0.
Assume that 0 < q < p < ∞. Set r ∶= pq

p−q . Then it holds

Ãr
(25) = sup

t>0
W

r
q (t)V − r

p (t) ≲ Ãr
(26) = ∫

∞

0
W

r
p (x)V − r

p (x)w(x)dx ≃

≃ ∫
∞

0
W

r
q (x)V − r

q (x)v(x)dx. (27)

Proof. Since r
q − 1 = r

p , for a fixed t > 0 it holds

W
r
q (t)V − r

p (t) = V
− r

p (t)∫
t

0
(W r

q (x))′ dx ≤

≤ ∫
t

0
(W r

q (x))′V − r
p (x)dx ≲ ∫

∞

0
W

r
p (x)V − r

p (x)w(x)dx.

By passing to the supremum over t > 0, we get the first inequality in (27). Furthermore,
applying integration by parts, we get

∫
∞

0
((W r

q (x))′V − r
p (x)dx ≲ ∫

∞

0
W

r
q (x)V − r

q (x)v(x)dx.

The converse inequality is proved in the same way.

These “infinite-measure-domain results” will be used later. Now we return to the
Lorentz spaces over (R,µ), i.e. given by Definition 3.2. Weights are thus defined again
on (0,1). At first we recall the following basic fact:

Remark 3.11. Let ψ∶ (0,1) → (0,∞) be a function. Then

lim
t→0+

ψ(t) = 0 ⇔ lim
s→0+

sup
0<t<s

ψ(t) = 0.

Now we state a theorem about an almost-compact embedding involving the situation
from Lemma 3.8.

Theorem 3.12 (The case Λp(v) ∗↪ Λq(w)). Let v,w be admissible weights and p, q ∈
(0,∞). When p > q, we set r = pq

p−q .

(i) For 0 < p ≤ q < ∞, Λp(v) ∗↪ Λq(w) if and only if

lim
t→0+

W (t) 1
q V (t)− 1

p = 0. (28)

(ii) For 0 < q < p < ∞, Λp(v) ∗↪ Λq(w) if and only if Λp(v) ↪ Λq(w), i.e. if and only if

∫
1

0
W

r
p (x)V − r

p (x)w(x)dx < ∞. (29)
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Proof. (i) By Theorem 3.6 we immediately obtain the characterization of Λp(v) ∗↪ Λq(w)
in the form

lim
s→0+

sup
0<t<1

Ws(t)
1
q V (t)− 1

p = 0.

By monotonicity of V , this is obviously equivalent to

lim
s→0+

sup
0<t<s

W (t) 1
q V (t)− 1

p = 0

and, by Remark 3.11, to (28).
(ii) Similarly as in the previous case, we obtain that Λp(v) ∗↪ Λq(w) if and only if

lim
s→0+

(∫
s

0
W

r
p (x)V − r

p (x)w(x)dx)
1
r = 0. (30)

However, r is positive, thus the absolute continuity of the integral assures that (29)
implies (30). For the converse, W

r
p V

− r
p is a continuous function from (0,1] to (0,∞),

hence it is bounded on every interval [s,1], s ∈ (0,1). Combined with the integrability
of w this shows that (30) implies (29).

Lemma 3.13. Let v,w be admissible weights and p, q ∈ (0,∞). Then Λp(v) ↪ Λq,∞(w)
if and only if A(25) < ∞. Moreover, Opt (Λp(v),Λq,∞(w)) = A(25).

Proof. See [5, Theorem 3.2].

Theorem 3.14 (The case Λp(v) ∗↪ Λq,∞(w)). Let v,w be admissible weights and p, q ∈
(0,∞). Then Λp(v) ∗↪ Λq,∞(w) if and only if (28) holds.

Proof. This result follows from Theorem 3.6 and Lemma 3.13.

Lemma 3.15. Let v,w be admissible weights and p, q ∈ (0,∞). Then Λp,∞(v) ↪ Λq(w)
if and only if A(31) < ∞ where

A(31) ∶= (∫
1

0
V
− q

p (t)w(t)dt)
1
q

. (31)

Moreover, Opt (Λp,∞(v),Λq(w)) = A(31).

Proof. See [5, Theorem 3.3].

Theorem 3.16 (The case Λp,∞(v) ∗↪ Λq(w)). Let v,w be admissible weights and p, q ∈
(0,∞). Then Λp,∞(v) ∗↪ Λq(w) if and only if

lim
s→0+

(∫
s

0
V
− q

p (t)w(t)dt)
1
q = 0.

Proof. The statement follows from Theorem 3.6 and Lemma 3.15.

Lemma 3.17. Let v,w be admissible weights and p, q ∈ (0,∞). Then Λp,∞(v) ↪ Λq,∞(w)
if and only if A(25) < ∞. Moreover, Opt (Λp,∞(v),Λq,∞(w)) = A(25).
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Proof. See [5, Theorem 3.4].

Theorem 3.18 (The case Λp,∞(v) ∗↪ Λq,∞(w)). Let v,w be admissible weights and
p, q ∈ (0,∞). Then Λp,∞(v) ∗↪ Λq,∞(w) if and only if (28) holds.

Proof. This result is a direct consequence of Theorem 3.6 and Lemma 3.17.

3.2 Embeddings of type Λ
∗↪ Γ

We are now about to state another lemma about a particular continuous embedding of
Lorentz spaces. However, we want the result to involve a general positive and integrable
Hardy weight u, but the existing results have been formulated and proved just for u ≡ 1.
(An almost complete survey of this special case can be found in [5, Theorem 4.1].)
Therefore, this time we will even prove the lemma in order to obtain the result in the
desired generality. We will also make another exception this time and formulate the
lemma for Lorentz spaces over a domain with infinite measure (although they will be
denoted still by Λp(v),Γq

u(w), etc. as in Lemma 3.9). The particular result for a finite-
measure space, which we need for the almost-compact embedding characterization, will
then follow by an extension of particular weights over [0,1] by zero on (1,∞) and
applying the wider result for weights over [0,∞).
Lemma 3.19. Let v,w be integrable weights over (0,∞) such that (8) holds for all
t > 0. Let u be a positive integrable weight on (0,∞). Assume that p, q ∈ (0,∞). When
p > q, we set r = pq

p−q .

(i) Let 1 < p ≤ q < ∞. Then Λp(v) ↪ Γq
u(w) if and only if Ã(25) +A(32) < ∞ where

A(32) ∶= sup
t>0

(∫
∞

t
U−q(x)w(x)dx)

1
q (∫

t

0
Up′(x)V −p′(x)v(x)dx)

1
p′

. (32)

Moreover, Opt (Λp(v),Γq
u(w)) ≃ Ã(25) +A(32).

(ii) Let 0 < p ≤ 1, 0 < p ≤ q < ∞. Then Λp(v) ↪ Γq
u(w) if and only if Ã(25) +A(33) < ∞

where

A(33) ∶= sup
t>0

U(t)V − 1
p (t) (∫

∞

t
U−q(x)w(x)dx)

1
q

. (33)

Moreover, Opt (Λp(v),Γq
u(w)) ≃ Ã(25) +A(33).

(iii) Let 1 < p < ∞, 0 < q < p < ∞, q ≠ 1. Then Λp(v) ↪ Γq
u(w) if and only if

Ã(26) +A(34) < ∞ where

A(34) ∶= (∫
∞

0
(∫

∞

t
U−q(x)w(x)dx)

r
q ×

× (∫
t

0
Up′(x)V −p′(x)v(x)dx)

r
q′

Up′(t)V −p′(t)v(t)dt)
1
r

. (34)

Moreover, Opt (Λp(v),Γq
u(w)) ≃ Ã(26) +A(34).
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(iv) Let 1 = q < p < ∞. Then Λp(v) ↪ Γq
u(w) if and only if A(35) < ∞ where

A(35) ∶= (∫
∞

0
(W (t)+U(t)∫

∞

t
U−1(x)w(x)dx)

p′−1

×

× V 1−p′(t)u(t) (∫
∞

t
U−1(x)w(x)dx) dt)

− 1
p′
. (35)

Moreover, Opt (Λp(v),Γq
u(w)) ≃ A(35).

(v) Let 0 < q < p ≤ 1. Then Λp(v) ↪ Γq
u(w) if and only if Ãp

(26)
+A(36) < ∞ where

A(36) ∶= (∫
∞

0
sup
0<x≤t

U r(x)V − r
p(x) (∫

∞

t
U−q(y)w(y)dy)

r
p

U−q(t)w(t)dt)
p
r

. (36)

Moreover, Opt (Λp(v),Γq
u(w)) ≃ Ãp

(26)
+A(36).

Proof. (i) For a function f ∈ M (0,∞), let us define

Tf(x) ∶= U−1(x)∫
x

0
f(y)u(y)dy, x ∈ (0,∞).

Furthermore, the adjoint operator T ∗ (under the pairing ∫ ∞0 fg) is given by

T ∗g(y) ∶= u(y)∫
∞

y
g(x)U−1(x)dx, y ∈ (0,∞),

where g ∈ M (0,1). Under this setting, by [16, §1 and Theorem 1] we have the following:
There exists a constant C > 0 such that

(∫
∞

0
(Tf(x))qw(x)dx)

1
q ≤ C (∫

∞

0
fp(x)v(x)dx)

1
p

(37)

holds for all nonincreasing and nonnegative f ∈ M (0,∞) if and only if

(∫
∞

0
(∫

x

0
T ∗g)

p′

v(x)V −p′(x)dx)
1
p′
+ V

1
p (∞)∫

∞

0
T ∗g ≤

≤ C (∫
∞

0
gq′(x)w1−q′(x)dx)

1
q′

(38)

holds for all nonnegative g ∈ M (0,∞). Moreover, C is the least constant such that (37)
holds if and only if it is the least constant for (38). Next, for g ∈ M (0,∞) nonnegative
and t ∈ (0,∞) we have, by Fubini theorem,

∫
t

0
T ∗g(x)dx = ∫

t

0
u(y) (∫

∞

y
g(x)U−1(x)dx) dy =

= ∫
t

0
g(x)dx +U(t)∫

∞

t
g(x)U−1(x)dx = Pg(t) +U(t)P ∗(gU−1)(t)
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where P is the Hardy operator (see Definition 2.2) and P ∗ stands for its adjoint. By
[14], P is bounded from Lq′(w1−q′) to Lp′(V −p′v) if and only if

sup
t>0

(∫
∞

t
V −p′(x)v(x)dx)

1
p′

W
1
q (t) = A < ∞ (39)

and in here it holds ∥P ∥ ≃ A where ∥P ∥ is the corresponding operator norm. Similarly,
P ∗ is bounded from Lq′(w1−q′) to Lp′(Up′V −p′v) if and only if

sup
t>0

(∫
t

0
Up′(x)V p′(x)v(x)dx)

1
p′ (∫

∞

t
U−q(x)w(x)dx)

1
q = B < ∞ (40)

and, moreover, ∥P ∗∥ ≃ B. Furthermore, by the reverse Hölder inequality (cf. [16,
equation (1.6)]),

∫
∞

0
T ∗g(x)dx = ∫

∞

0
g(x)dx ≤ MV

1
p (∞)(∫

∞

0
gq′(x)w1−q′(x)dx)

1
q′

for all nonnegative g with the least such M > 0 if and only if

W
1
q (∞) = MV

1
p (∞). (41)

We observe that

(p′ − 1)∫
∞

t
V −p′(x)v(x)dx = V 1−p′(t) − V 1−p′(∞),

so (39) is rewritten as

sup
t>0

[V 1−p′(t) − V 1−p′(∞)]
1
p′ W

1
q (t) = A(p′ − 1) 1

p′ < ∞. (42)

Now we are going to prove that (42) together with (41) are equivalent to

sup
t>0

W
1
q (t)V − 1

p (t) = K < ∞. (43)

Suppose at first that (42) and (41) hold. We can find T > 0 such that V (T ) = 21−pV (∞).
Then

W
1
q (t)V − 1

p (t) = 2
1
p′ W

1
q (t) (V 1−p′(t) − 1

2
V 1−p′(t))

1
p′ ≤

≤ 2
1
p′ W

1
q (t) (V 1−p′(t) − 1

2
V 1−p′(T ))

1
p′ =

= 2
1
p′ W

1
q (t) (V 1−p′(t) − V 1−p′(∞))

1
p′ = 2

1
p′ (p′ − 1) 1

p′ A

for all t ∈ (0, T ] and

W
1
q (t)V − 1

p (t) ≤ W
1
q (∞)V − 1

p (T ) ≤ 2
1
p′ W

1
q (∞)V − 1

p (∞) = 2
1
p′ M
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for all t ∈ [T,∞). By now we see that K ≲ A +M . Now suppose that (43) holds. On
taking limit for t → ∞ in (43) we obtain that (41) holds with M ≤ K. Besides that, it
holds

2
1
p′ A(p′ − 1) 1

p′ ≤ sup
t>0

W
1
q (t) [V 1−p′(t) − V 1−p′(∞)]

1
p′ ≤ sup

t>0
W

1
q (t)V − 1

p (t) = K,

hence A + M ≃ K and, in particular, the desired equivalence is proved. Moreover,
we recall that B (from (40)) is equal to A(32), thus the result follows, including the
statement about the optimal embedding constant.

While solving the remaining cases, we will now no longer explicitly prove the esti-
mates for the optimal constants as we did in above. However, if needed, the precise
estimates can be obtained by treating the inequalities in the following parts in such
a detail as in the case (i).

(ii) The necessity part is very easy: Testing the embedding by characteristic func-
tions of intervals [0, t], t > 0, gives us

sup
t>0

V
− 1

p (W (t) + ∫
∞

t
U−q(x)w(x)dx)

1
q < ∞,

which, with help of integrability of u, yields that A(33) < ∞. Obviously, Ã(25) has to be
true as well since Γq

u(w) ↪ Λq(w).
Now we prove sufficiency. Suppose that Ã(25) + A(33) < ∞. Let f ∈ M+(0,∞) be

a nonincreasing function (then f = f∗ a.e.). If ∫ ∞0 fpv = ∞, then

(∫
∞

0
(f∗∗u (x))qw(x)dx)

1
q ≤ C (∫

∞

0
(f∗(x))pv(x)dx)

1
p

(44)

is trivially satisfied. Otherwise, we have to apply the following “Stepanov’s method”:
There exists a sequence {fn} of nonincreasing functions such that fn ∈ C1

A(0,∞), n ∈ N,
and fn(x) ↑ f∗(x) for a.e. x ∈ (0,∞). The symbol C1

A we have used has the following
meaning:

C1
A(0,∞) ∶= {g ∈ M (0,∞); g′ ∈ C(0,∞) & lim

x→∞ g(x) = 0} .

Suppose that

(∫
∞

0
((fn)∗∗u (x))qw(x)dx)

1
q ≤ C (∫

∞

0
(f∗n(x))pv(x)dx)

1
p

(45)

holds for all n ∈ N. Then, by applying the Levi monotone convergence theorem on (45),
we obtain that (44) holds for all f ∈ M+(0,∞) if and only if it holds for all nonincreasing
f ∈ C1

A(0,∞). Hence, in (44) it suffices to consider f ∈ C1
A(0,∞) and nonincreasing.

For every such f there exists a function h ∈ M+(0,∞) such that

f(x) = ∫
∞

x
h(s)ds, x ∈ (0,∞). (46)

For this f and the corresponding h, we denote

g(y) ∶= (∫
∞

y
h)

p−1

h(y) = −p−1 d
dy

(∫
∞

y
h)

p

= −p−1(fp)′(y), y ∈ (0,∞).
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Thus, for every fixed x ∈ (0,∞) we have f(x) = (p ∫ ∞x g(y)dy)
1
p and we write

∫
x

0
f(s)u(s)ds = p

1
p∫

x

0
[∫

∞

s
g(y)dy]

1
p

u(s)ds ≤

≤ 2
1
p p

1
p

⎡⎢⎢⎢⎣∫
x

0
(∫

x

s
g(y)dy)

1
p

u(s)ds + ∫
x

0
(∫

∞

x
g(y)dy)

1
p

u(s)ds
⎤⎥⎥⎥⎦
≤

≤ 2
1
p p

1
p ∫

x

0
(∫

x

s
g(y)dy)

1
p

u(s)ds + 2
1
p U(x)f(x). (47)

From the Minkowski integral inequality (see [15, Chapter 0, Proposition 3.2]) we get

∫
x

0
(∫

x

s
g(y)dy)

1
p

u(s)ds = ∫
x

0
(∫

x

0
χ(s,x)(y)g(y)dy)

1
p

u(s)ds ≤

≤ [∫
x

0
(∫

x

0
(χ(s,x)(y)g(y))

1
p u(s)ds)

p

dy]
1
p = (∫

x

0
g(y)Up(y)dy)

1
p

which together with (47) yields

∫
x

0
f(s)u(s)ds ≲ (∫

x

0
g(y)Up(y)dy)

1
p +U(x)f(x).

It follows that

[∫
∞

0
(U−1(x)∫

x

0
f(s)u(s)ds)

q

w(x)dx]
1
q ≲

≲ [∫
∞

0
U−q(x) (∫

x

0
g(y)Up(y)dy)

q
p

w(x)dx]
1
q

+ (∫
∞

0
f q(x)w(x)dx)

1
q =∶ I1 + I2.

Recalling that f is nonincreasing, from Lemma 3.9(i) we obtain

I2 ≲ Ã(25) (∫
∞

0
fp(x)v(x)dx)

1
p

.

As for the rest, using the Minkowski integral inequality (for the L
q
p norm) again, we get

I1 = [∫
∞

0
(∫

∞

0
χ(0,x)(y)g(y)Up(y)U−p(x)w

p
q (x)dy)

q
p

dx]
1
q

≤

≤ [∫
∞

0
g(y)Up(y) (∫

∞

0
χ(0,x)(y)U−q(x)w(x)dx)

p
q

dy]
1
p

=

= [∫
∞

0
g(y)Up(y) (∫

∞

y
U−q(x)w(x)dx)

p
q

dy]
1
p

=

= ⎛
⎝∫

∞

0
g(y)

⎡⎢⎢⎢⎣
U(y) (∫

∞

y
U−q(x)w(x)dx)

1
q

V
− 1

p (y)
⎤⎥⎥⎥⎦

p

V (y)dy
⎞
⎠

1
p

≤

≤ A(33) (∫
∞

0
g(y)V (y)dy)

1
p ≲ A(33) (∫

∞

0
fp(x)v(x)dx)

1
p

.
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The last inequality follows from integration by parts. Indeed, since f ∈ C1
A(0,∞), we

have

∫
∞

0
g(y)V (y)dy ≃ ∫

∞

0
fp(x)v(x)dx + [−fpV ]∞0 =

= ∫
∞

0
fp(x)v(x)dx + lim

y→0+
fp(y)V (y) ≤

≤ ∫
∞

0
fp(x)v(x)dx + lim

y→0+∫
y

0
fp(x)v(x)dx =

= ∫
∞

0
fp(x)v(x)dx.

Altogether, the proof of this case is now complete.
(iii) Let us take 0 < q < 1 < p and start with the sufficiency. Assume that Ã(26),A(34) <

∞. By the standard argument (cf. (46) and the comments before it), we need to prove
that (44) holds for all nonincreasing f ∈ C1

A(0,∞). So, let us Let f be such function,
then there is a function h ∈ M+(0,∞) such that (46) holds. Take a fixed t > 0. By
changing the order of integration, we get

U−1(t)∫
t

0
f(x)u(x)dx = U−1(t)∫

t

0
h(x)U(x)dx + ∫

∞

t
h(x)dx.

Hence,

(∫
∞

0
U−q(t) [∫

t

0
f(x)u(x)dx]

q

w(t)dt)
1
q ≲

≲ (∫
∞

0
[∫

t

0
h(x)U(x)dx]

q

U−q(t)w(t)dt)
1
q + (∫

∞

0
f q(t)w(t)dt)

1
q

.

In the last factor we have used the identity from (46). Since Ã(26) < ∞, Lemma 3.9(ii)

yields (∫ ∞0 f qw)
1
q ≲ (∫ ∞0 fpv)

1
p , so it remains to find an upper bound for

I1 ∶= (∫
∞

0
[∫

t

0
h(x)U(x)dx]

q

U−q(t)w(t)dt)
1
q

.

Let us denote Φ(y) ∶= h(y)V (y), Ψ(y) ∶= ∫ y
0 Φ(s)ds, y ∈ (0,∞]. Integration by parts

gives

∫
t

0
U(x)Φ(x)V −1(x)dx ≤ U(t)Ψ(t)V −1(t) + ∫

t

0
U(x)Ψ(x)V −2(x)v(x)dx,

therefore,

Iq
1 ≲ ∫

∞

0

Ψq(t)
V q(t)w(t)dt + ∫

∞

0
(∫

t

0

U(x)Ψ(x)
V 2(x) v(x)dx)

q

U−q(t)w(t)dt =∶ Iq
2 + Iq

3 .

By integration by parts, we get

Iq
2 ≲ Ψq(∞)W (∞)V −q(∞) + ∫

∞

0
Ψq(t)W (t)V −q−1(t)v(t)dt =∶ Iq

4 + Iq
5 .
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Hölder inequality yields

Ψ(∞) = ∫
∞

0
f(t)v(t)dt ≤ (∫

∞

0
fp(t)v(t)dt)

1
p

V
1
p′ (∞),

thus

I4 ≤ (∫
∞

0
fp(t)v(t)dt)

1
p

V
− 1

p (∞)W 1
q (∞) ≤ (∫

∞

0
fp(t)v(t)dt)

1
p

Ã(26)

where the last step is obtained from Proposition 3.10. Next, since

sup
t>0

(∫
t

0
V −p(x)v(x)dx)

1
p (∫

t

0
[v1−p(x)]1−p′

dx)
1
p′ = sup

t>0
V
− 1

p′ (t)V 1
p′ (t) = 1 < ∞,

by the weighted Hardy inequality for nonnegative functions ([20, Theorem 1(a)], see
also [14]), it holds

∫
∞

0
(∫

t

0
f(x)v(x)dx)

p

V −p(t)v(t)dt ≲ ∫
∞

0
fp(t)v(t)dt. (48)

Fubini theorem and (46) yield

∫
t

0
h(s)V (s)ds ≤ ∫

t

0
h(s)V (s)ds + ∫

∞

t
h(s)V (t)ds =

= ∫
t

0
(∫

∞

x
h(s)ds) v(x)dx = ∫

t

0
f(x)v(x)dx,

so we get

∫
∞

0
Ψp(t)V −p(t)v(t)dt ≲ ∫

∞

0
fp(t)v(t)dt. (49)

Hence, subsequently applying Hölder inequality, Proposition 3.10, (45) and (48), we get

I5 ≤ (∫
∞

0
W

r
q (t)V − r

q (t)v(t)dt)
1
r (∫

∞

0
Ψp(t)V −p(t)v(t)dt)

1
p ≃

≃ Ã(26) (∫
∞

0
Ψp(t)V −p(t)v(t)dt)

1
p ≲ Ã(26) (∫

∞

0
fp(t)v(t)dt)

1
p

.

Another application of the appropriate type of Hardy inequality ([20, Theorem 1(b)])
and (48) yields

I3 ≲ Ã(26) (∫
∞

0
Ψp(t)V −p(t)v(t)dt)

1
p ≲ Ã(26) (∫

∞

0
fp(t)v(t)dt)

1
p

which was the last required estimate.
Now we turn to the necessity question. For x > 0, let us denote

ϑ(x) ∶= Up′(x)V −p′(x)v(x); Θ(x) ∶= ∫
x

0
ϑ(s)ds.
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Suppose that Λp(v) ↪ Γq
u(w) with C ∶= Opt (Λp(v),Γq

u(w)). At first, we will show that
A(34) ≃ A(50), where

A(50) ∶= (∫
∞

0
(∫

∞

t
U−q(x)w(x)dx)

r
p

Θ
r
p′ (t)U−q(t)w(t)dt)

1
r

. (50)

For n ∈ N consider the functions vn ∶= vχ[ 1
n

,∞] and wn ∶= wχ[0,n]. In addition, let us

denote ϑn(x) ∶= Up′(x)V −p′
n (x)vn(x) and Θn(x) ∶= ∫ x

0 ϑn(s)ds. Integration by parts
gives

∫
∞

0
(∫

∞

t
U−q(x)wn(x)dx)

r
p

U−q(t)wn(t)Θ
r
p′
n (t)dt =

= q

r
∫

∞

0
(∫

∞

t
U−q(x)wn(x)dx)

r
q

Θ
r
q′
n (t)ϑn(t)dt.

Taking the limit for n → ∞ on both sides of the equation and using the Levi theorem
gives A(50) ≃ A(34). This relation will be used later. Now, it holds

Ar
(34) = ∫

∞

0
(∫

∞

t
U−q(x)w(x)dx)

r
p

Θ
r
q′ (t)ϑ(t)V −1(t)V (t)dt =

= ∫
∞

0
[∫

∞

y
(∫

∞

t
U−q(x)w(x)dx)

r
q

Θ
r
q′ (t)ϑ(t)V −1(t)dt] v(y)dy =∶∫

∞

0
gp(x)v(x)dx.

We may assume that

∫
∞

t
U−q(x)w(x)dx for every t > 0 (51)

(otherwise Γq
u(w) = {0}). The function g then takes finite values and is nonincreasing.

The embedding then yields

CA
r
p

(34)
= C (∫

∞

0
gpv)

1
p ≳ (∫

∞

0
U−q(s) (∫

s

0
gu)

q

w(s)ds)
1
q

.

Let us assume for a while that v is just locally integrable on (0,∞) but V (∞) = ∞.
Then, for s > 0 we have

∫
s

0
gu ≥ ∫

s

0
(∫

s

y
(∫

∞

t
U−qw)

r
q

Θ
r
q′ (t)ϑ(t)V −1(t)dt)

1
p

u(y)dy ≥ (∫
∞

s
U−qw)

r
qp

J1(s),

where

J1(s) ∶= ∫
s

0
(∫

s

y
Θ

r
q′ (t)ϑ(t)V −1(t)dt)

1
p

u(y)dy ≥ Θ
r

q′p (s)J2(s),

where, finally,

J2(s) ∶= ∫
s

0
(∫

s

y
ϑ(t)V −1(t)dt)

1
p

u(y)dy.
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Now we continue estimating J2:

J2(s) = ∫
s

0
(∫

s

y
Up′(x)V −1−p′(x)v(x)dx)

1
p

u(y)dy ≥

≥ ∫
s

0
U

p′
p (y) (∫

s

y
V −1−p′(x)v(x)dx)

1
p

u(y) dy =

= 1
p
∫

s

0
U

p′
p (y)u(y)∫

s

y
(∫

s

x
V −1−p′v)

− 1
p′

V −1−p′(x)v(x)dxdy ≃

≃ ∫
s

0
∫

x

0
U

p′
p (y)u(y) (∫

s

x
V −1−p′v)

− 1
p′

V −1−p′(x)v(x)dy dx ≥

≥ ∫
s

0
V −1−p′(x)v(x) (∫

∞

x
V −1−p′v)

− 1
p′
∫

x

0
U

p′
p (y)u(y)dy dx ≃

≃ ∫
s

0
V −p′(x)v(x)∫

x

0
Up′−1(y)u(y)dy dx ≃

≃ ∫
s

0
Up′(x)V −p′(x)v(x)dx = Θ(s).

Thus, we obtain

CA
r
p

(34)
≥ (∫

∞

0
(∫

∞

s
U−qw)

r
p

Jq
1(s)U−q(s)w(s)ds)

1
p

≥

≥ (∫
∞

0
(∫

∞

s
U−qw)

r
p

Θ
r(q−1)

p (s)Jq
2(s)U−q(s)w(s)ds)

1
q

≳

≳ (∫
∞

0
(∫

∞

s
U−qw)

r
p

Θ
r
p′ (s)U−q(s)w(s)ds)

1
q

= A
r
q

(50)
≳ A

r
q

(34)
.

If A(34) < ∞, then we already have C ≳ A
r
q
− r

p

(34)
= A(34). Now assume that, on the contrary,

A(34) = ∞. Recalling that (51) holds, we see that

∞ > Ar
n ∶= ∫

∞

0
min{n, (∫

∞

t
U−qw)

r
q }Θ

r
q′ (t)ϑtχ[0,n](t)dt

for all n ∈ N and An ↑ ∞ for n → ∞. We can carry out the whole procedure above to
find out that C ≳ An ↑ ∞, hence C = ∞ as well. Therefore, the initial assumption of
C being finite already assures that A(34) < ∞. Now, to get rid of the assumption of
V (∞) = ∞, if V (∞) < ∞, which is the case that interests us, we consider a function
vε ∶= v + ε for an ε > 0 and observe that ∥ ⋅ ∥Γq

u(w) ≤ C∥ ⋅ ∥Λp(vε) holds, with C still
being equal to Opt (Λp(v),Γq

u(w)). Therefore, proceeding just as before, we obtain
that C ≳ Aε, where Aε is given by (34) with v replaced by vε. Fatou lemma (letting
ε → 0+) then yields C ≳ A(34). Finally we note that since Γq

u(w) ↪ Λq(w), we have
Ã(26) = Opt (Λp(v),Λq(w)) ≤ Opt (Λp(v),Γq

u(w)) = C, hence we obtain the desired
inequality C ≳ A(34) + Ã(26).

The remaining case 1 < q < p < ∞ is treated by methods similar to those of (i), so
we omit this part. The reader may as well refer to the particular part of [16, Theorem
1(b)], where the proof for u ≡ 1 is contained.
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(iv) Fubini theorem yields Γ1
u(w) = Λ1(z) where

z(x) = u(x)∫
∞

x
U−1(t)w(t)dt, x > 0.

Using Fubini theorem again, we also get

Z(x) = W (x) +U(x)∫
∞

x
U−1(t)w(t)dt, x > 0.

From Lemma 3.9(ii) it follows that Λp(v) ↪ Λ1(z) if and only if A(35) < ∞ and then,
moreover, Opt (Λp(v),Λ1(z)) ≃ A(35).

(v) First assume that (44) holds for all f such that f ∈ M (R,µ). Since

sup
0<s≤t

U(s)f∗(s) ≤ ∫
t

0
f∗(s)u(s)ds, t > 0,

it also holds that

(∫
∞

0
[ sup
0<s≤t

U(s)f∗(s)]
q

U−q(t)w(t)dt)
1
q

≲ (∫
∞

0
(f∗(t))pv(t)dt)

1
p

(52)

for all f ∈ M (R,µ). In particular, (52) is satisfied for every function f whose nonin-
creasing rearrangement can be represented as

f∗(t) = (∫
∞

t
h(s)ds)

1
p

where h is a nonnegative function on (0,∞). Fubini theorem then yields that

⎛
⎝∫

∞

0
[ sup
0<s≤t

Up(s)∫
∞

s
h(x)dx]

q
p

U−q(t)w(t)dt
⎞
⎠

1
q

≲ (∫
∞

0
h(t)V (t)dt)

1
p

(53)

holds for every h ∈ M+(0,∞). We define the operator Q∶M+(0,∞) →M+(0,∞) by

Qg(s) ∶= ∫
∞

s
U−1(x)g(x)dx, g ∈ M+(0,∞), s ∈ (0,∞),

so, by substituting h(x) ↔ U−1(x)g(x) in (53), we obtain

⎛
⎝∫

∞

0
[ sup
0<s≤t

Up(s)Qg(s)]
q
p

U−q(t)w(t)dt
⎞
⎠

p
q

≲ ∫
∞

0
g(t)U−1(t)V (t)dt (54)

for all h ∈ M+(0,∞). Carrying out subsequent substitutions, we get

∫
∞

0
[ sup
0<s≤t

Up(s)Qg(s)]
q
p

U−q(t)w(t)dt =

= ∫
∞

0
[ sup
0<s≤t

Up(s)∫
1
s

0
g (1

x
)U (1

x
)x−2 dx]

q
p

U−q(t)w(t)dt =

= ∫
∞

0

⎡⎢⎢⎢⎢⎣
sup

1
t
≤s<∞

Up (1
s
)∫

s

0
g (1

x
)U (1

x
)x−2 dx

⎤⎥⎥⎥⎥⎦

q
p

U−q(t)w(t)dt =

= ∫
∞

0
[ sup
t≤s<∞

Up (1
s
)∫

s

0
g (1

x
)U (1

x
)x−2 dx]

q
p

U−q (1
t
)w (1

t
) t−2 dt.
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Therefore, (54) yields

⎛
⎝∫

∞

0
[ sup
t≤s<∞

Up (1
s
)∫

s

0
h(x)dx]

q
p

U−q (1
t
)w (1

t
) t−2 dt

⎞
⎠

p
q

≲ ∫
∞

0
h(x)V (1

x
) dx (55)

for all g ∈ M+(0,∞). At this point we will use [10, Theorem 4.4], with the following
setting: q = q

p , p = 1, u(t) = Up(t), w(t) = U−q (1
t
)w (1

t
) t−2, v(t) = V (1

t
), hence r = r

p ,
u(t) = Up (1

t
) and σp(0, t) = V −1 (1

t
). (All the left-hand-side objects refer to those

appearing in the theorem’s statement, the right-hand-side ones are those we have been
working with.) The theorem yields that (55) holds for all g ∈ M+(0,∞) if and only if
Ãp

(26)
and A(36) are finite.

For the converse implication (sufficiency), suppose that Ãp
(26)

,A(36) < ∞. We need
the inequality

(∫
∞

0
[U−1(t)∫

t

0
f∗(s)u(s)ds]

q

w(t)dt)
p
q ≲ ∫

∞

0
f∗(t)v(x) (56)

to hold for all f ∈ M (R,µ). For every such f , as a particular case of [6, Theorem 3.2]
we have

(∫
t

0
(f∗(s)) 1

p u(s)ds)
p

≤ p∫
t

0
f∗(s)Up−1(s)u(s)ds, t > 0.

Hence, to prove (56), we will show that

(∫
∞

0
[U−p(t)∫

t

0
f∗(s)Up−1(s)u(s)ds]

q
p

w(t)dt)
p
q

≲ ∫
∞

0
f∗(t)v(t)dt (57)

holds for all f ∈ M (R,µ). Considering Stepanov’s method (see the case (ii) for explana-
tion), we know that it suffices to prove that (57) holds for every f ∈ M (R,µ) for which
there exists a function h ∈ M+(0,∞) such that f∗(t) = ∫ ∞t h(s)ds for every t > 0. By
Fubini theorem, for such pair f, h we have

U−p(t)∫
t

0
f∗(s)Up−1(s)u(s)ds ≃ ∫

∞

t
h(s)ds +U−p(t)∫

t

0
Up(s)h(s)ds

and
∫

∞

0
f∗(t)v(t)ds = ∫

∞

0
h(t)V (t)dt.

Thus, we obtain that (57) holds if

(∫
∞

0
[∫

∞

t
h(s)ds]

q
p

w(t)dt)
p
q

≲ ∫
∞

0
h(t)V (t)dt (58)

and

(∫
∞

0
[U−p(t)∫

t

0
Up(s)h(s)ds]

q
p

w(t)dt)
p
q

≲ ∫
∞

0
h(t)V (t)dt (59)

hold for all h ∈ M+(0,∞). An application of [17, Theorem 3.3] (in the setting f = hU ,
v = U−qw, u = V U−1) and its analogue for ∫ ∞t in place of ∫ t

0 gives that (58) and (59)
hold if and only if Ãp

(26)
,A(36) < ∞ which was our initial assumption.
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From now on, we will return to the Lorentz spaces of functions over a finite-measure
domain. Thus, weights will be again defined just on [0,1].

Theorem 3.20 (The case Λp(v) ∗↪ Γq
u(w)). Let v,w be admissible weights and p, q ∈

(0,∞). Let u be a positive integrable weight.

(i) Let 1 < p ≤ q < ∞. Then Λp(v) ∗↪ Γq
u(w) if and only if both

lim
t→0+

(∫
1

t
U−q(x)w(x)dx)

1
q (∫

t

0
Up′(x)V −p′(x)v(x)dx)

1
p′ = 0 (60)

and
lim
t→0+

W
1
q (t)V − 1

p (t) = 0. (61)

hold true.

(ii) Let 0 < p ≤ 1, 0 < p ≤ q < ∞. Then Λp(v) ∗↪ Γq
u(w) if and only if both (61) and

lim
t→0+

U(t)V − 1
p (t) (∫

1

t
U−q(x)w(x)dx)

1
q = 0 (62)

hold true.

(iii) Let 1 < p < ∞, 0 < q < p < ∞, q ≠ 1. Then Λp(v) ∗↪ Γq
u(w) if and only if A(26) < ∞,

∫
1

0
(∫

1

t
U−q(x)w(x)dx)

r
q ×

× (∫
t

0
Up′(x)V −p′(x)v(x)dx)

r
q′

Up′(t)V −p′(t)v(t)dt < ∞ (63)

and (60) holds.

(iv) Let 1 = q < p < ∞. Then Λp(v) ∗↪ Γq
u(w) if and only if

∫
∞

0
(W (t)+U(t)∫

∞

t

w(x)
U(x) dx)

p′−1

V 1−p′(t)u(t)(∫
∞

t

w(x)
U(x) dx) dt < ∞

and (60) holds.

(v) Let 0 < q < p ≤ 1. Then Λp(v) ∗↪ Γq
u(w) if and only if A(26) < ∞,

∫
∞

0
sup
0<x≤t

U r(x)V − r
p(x) (∫

∞

t
U−q(x)w(x)dx)

r
p

U−q(t)w(t)dt < ∞

and (62) holds.
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Proof. (i) Let s ∈ (0,1) be fixed. From Lemma 3.19(i) we have

Opt (Λp(v),Γq
u(wχ[0,s])) ≃

≃ sup
0<t<s

(∫
s

t
U(x)−qw(x)dx)

1
q (∫

t

0
U(x)p′V −p′(x)v(x)dx)

1
p′ + sup

0<t<s
W

1
q (t)V − 1

p (t).

Next, Lemma 3.8 (ii) provides

Opt (Λp(v),Λ1(uχ[0,s])) = (∫
s

0
Up′−1(x)u(x)V 1−p′(x)dx)

1
p′ =

= (∫
s

0
Up′−1(x)u(x)V 1−p′

s (x)dx)
1
p′

. (64)

Applying Proposition 3.10 (with w ∶= uχ[0,s] and v ∶= vχ[0,s]) shows that

(∫
s

0
Up′−1(x)u(x)V 1−p′

s (x)dx)
1
p′ ≃ (∫

s

0
Up′(x)V −p′(x)v(x)dx)

1
p′

. (65)

From Theorem 3.6(iii) now follows the characterization in the form of the following
conditions: (60),

lim
s→0+

sup
0<t<s

(∫
s

t
U−q(x)w(x)dx)

1
q (∫

t

0
Up′(x)V −p′(x)v(x)dx)

1
p′ = 0 (66)

and
lim
s→0+

sup
0<t<s

W
1
q (t)V − 1

p (t) = 0. (67)

These conditions may be simplified: For s ∈ (0,1) it holds

sup
0<t<s

(∫
s

t
U−q(x)w(x)dx)

1
q (∫

t

0
Up′(x)V −p′(x)v(x)dx)

1
p′ ≤

≤ sup
0<t<s

(∫
1

t
U−q(x)w(x)dx)

1
q (∫

t

0
Up′(x)V −p′(x)v(x)dx)

1
p′

,

hence, following Remark 3.11, the condition (60) implies (66) and, furthermore, (67) is
equivalent to (61).

(ii) Similarly as in (i), Theorem 3.6(iii), Lemma 3.19(ii) and Lemma 3.8(i) provide
that Λp(v) ∗↪ Γq

u(w) if and only if

lim
s→0+

sup
0<t<s

U(t)V − 1
p (t) (∫

s

t
U−q(x)w(x)dx)

1
q + sup

0<t<s
W

1
q (t)V − 1

p (t) = 0

and

lim
s→0+

sup
0<t<s

U(t)V − 1
p (t) (∫

1

s
U−q(x)w(x)dx)

1
q = 0.

Using Remark 3.11, we deduce that these conditions together are equivalent to (61) and
(62).
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(iii) By Theorem 3.6(iii), Lemma 3.19(iii) and Lemma 3.8(ii) and having considered
also (64) and (65), in this case we obtain the characterization by

lim
s→0+ ∫

s

0
W

r
p (x)V − r

p (x)w(x)dx = 0,

lim
s→0+ ∫

s

0
(∫

s

t
U−qw)

r
q (∫

t

0
Up′V −p′v)

r
q′
Up′(t)V −p′(t)v(t)dt = 0

and (60). As usual, the first two conditions are implied by (63) and the fact that
A(26) < ∞, thanks to the absolute continuity of the integral. The converse implication
is also true (a simple reason is given by Proposition 3.4).

The remaining cases (iv) and (v) are analogous.

Lemma 3.21. Let v,w be admissible weights and p, q ∈ (0,∞). Let u be a positive
integrable weight.

(i) Let 0 < p ≤ 1. Then Λp(v) ↪ Γq,∞
u (w) if and only if A(68) < ∞ where

A(68) ∶= sup
0<τ<t<1

U(τ)U−1(t)W 1
q (t)V − 1

p (τ). (68)

Moreover, Opt (Λp(v),Γq,∞
u (w)) = A(68).

(ii) Let 1 < p < ∞. Then Λp(v) ↪ Γq,∞
u (w) if and only if A(69) < ∞ where

A(69) ∶= sup
0<t<1

U−1(t)W 1
q (t) (∫

t

0
Up′−1(x)V 1−p′(x)u(x)dx)

1
p′

. (69)

Moreover, Opt (Λp(v),Γq,∞
u (w)) ≃ A(69).

Proof. Both cases follow from Proposition 3.5(ii) and Lemma 3.8.

Theorem 3.22 (The case Λp(v) ∗↪ Γq,∞
u (w)). Let v,w be admissible weights and p, q ∈

(0,∞). Let u be a positive integrable weight.

(i) Let 0 < p ≤ 1. Then Λp(v) ∗↪ Γq,∞
u (w) if and only if

lim
s→0+

sup
0<τ<s
τ≤t<1

U(τ)U−1(t)W 1
q (t)V − 1

p (τ) = 0. (70)

(ii) Let 1 < p < ∞. Then Λp(v) ∗↪ Γq,∞
u (w) if and only if

lim
s→0+

sup
0<t<1

U−1(t)W 1
q (t)(∫

min{t,s}

0
Up′−1(x)V 1−p′(x)u(x)dx)

1
p′
= 0. (71)
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Proof. (i) By Theorem 3.6(iv), the characterization of Λp(v) ∗↪ Γq,∞
u (w) is given by (17)

and (18) with X ∶= Λp(v). We begin with the necessity of (70). By Lemma 3.8(i), (18)
occurs if and only if

lim
s→0+

sup
0<τ<s<t<1

U(τ)U−1(t)W 1
q (t)V − 1

p (τ) = 0. (72)

By Lemma 3.21, (17) holds if and only if

lim
s→0+

sup
0<τ<t<1

U(τ)U−1(t)W
1
q

s (t)V − 1
p (τ) = 0. (73)

Obviously, (73) implies

lim
s→0+

sup
0<τ<t<s

U(τ)U−1(t)W 1
q (t)V − 1

p (τ) = 0 (74)

which together with (72) gives (70).
As for the sufficiency, it remains to show (70) implies (73). Assume (70) holds.

Thus, there exists s ∈ (0,1) such that

sup
0<τ<s
τ<t<1

U(τ)U−1(t)W 1
q (t)V − 1

p (τ) < ∞. (75)

Take this fixed s. The functions u, v,w are admissible, thus there are constants a, b > 0
such that

a < min{U(t), V (t),W (t)} ≤ max{U(t), V (t),W (t)} < b

for all t ∈ (s,1], therefore

sup
s<τ<t<1

U(τ)U−1(t)W 1
q (t)V − 1

p (τ) < ∞. (76)

After combining (75) with (76), we observe that A(68) is finite. (This could be also
obtained from Proposition 3.4.) Now take an arbitrary ε ∈ (0,A(68)]. The function W
is nonnegative, nondecreasing, continuous and lims→0+W (s) = 0. Hence, we can find
an S ∈ (0,1] such that W

1
q (S)W − 1

q (1) ≤ εA−1
(68). Now we observe that for every s ∈ (0, S)

there exists a δ = δ(ε, s) > 0 such that for every t ∈ [δ,1] it holds Ws(t)W−1(t) ≤ εA−1
(68)

and δ is the least number with this property. Thus, for every fixed s ∈ (0, S) it holds

sup
0<τ<t<1

U(τ)W
1
q

s (t)
U(t)V 1

p (τ)
= max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup

0<τ<t<δ

U(τ)W
1
q

s (t)
U(t)V 1

p (τ)
; sup

0<τ<t<1
δ≤t

U(τ)W
1
q

s (t)
U(t)V 1

p (τ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

= max
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sup
0<τ<t<δ

U(τ)W
1
q

s (t)
U(t)V 1

p (τ)
; sup

0<τ<t<1
δ≤t

U(τ)W
1
q

s (t)W 1
q (t)

U(t)W 1
q (t)V 1

p (τ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≤

≤ max
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sup
0<τ<t<δ

U(τ)W
1
q

s (t)
U(t)V 1

p (τ)
; εA−1

(68) sup
0<τ<t<1

δ≤t

U(τ)W 1
q (t)

U(t)V 1
p (τ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≤

≤ max
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sup
0<τ<t<δ

U(τ)W
1
q

s (t)
U(t)V 1

p (τ)
; ε

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= max{a(s), ε},
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say. Moreover, we observe that δ(ε, s) vanishes as s → 0+. Therefore, since Ws ≤ W ,
from (70) we obtain that a(s) → 0 for s → 0+ as well. Hence, for a fixed ε > 0 we were
able to find an s such that

sup
0<τ<t<1

U(τ)W
1
q

s (t)U−1(t)V − 1
p (τ) ≤ ε.

This implies the validity of (73) and the proof of this part is complete.
(ii) We just proceed similarly as we did in (i). Again, we use Theorem 3.6(iv) with

X ∶= Λp(v). So, according to Lemma 3.8(ii), we see that (18) is equivalent to

lim
s→0+

sup
s≤t<1

U−1(t)W 1
q (t) (∫

s

0
Up′−1(x)V 1−p′(x)u(x)dx)

1
p′ = 0, (77)

while (17) is rewritten as

lim
s→0+

sup
0<t<1

U−1(t)W
1
q

s (t) (∫
t

0
Up′−1(x)V 1−p′(x)u(x)dx)

1
p′ = 0. (78)

The condition (71) is a combination of (77) and

lim
s→0+

sup
0<t<s

U−1(t)W 1
q (t) (∫

t

0
Up′−1(x)V 1−p′(x)u(x)dx)

1
p′ = 0, (79)

hence it remains to show that (79) implies (78). So, assume that (79) holds. It is no
problem to show that A(69) < ∞. Consider a fixed ε ∈ (0,A(69)]. Again, we find S ∈ (0,1]
such that W

1
q (S)W− 1

q (1) ≤ εA−1
(69). Then for every s ∈ (0, S) exists the least δ(ε, s) > 0

such that for every t ∈ [δ,1] it holds Ws(t)W−1(t) ≤ εA−1
(69). For every fixed s ∈ (0, S)

and every t ∈ (0,1) it holds

U−1(t)W
1
q

s (t) (∫
t

0
Up′−1(x)V 1−p′(x)u(x)dx)

1
p′ ≤

max
⎧⎪⎪⎨⎪⎪⎩

sup
0<t<δ(ε,s)

U−1(t)W
1
q

s (t) (∫
t

0
Up′−1(x)V 1−p′(x)u(x)dx)

1
p′
; ε

⎫⎪⎪⎬⎪⎪⎭
which yields (78). Details are omitted in here as they can be found in part (i).

Lemma 3.23. Let v,w be admissible weights and p, q ∈ (0,∞). Let u be a positive
integrable weight. Then Λp,∞(v) ↪ Γq

u(w) if and only if A(80) < ∞, where

A(80) ∶= (∫
1

0
[∫

t

0
V
− 1

p (x)u(x)dx]
q

U−q(t)w(t)dt)
1
q

. (80)

Moreover, Opt (Λp,∞(v),Γq
u(w)) ≃ A(80).

Proof. The result follows from Proposition 3.5(i).
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Theorem 3.24 (The case Λp,∞(v) ∗↪ Γq
u(w)). Let v,w be admissible weights and p, q ∈

(0,∞). Let u be a positive integrable weight. Then Λp,∞(v) ∗↪ Γq
u(w) if and only if

lim
s→0+ ∫

1

0
(∫

min{t,s}

0
V
− 1

p (x)u(x)dx)
q

U−q(t)w(t)dt = 0. (81)

Proof. By Theorem 3.6(iii) and Lemmas 3.15 and 3.23 we get the characterization by

lim
s→0+∫

s

0
(∫

t

0
V
− 1

p (x)u(x)dx)
q

U−q(t)w(t)dt = 0 (82)

and

lim
s→0+

(∫
1

s
U−q(t)w(t)dt)

1
q

∫
s

0
V
− 1

p (x)u(x)dx = 0.

The latter condition can be obviously rewritten by

lim
s→0+∫

1

s
(∫

s

0
V
− 1

p (x)u(x)dx)
q

U−q(t)w(t)dt = 0.

A combination of this condition and (82) is (81).

Lemma 3.25. Let v,w be admissible weights and p, q ∈ (0,∞). Let u be a positive
integrable weight. Then Λp,∞(v) ↪ Γq,∞

u (w) if and only if A(83) < ∞, where

A(83) ∶= sup
0<t<1

U−1(t)W 1
q (t)∫

t

0
V
− 1

p (x)u(x)dx. (83)

Moreover, Opt (Λp,∞(v),Γq,∞
u (w)) = A(83).

Proof. See Proposition 3.5(i).

Theorem 3.26 (The case Λp,∞(v) ∗↪ Γq,∞
u (w)). Let v,w be admissible weights and

p, q ∈ (0,∞). Let u be a positive integrable weight. Then Λp,∞(v) ∗↪ Γq,∞
u (w) if and only

if

lim
s→0+

sup
0<t<1

U−1(t)W 1
q (t)∫

min{t,s}

0
V
− 1

p (x)u(x)dx = 0.

Proof. From Theorem 3.6(iv) and Lemmas 3.15 and 3.25 we have the conditions

lim
s→0+

sup
s<t<1

U−1(t)W 1
q (t)∫

s

0
V
− 1

p (x)u(x)dx = 0

and
lim
s→0+

sup
0<t<1

U−1(t)W
1
q

s (t)∫
t

0
V
− 1

p (x)u(x)dx = 0.

Since the function U−1(t) ∫ t
0 V

− 1
p (x)u(x)dx = (V − 1

p )∗∗u (t) is nonincreasing in t, the
latter expression is rewritten by

lim
s→0+

sup
0<t≤s

U−1(t)W 1
q (t)∫

t

0
V
− 1

p (x)u(x)dx = 0

and the rest is obvious.
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3.3 Embeddings of type Γ
∗↪ Λ

Definition 3.27. Let ϕ∶ [0,1] → [0,∞) be a continuous strictly increasing function
such that ϕ(0) = 0. Let ν be a nonnegative Borel measure on [0,1]. Then ν is called
nondegenerate with respect to ϕ if the following conditions are satisfied for every t ∈
(0,1):

∫[0,1]
dν(s)

ϕ(s) + ϕ(t) < ∞, ∫[0,1]
dν(s)
ϕ(s) = ∞. (84)

In the following, the symbol d(Up(t)) denotes the Lebesgue-Stieltjes integration.

Lemma 3.28. Let v,w be admissible weights. Let u be a positive integrable weight
and 0 < p, q < ∞. When p > q, we set r = pq

p−q . Assume that the measure v(t)dt is
nondegenerate with respect to Up.

(i) If 0 < p ≤ q < ∞ and 1 ≤ q < ∞, then Γp
u(v) ↪ Λq(w) if and only if A(85) < ∞ where

A(85) ∶= sup
0<t<1

W
1
q (t)

(V (t) +Up(t) ∫ 1
t U−p(x)v(x)dx)

1
p

. (85)

(ii) If 1 ≤ q < p < ∞, then Γp
u(v) ↪ Λq(w) if and only if A(86) < ∞ where

A(86) ∶=
⎛
⎝∫

1

0

U r(t) [supy∈[t,1] U
−r(y)W r

q (y)]

(V (t) +Up(t) ∫ 1
t U−p(x)v(x)dx)

r
p
+2
×

× V (t) (∫
1

t
U−p(x)v(x)dx) d(Up(t))⎞⎠

1
r

. (86)

(iii) If 0 < p ≤ q < 1, then Γp
u(v) ↪ Λq(w) if and only if A(87) < ∞ where

A(87) ∶= sup
0<t<1

W
1
q (t) +U(t) (∫ 1

t U q′(x)W−q′(x)w(x)dx)−
1
q′

(V (t) +Up(t) ∫ 1
t U−p(x)v(x)dx)

1
p

. (87)

(iv) If 0 < q < 1 and 0 < q < p, then Γp
u(v) ↪ Λq(w) if and only if A(88) < ∞ where

A(88) ∶=
⎛
⎝∫

1

0

[W 1−q′(t) +U−q′(t) ∫ 1
t U q′(x)W −q′(x)w(x)dx]−

r
q′ −1

(V (t) +Up(t) ∫ 1
t U−p(x)v(x)dx)

r
p

×

× W−q′(t)w(t)dt
⎞
⎠

1
r

. (88)

Moreover, in each this case, for the appropriate A ∈ {A(85),A(86),A(87),A(88)} it holds
Opt (Γp

u(v),Λq(w)) ≃ A.
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Proof. This result follows from [11, Theorem 4.2]. However, that theorem in the original
paper contains some stronger restrictions on v since it is stated for spaces over [0,∞).
Anyway, if we consider spaces over [0,1], the proof of the original theorem and all the
supporting results can be re-done based just on our setup of Lemma 3.28. In fact, we
just ignore the parts of the proof which cover the interval (1,∞). We omit the details
as they contain no new ideas compared to [11].

Theorem 3.29 (The case Γp
u(v) ∗↪ Λq(w)). Let v,w be admissible weights. Let u be

a positive integrable weight and 0 < p, q < ∞. When p > q, we set r = pq
p−q . Assume that

the measure v(t)dt is nondegenerate with respect to Up.

(i) If 0 < p ≤ q < ∞ and 1 ≤ q < ∞, then Γp
u(v) ∗↪ Λq(w) if and only if

lim
t→0+

W
1
q (t)

(V (t) +Up(t) ∫ 1
t U−p(x)v(x)dx)

1
p

= 0. (89)

(ii) If 1 ≤ q < p < ∞, then Γp
u(v) ∗↪ Λq(w) if and only if

∫
1

0

U r(t) [supy∈[t,1] U
−r(y)W r

q (y)]V (t) ∫ 1
t U−p(x)v(x)dx

(V (t) +Up(t) ∫ 1
t U−p(x)v(x)dx)

r
p
+2

d(Up(t)) < ∞. (90)

(iii) If 0 < p ≤ q < 1, then Γp
u(v) ∗↪ Λq(w) if and only if

lim
t→0+

W
1
q (t) +U(t) (∫ 1

t U q′(x)W −q′(x)w(x)dx)−
1
q′

(V (t) +Up(t) ∫ 1
t U−p(x)v(x)dx)

1
p

= 0.

(iv) If 0 < q < 1 and 0 < q < p, then Γp
u(v) ∗↪ Λq(w) if and only if

∫
1

0

[W 1−q′(t) +U−q′(t) ∫ 1
t U q′(x)W−q′(x)w(x)dx]−

r
q′ −1

W −q′(t)w(t)

(V (t) +Up(t) ∫ 1
t U−p(x)v(x)dx)

r
p

dt < ∞.

Proof. (i) Theorem 3.6 and Lemma 3.28 imply that Γp
u(v) ∗↪ Λq(w) if and only if

lim
s→0+

sup
0<t<1

W
1
q

s (t)
(V (t) +Up(t) ∫ 1

t U−p(x)v(x)dx)
1
p

. (91)

One can easily check that for t ∈ (0,1),

(V (t) +Up(t)∫
1

t
U−p(x)v(x)dx)

1
p = ϕΓp

u(v)(t), (92)
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where ϕΓp
u(v) denotes the fundamental function of Γp

u(v) (see Definition 2.14). Thus,
the denominator in (91) is nondecreasing in t, hence (91) is equivalent to (89).

(ii) Let us denote

a(t) ∶= V (t) ∫ 1
t U−p(x)v(x)dx

(V (t) +Up(t) ∫ 1
t U−p(x)v(x)dx)

r
p
+2

, t ∈ (0,1).

Theorem 3.6(i) provides that Γp
u(v) ∗↪ Λq(w) if and only if

lim
s→0+∫

1

0
U r(t)[ sup

y∈[t,1]
U−r(y)W

r
q

s (y)]a(t)d(Up(t)) = 0. (93)

It is easy to show that (93) implies (90) (either directly or by Proposition 3.4). Now we
prove the converse, so we assume (90) and proceed to show (93). For a fixed s ∈ (0,1)
we have Ws(t) = W (s), t ∈ [s,1), hence

∫
1

0
U r(t)[ sup

y∈[t,1]
U−r(y)W

r
q

s (y)]a(t)d(Up(t)) =

= ∫
s

0
U r(t)[ sup

y∈[t,1]
U−r(y)W

r
q

s (y)]a(t)d(Up(t))+

+ ∫
1

s
U r(t)[ sup

y∈[t,1]
U−r(y)W r

q (s)]a(t)d(Up(t))

and this is equal to

∫
1

0
U r(t)[ sup

y∈[t,1]
U−r(y)W

r
q

s (y)]a(t)χ[0,s](t)d(Up(t))+

+ ∫
1

0
W

r
q (s)a(t)χ(s,1](t)d(Up(t)). (94)

We have also used the fact that U−r is decreasing. We observe that the integrands of
the both parts of (94) are estimated from above by the integrand of (90), therefore the
former summand converges to zero for s → 0+ following the absolute continuity of the
integral and the latter one does the same thanks to the Lebesgue dominated convergence
theorem, because W

r
q (s) s→0+ÐÐÐ→ 0. Hence, (93) is satisfied.

(iii) It suffices to realize that U(t) (∫ 1
t U q′(x)W−q′

s (x)w(x)χ[0,s](x)dx)−
1
q′ = 0 for

t > s (remember that q′ < 0) and the rest is done in the same way as (i).
(iv) We use Theorem 3.6(i), Lemma 3.28 and the absolute continuity of the integral.

Lemma 3.30. Let v,w be admissible weights. Let u be a positive integrable weight
and 0 < p, q < ∞. Then Γp

u(v) ↪ Λq,∞(w) if and only if A(85) < ∞. Moreover,
Opt (Γp

u(v),Λq,∞(w)) = A(85).

Proof. The lemma is a direct consequence of Proposition 3.5(iii).
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Theorem 3.31 (The case Γp
u(v) ∗↪ Λq,∞(w)). Let v,w be admissible weights. Let u be

a positive integrable weight. Suppose that 0 < p, q < ∞. Then Γp
u(v) ∗↪ Λq,∞(w) if and

only if (89) holds.

Proof. The result follows by using Theorem 3.6(ii), Lemma 3.30 and the monotonicity
of the fundamental function. The procedure is the same as that of the proof of Theorem
3.29(i).

For details of the objects appearing in the following lemma, see [12, Lemma 1.5,
Theorem 1.8] and [11, Remark 2.10(ii)].

Lemma 3.32. Let v,w be admissible weights, let u be a positive integrable weight. Let
0 < p, q < ∞. Let the function ϕ, defined by

ϕ(t) ∶= U(t) sup
x∈(t,1)

U−1(x)V 1
p (x), t ∈ (0,1),

satisfy
lim
t→0+

ϕ(t) = lim
t→0+

inf
x∈(t,1)

U(x)V − 1
p (x) = 0.

Let ν be the representation measure of U qϕ−q with respect to U q, i.e. a nonnegative
Borel measure such that

inf
x∈(t,1)

U q(x)V − q
p (x) = U q(t)∫[0,1]

dν(x)
U q(x) +U q(t) , t ∈ (0,1).

(i) If 1 ≤ q < ∞ then Γp,∞
u (v) ↪ Λq(w) if and only if A(95) < ∞ where

A(95) ∶=
⎛
⎝∫

1

0
sup

x∈(t,1)
W (x)U−q(x)dν(t)⎞⎠

1
q

. (95)

Moreover, Opt (Γp,∞
u (v),Λq(w)) ≃ A(95).

(ii) If 0 < q < 1 then Γp,∞
u (v) ↪ Λq(w) if and only if A(96) < ∞ where

A(96) ∶= (∫
1

0
U−q(t)W (t) + [∫

1

t
U q′(x)W q′(x)w(x)dx]

1−q

dν(t))
1
q

< ∞. (96)

Moreover, Opt (Γp,∞
u (v),Λq(w)) ≃ A(96).

Proof. The result is proved in [12, Theorem 1.8] for spaces over a domain with infinite
measure. The construction can be however restricted to a finite-measure domain as well
(see the comments in the proof of Lemma 3.28).

Theorem 3.33 (The case Γp,∞
u (v) ∗↪ Λq(w)). Assume that u, v,w, p, q,ϕ, ν are as in

Lemma 3.32. Recall that we denote Ws(t) = ∫ t
0 w(x)χ[0,s](x)dx for s, t ∈ (0,1].

(i) If 1 ≤ q < ∞ then Γp,∞
u (v) ∗↪ Λq(w) if and only if

lim
s→0+ ∫

1

0
sup

x∈(t,1)
Ws(x)U−q(x)dν(t) = 0.
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(ii) If 0 < q < 1 then Γp,∞
u (v) ∗↪ Λq(w) if and only if

lim
s→0+ ∫

1

0
U−q(t)Ws(t) + [∫

1

t
U q′(x)W q′(x)w(x)χ[0,s](x)dx]

1−q

dν(t) = 0.

Proof. The theorem follows from Theorem 3.6(ii) and Lemma 3.32.

Lemma 3.34. Let v,w be admissible weights. Let u be a positive integrable weight and
0 < p, q < ∞. Then Γp,∞

u (v) ↪ Λq,∞(w) if and only if A(97) < ∞ where

A(97) ∶= sup
0<t<1

W
1
q (t)U−1(t) ( sup

t<x<1
U−1(x)V 1

p (x))
−1

. (97)

Moreover, Opt (Γp,∞
u (v),Λq,∞(w)) = A(97).

Proof. The assertion follows by Proposition 3.5(iii) since, for t ∈ (0,1),

ϕΓp,∞
u (v)(t) = max{ sup

0<x<t
V

1
p (x); sup

t<x<1
U(t)U−1(x)V 1

p (x)} =

= U(t) sup
t<x<1

U−1(x)V 1
p (x). (98)

Theorem 3.35 (The case Γp,∞
u (v) ∗↪ Λq,∞(w)). Let v,w be admissible weights. Let u

be a positive integrable weight and 0 < p, q < ∞. Then Γp,∞
u (v) ∗↪ Λq,∞(w) if and only if

lim
s→0+

W
1
q (t)U−1(t) ( sup

t<x<1
U−1(x)V 1

p (x))
−1

= 0. (99)

Proof. Applying Theorem 3.6(ii) and Lemma 3.34, we obtain the characterization by

lim
s→0+

sup
0<t<1

W
1
q

s (t)U−1(t) ( sup
t<x<1

U−1(x)V 1
p (x))

−1

= 0.

Equivalence of the previous and (99) is then, as usual, granted by the monotonicity of
the fundamental function (see (98)) and Remark 3.11.
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3.4 Embeddings of type Γ
∗↪ Γ

For the definition of nondegeneracy of a measure, which term appears in the following,
see Definition 3.27.

Lemma 3.36. Let v,w be admissible weights, let u be a positive integrable weight.
Let 0 < p, q < ∞. When p > q, we set r = pq

p−q . Assume that the measure v(t)dt is
nondegenerate with respect to Up.

(i) If 0 < p ≤ q < ∞, then Γp
u(v) ↪ Γq

u(w) if and only if A(100) < ∞ where

A(100) ∶= sup
0<t<1

(W (t) +U q(t) ∫ 1
t U−q(x)w(x)dx)

1
q

(V (t) +Up(t) ∫ 1
t U−p(x)v(x)dx)

1
p

. (100)

Moreover, Opt (Γp
u(v),Γq

u(w)) ≃ A(100).

(ii) If 0 ≤ q < p < ∞, then Γp
u(v) ↪ Γq

u(w) if and only if A(101) < ∞ where

A(101) ∶=
⎛
⎜⎜
⎝
∫

1

0

(W (t) +U q(t) ∫ 1
t U−q(x)w(x)dx)

r
q
−1

w(t)

(V (t) +Up(t) ∫ 1
t U−p(x)v(x)dx)

r
p

dt

⎞
⎟⎟
⎠

1
p

. (101)

Moreover, Opt (Γp
u(v),Γq

u(w)) ≃ A(101).

Proof. See [11, Theorem 5.1] and the comments in the proof of Lemma 3.28.

Theorem 3.37 (Γp
u(v) ∗↪ Γq

u(w)). Let v,w be admissible weights, let u be a positive
integrable weight. Let 0 < p, q < ∞. When p > q, we set r = pq

p−q . Assume that the
measure v(t)dt is nondegenerate with respect to Up.

(i) If 0 < p ≤ q < ∞, then Γp
u(v) ∗↪ Γq

u(w) if and only if

lim
t→0+

(W (t) +U q(t) ∫ 1
t U−q(x)w(x)dx)

1
q

(V (t) +Up(t) ∫ 1
t U−p(x)v(x)dx)

1
p

= 0. (102)

(ii) If 0 ≤ q < p < ∞, then Γp
u(v) ∗↪ Γq

u(w) if and only if both

∫
1

0

(W (t) +U q(t) ∫ 1
t U−q(x)w(x)dx)

r
q
−1

w(t)

(V (t) +Up(t) ∫ 1
t U−p(x)v(x)dx)

r
p

dt < ∞ (103)

and (102) hold true.
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Proof. Let us prove (ii). Necessity of (103) follows from Proposition 3.4 and Lemma
3.36(ii). We recall the form of ϕΓp

u(v) from (92). We may get an analogous expression
for ϕΓq

u(w). Hence, necessity of (102) follows from Proposition 2.16.
As for the sufficiency, this time we will adopt a slightly different approach. Assume

that both (102) and (103) hold. We know that (23) holds for an arbitrary f ∈ Γq
u(w)

and s ∈ (0,1). Using Lemma 3.36(ii) and the absolute continuity of the integral, we
obtain that (103) implies

lim
s→0+

sup
∥f∥

Γ
p
u(v)≤1

∥f∗∥Γq
u(wχ[0,s]) = 0.

Hence, now it suffices to prove that sup∥f∥
Γ

p
u(v)≤1 U(s)f∗∗u (s) (∫ 1

s U−qw)
1
q vanishes as

s→ 0+. We see that

sup
∥f∥

Γ
p
u(v)≤1

U(s)f∗∗u (s) (∫
1

s
U−qw)

1
q =

= sup
∥f∥

Γ
p
u(v)≤1

f∗∗u (s) (V (s) +Up(s)∫
1

s
U−pv)

1
p U(s)(∫ 1

s U−qw) 1
q

(V (s) +Up(s) ∫ 1
s U−pv)

1
p

≤

≤ sup
∥f∥

Γ
p
u(v)≤1

(∫
s

0
(f∗∗u (x))pv(x)dx+(U(s)f∗∗u (s))p∫

1

s
U−pv)

1
p U(s)(∫ 1

s U−qw) 1
q

(V (s)+Up(s) ∫ 1
s U−pv)

1
p

=

= sup
∥f∥

Γ
p
u(v)≤1

∥f∗χ[0,s]∥Γp
u(v) ⋅

U(s)(∫ 1
s U−qw) 1

q

(V (s)+Up(s) ∫ 1
s U−pv)

1
p

≤

≤ sup
∥f∥

Γ
p
u(v)≤1

∥f∥Γp
u(v)

U(s)(∫ 1
s U−qw) 1

q

(V (s) +Up(s) ∫ 1
s U−pv)

1
p

≤

≤ sup
∥f∥

Γ
p
u(v)≤1

∥f∥Γp
u(v)

(W (s) +U q(s) ∫ 1
s U−qw)

1
q

(V (s) +Up(s) ∫ 1
s U−pv)

1
p

and the last part vanishes as s→ 0+ thanks to (102).
The proof of part (i) is analogous.

Remark 3.38. The reader may notice that, in the proof above, we could use Theorem
3.6(iii) in the full form as well, just as we did in the other similar situations throughout
this work. This would provide us with conditions similar to (102). However, the alter-
native way we followed above provides the condition in a simpler form, without need of
further estimating.

Lemma 3.39. Let v,w be admissible weights and let u be a positive integrable weight.
Assume that p, q ∈ (0,∞). Then Γp

u(v) ↪ Γq,∞
u (w) if and only if A(85) < ∞. Moreover,

Opt (Γp
u(v),Γq,∞

u (w)) ≃ A(85).
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Proof. Consider a function f ∈ Γp
u(v) and a fixed t ∈ (0,1). Then we have

f∗∗u (t)W 1
q (t) ≤ A(85) ((f∗∗u (t))pV (t) + ∫

1

t
(f∗∗u (t))pUp(t)U−p(x)v(x)dx)

1
p ≤

≤ A(85) (∫
t

0
(f∗∗u (x))pv(x)dx +∫

1

t
(f∗∗u (x))pv(x)dx)

1
p = A(85)∥f∥Γp

u(v),

hence passing to supremum over t and then over f gives Opt (Γp
u(v),Γq,∞

u (w)) ≤ A(85).
For the converse inequality, since ∥f∥Λq,∞(w) ≤ ∥f∥Γq,∞

u (w) (cf. (4)), we have

Opt (Γp
u(v),Γq,∞

u (w)) = sup
f∈Γp

u(v)

∥f∥Γq,∞
u (w)

∥f∥Λq,∞(w)
⋅ ∥f∥Λq,∞(w)

∥f∥Γp
u(v)

≳ A(85).

Theorem 3.40 (The case Γp
u(v) ∗↪ Γq,∞

u (w)). Let v,w be admissible weights, u a positive
integrable weight and p, q ∈ (0,∞). Then Γp

u(v) ∗↪ Γq,∞
u (w) if and only if (89) holds and

lim
s→0+

sup
t∈(s,1)

U(s)U−1(t)W 1
q (t)

(V (s) +Up(s) ∫ 1
s U−p(x)v(x)dx)

1
p

= 0.

Proof. The proof is similar to that of Theorem 3.37. This time we just use the decom-
position (24).

Lemma 3.41. Let v,w be admissible weights and let u be a positive integrable weight.
Assume that p, q ∈ (0,∞). Then Γp,∞

u (v) ↪ Γq
u(w) if and only if A(104) < ∞ where

A(104) ∶=
⎛
⎜
⎝∫

1

0

w(t)
U q(t) supx∈(t,1) U−q(x)V

q
p (x)

dt
⎞
⎟
⎠

1
q

. (104)

Moreover, Opt (Γp,∞
u (v),Γq

u(w)) ≃ A(104).

Proof. Take a fixed t ∈ (0,1) and a function f ∈ Γp,∞
u (v). Then it holds

(f∗∗u (t))qw(t) = (f∗∗u (t))qw(t) ⋅ U
q(t) supx∈(t,1) U−q(x)V

q
p (x)

U q(t) supx∈(t,1) U−q(x)V
q
p (x)

≤

≤ w(t) supx∈(t,1) (∫ t
0 f∗(y)u(y)dy)q

U−q(x)V
q
p (x)

U q(t) supx∈(t,1) U−q(x)V
q
p (x)

≤

≤ w(t) supx∈(t,1)(f∗∗u (x))qV
q
p (x)

U q(t) supx∈(t,1) U−q(x)V
q
p (x)

≤

≤ ∥f∥q

Γp,∞
u (v)

w(t)
U q(t) supx∈(t,1) U−q(x)V

q
p (x)

.
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Integrating the first and last factor over t ∈ (0,1) and taking the q-th root of the result
gives us A(104) ≥ Opt (Γp,∞

u (v),Γq
u(w)).

Now we are going to prove the converse estimate. Assume that Γp,∞
u (v) ↪ Γq

u(w).
The function ω ∶ t ↦ (supx∈(t,1) U−1(x)V 1

p (x))−1 is U -quasiconcave. This means that ω
is equivalent to a nondecreasing function on [0,1] and ω

U is equivalent to a nonincreasing
function on [0,1] (cf. also [11, Definition 2.2]). Indeed, ω is obviously nondecreasing and
ω
U is nonincreasing by (98), since a fundamental function is always nondecreasing. By
[11, Lemma 2.8(ii)], there exists a nonincreasing function h ∈ M+(0,1) and a constant
λ ≥ 0 such that ∫ t

0 hu < ∞ for all t ∈ [0,1] and

( sup
x∈(t,1)

U−1(x)V 1
p (x))

−1
≃ λ + ∫

t

0
h(x)u(x)dx, t ∈ [0,1]. (105)

Next, a simple computation gives

∥f∥Γp,∞
u (v) = sup

t∈(0,1)
(∫

t

0
f∗(x)u(x)dx) sup

x∈(t,1)
U−1(x)V 1

p (x) (106)

for every f ∈ M (R,µ). Having recalled that (R,µ) is nonatomic, we find a function
f ∈ M (R,µ) such that f∗ = h a.e. Therefore, applying (105) and (106) on this f , we
obtain

∥f∥Γp,∞
u (v) = sup

t∈(0,1)
(∫

t

0
h(x)u(x)dx) sup

x∈(t,1)
U−1(x)V 1

p (x) ≲ sup
t∈(0,1)

∫ t
0 h(x)u(x)dx

λ + ∫ 1
0 h(x)u(x)dx

≤ 1.

Now, using Γp,∞
u (v) ↪ Γq

u(w), we have

A(104) = ⎛
⎝∫

1

0

⎡⎢⎢⎢⎣
( sup

x∈(t,1)
U−1(x)V 1

p (x))
−1
− λ + λ

⎤⎥⎥⎥⎦

q

U−q(t)w(t)dt
⎞
⎠

1
q

≲

≲ (∫
1

0
[∫

t

0
h(x)u(x)dx + λ]

q

U−q(t)w(t)dt)
1
q ≲

≲ ∥f∥Γq
u(w) + λ(∫

1

0
U−q(t)w(t)dt)

1
q ≲

≲ Opt (Γp,∞
u (v),Γq

u(w)) + λ(∫
1

0
U−q(t)w(t)dt)

1
q

.

If λ = 0, we are done. Assume that λ > 0. On taking the limit for t → 0+ in (105), we
obtain

sup
x∈(0,1)

U−1(x)V 1
p (x) ≃ 1

λ
.

41



Now, take a fixed ε ∈ (0,1) and find a function g such that g∗ = λU−1(ε)χ[0,ε]. Then

∥g∥Γp,∞
u (v) = sup

x∈(0,1)
(∫

x

0
g∗(y)u(y)dy)U−1(x)V 1

p (x) ≤

≤ λ max
⎧⎪⎪⎨⎪⎪⎩

sup
x∈(0,ε)

U−1(ε)V 1
p (x) + sup

x∈(ε,1)
U−1(x)V 1

p (x)
⎫⎪⎪⎬⎪⎪⎭
=

= λ sup
x∈(ε,1)

U−1(x)V 1
p (x) ≤

≤ λ sup
x∈(0,1)

U−1(x)V 1
p (x) ≃ 1.

Next, observe that g∗∗u (x) ≥ λU−1(x)χ(ε,1)(x) for x ∈ (0,1). Finally, we get

λ(∫
1

ε
U−q(x)w(x)dx)

1
q ≤ ∥g∥Γq

u(w) ≤
≤ ∥g∥Γp,∞

u (v) Opt (Γp,∞
u (v),Γq

u(w)) ≲
≲ Opt (Γp,∞

u (v),Γq
u(w)),

thus, by letting ε→ 0+, we obtain the final result.

Theorem 3.42 (The case Γp,∞
u (v) ∗↪ Γq

u(w)). Let v,w be admissible weights and let u

be a positive integrable weight. Assume that p, q ∈ (0,∞). Then Γp,∞
u (v) ∗↪ Γq

u(w) if and
only if A(104) < ∞ and

lim
s→0+

(∫ 1
s U−q(x)w(x)dx)

1
q

supx∈(s,1) U−1(x)V 1
p (x)

= 0.

Proof. Again, this result is obtained by a similar method as Theorem 3.37.

Lemma 3.43. Let v,w be admissible weights and let u be a positive integrable weight.
Assume that p, q ∈ (0,∞). Then Γp,∞

u (v) ↪ Γq,∞
u (w) if and only if A(107) < ∞ where

A(107) ∶= sup
0<t<1

W
1
q (t)

U(t) supx∈(t,1) U−1(x)V 1
p (x)

< ∞. (107)

Moreover, Opt (Γp,∞
u (v),Γq,∞

u (w)) ≃ A(107).

Proof. At first, we take a fixed t ∈ (0,1) and notice that

V
1
p (t) ≤ sup

x∈(t,1)
U(t)U−1(x)V 1

p (x) (108)

and the same holds for W
1
q in place of V

1
p . Let f ∈ Γp,∞

u (v). Then

f∗∗u (t)W 1
q (t) ≤ A(107)f

∗∗
u (t)U(t) sup

x∈(t,1)
U−1(x)V 1

p (x) ≤ A(107)∥f∥Γp,∞
u (v),
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thus, by taking the supremum over t ∈ (0,1), we obtain Opt (Γp,∞
u (v),Γq,∞

u (w)) ≤ A(107).
As for the converse estimate, testing the embedding inequality by the characteristic

function χ[0,t] for a fixed t ∈ (0,1) gives

Opt (Γp,∞
u (v),Γq,∞

u (w)) ≥
U(t) sup

x∈(t,1)
U−1(x)W 1

q (x)

U(t) sup
x∈(t,1)

U−1(x)V 1
p (x)

≥ W
1
q (t)

U(t) sup
x∈(t,1)

U−1(x)V 1
p (x)

.

Taking the supremum over t ∈ (0,1), we get the desired estimate.

Theorem 3.44 (The case Γp,∞
u (v) ∗↪ Γq,∞

u (w)). Let v,w be admissible weights and let
u be a positive integrable weight. Assume that p, q ∈ (0,∞). Then Γp,∞

u (v) ∗↪ Γq,∞
u (w)

if and only if

lim
s→0+

supt∈(s,1) U−1(t)W 1
q (t)

supt∈(s,1) U−1(t)V 1
p (t)

= 0. (109)

Proof. Thanks to (108) it is clear that (109) implies

lim
s→0+

W
1
q (s)

U(s) supt∈(s,1) U−1(t)V 1
p (t)

= 0.

According to Lemma 3.43 and Remark 3.11, this condition is equivalent to

lim
s→0+

sup
∥f∥

Γ
p,∞
u (v)≤1

∥f∗∥Γq,∞
u (wχ[0,s]) = 0.

We recall (24) and (98) and then proceed similarly as in the proof of Theorem 3.37.
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