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Preface

All the results in this work are based on the paper of D.L. Burkholder and R.F.
Gundy and papers of many other authors, who continued their work and proved
various extensions. All of them worked with the basic idea of relating two oper-
ators, the first of which is “good” in a certain sense, while the other one is “bad”,
by the suitable inequality, that allows to transfer some of the properties of the
good operator to the bad one. This kind of inequalities was later called the good
A-inequalities.

The aim of this thesis is to compile and generalize scattered results about
various A-inequalities and norm estimates for an integral operator 1" and a cor-
responding maximal operator M on the function spaces over the quasi-metric
spaces with the so called “doubling” measure and supplement it with some new
results extended from function spaces over the metric spaces or the n-dimensional
Euclidean space R™. Unlike R", where T is considered to be quite general, we
restrict ourselves to the case when T equals to a particular form of the Riesz
potencial.

The first chapter contains definitions of some fundamental objects and an
introduction to the theory of Banach function spaces with a particular focus on
the Lebesgue and Lorentz spaces and after it as well their weighted variants.
The rest of the chapter is devoted to the various covering lemmas, whose use is
essential in the third chapter.

In the second chapter we compile the previously known results for the function
spaces over R”, i.e. we formulate three important A-inequalities for the Lebesgue
measurable functions on R" along with their corollaries which mostly concern
various norm estimates for the Lebesgue spaces.

The third and main chapter defines the Riesz potential I and, in this case, a
corresponding pair of fractional maximal operators on the function spaces over
the quasi-metric space with the doubling measure. The main aim is the proof
of the so-called “better good A-inequality”, which allows to derive the other two
A-inequalities very easily and from them also a few corollaries in the form of
norm estimates between I and one of the fractional maximal operators. The last
section of this chapter extends the last mentioned norm estimates and survey the
boundedness of the operator I on the Lebesgue and Lorentz spaces.

Regrettably, a generalization to the quasi-metric space brings some complica-
tions that does not enable us to run an analogical progress as in R". Some of the
cases are solved by adjusting the method of proof or by creating a different one
but a few results known in R” still remain open in general.



1. Notation and preliminaries

1.1 Banach function spaces

In this section we introduce the idea of a quasi-metric space with the so-called
“doubling” measure which is a measure that satisfies two growth conditions. On
this slightly generalized metric space we build a theory of Banach function spaces
which provides a general setting for all function spaces we need.

Definition 1.1.1 (quasi-metric space with a doubling measure) Let X be a set
endowed with a function p: X x X — R satisfying

(i) o(z,y) >0,

(i) o(x,y) = 0 if and only if z = y,
(iv) o(x,y) < d(o(z, 2) + o(z,y)) (d-relaxed triangle inequality)

for every z,y,z € X and some d > 1. The function p is called a quasi-metric
and the pair (X, ¢) denotes a quasi-metric space. Then for the quasi-metric space
(X,0), x € X and a set £ C X we define the distance

dist(, E) = inf o(x,y)
ye

and the diameter
diam(FE) = sup o(z,y).
zyelk

Let z € X and 0 < r < 2diam(X). Then we define the ball B(x,r) by
B(x,r) ={y € X : o(z,y) <r}.

Moreover we say that a set £ C X is bounded whenever there is a ball B such
that £ C B.

We further assume that there is a non-negative outer Borel-regular measure
i defined on (X, g), i.e. such a measure p on the quasi-metric space (X, p) that
all Borel sets are p-measurable and for every set A there is a Borel set B such
that A C B and p(A) = p(B), satisfying the following two properties:

(i) there is a doubling constant D > 1 such that for every 0 < r < diam(X)
and every z € X we have

w(B(x,2r)) < Du(B(z,r)), (doubling condition)

(ii) there are two constants C, > 0 and n > 1 such that for every x € X
and every 0 < r < 2diam(X) we have

w(B(x,r)) > C,r". (lower bound condition)

A non-negative outer Borel-regular measure satisfying the previous two conditions
is called a doubling measure and (X, g, 1) denotes a quasi-metric space X with a
doubling measure p, which will be further referred to as a space of homogeneous

type.



Lemma 1.1.2 Let (X, o, 1) be a space of homogeneous type. Then for every k > 1
there is a constant Dy, such that

p(B(z, kr)) < Dyu(B(z,7))
for every v € X and 0 < r < 2 diam(X).

Proof. For fixed k we find m € N such that 277! < k£ < 2™. Then, using the
doubling condition, we obtain

p(B(x, kr)) < p(B(z,2™r)) < D" u(B(z, 7).

Thus it suffices to set Dy, = D™. O

Remark: The letter D with the various subscripts will further denote the powers
of the doubling constant D corresponding to the multiple of the radius in the same
way as in the previous Lemma [I.1.2l Note that Dy, = D.

Remark: Let (X, o, 1) be a space of homogeneous type, then

(i) every ball has a strictly positive measure,
(ii) if there is a ball B C X with u(B) = oo, then every ball has infinite
measure.

Proof. The part (i) is a trivial consequence of the lower bound condition.

For the part (ii) let B = B(z,r), x € X, r > 0, be a fixed ball with u(B) = oo
and let B' = B(2',7"), 2’ € X, 0 <’ < 2diam(X), be an arbitrary ball. Then
there is k > 1 such that B C B(2/, kr’) and by Lemma[1.1.2] there is Dy, > 0 such
that Dyp(B’) > u(B(2', kr')). Therefore

W(B) 2 ol Bl ") 2 on(B) = .

[]

In the view of (ii) in the last remark we omit the deformed spaces and further
assume that every ball has finite measure.

Lemma 1.1.3 Let (X, o, 1) be a space of homogeneous type, then

(1) the measure p is o-finite, in particular X = U(;il B;, where B; are balls
with p(Bj) < oo,
(i) X is a separable space.

Proof. For the part (i) let z € X.

If u(X) < oo, then the space X has finite diameter, otherwise, using the
lower bound condition, we can find a ball B in X with radius big enough such
that p(B) > w(X) and that is a contradiction. Thus the ball B(z,r), where
r > diam(X), contains whole X and has finite measure.

If u(X) = oo, then diam(X) is obviously infinite and {B(x,r)},cy is a count-
able collection of open concentric balls in X such that X = |J .y B(z,r) and
pu(B(x,r)) < oo for every r € N.

reN



In the part (ii), using (i), we deduce that

[e.@]
= Ut

where B; = B(xj,7;), v; € X and r; > 0. Then the countability of {B;}en
implies that it suffices to prove that for every 5 and ¢ > 0 there is a finite e-net
A5 C By, ie. for every x € Bj there is y € A5 with o(x,y) <e. Let € > 0.

If ¢ > r;, then we set A5 = {x;} and we are finished. If ¢ < 7;, then the

collection {B(x, 53) }zep, covers B; and for every x € B; and every z € B(x, 53)
we have
o(z,zj) < d(o(z, x)+ o(z,z;)) < d( 5+ r;) < d(Zd + ;) < 2dry,

)

which implies B(z, ;) C B(xj,2dr;) for every x € B;. Now we inductively
construct the set A% in the following way.

e For k =1 we choose any le € Bj and put it into AS.
e For a positive integer k > 1, either there exists xf € B; such that

3

B(x% NB
( ]? 2d) ( ]7 2d> @
for every i =1,...,k — 1 and we put it into A%, or the construction stops.

Since the ball B(z;,2dr;) has finite measure, B(z,53) C B(z;,2dr;) for every
x € Bj and pu(B(z,5)) > C,. (5)" for every z € X, the construction has to stop
for a finite k. Thus the set AE is finite. Now {B(z,¢€)}seas covers B;, otherwise

there is 2z € B; such that for every z € A5 we have

e < o(z,x) S d(dist(z Bla, o) + 55) = dist(z, Bl ) 2 o
and thus
B(z, 5) N Blr, ) = 0,

which is the contradiction with the construction of Aj. Hence Aj is a finite e-net
of B; and taking &,, = 57, m € N, we have that |J,,_, 2, A5" is a countable
dense subset of X. O

Definition 1.1.4 (Banach function space) Let (X, g, 1) be a space of homoge-
neous type and let M = M(X, o, ) be the space of (equivalence classes of)
p-measurable functions on X.

Then a function norm on M is a function ¢ : M — [0, 00] satisfying the
following properties:

(BF1) ¢(f) =0 if and only if f =0,

(BFy) p(af) = |alo(f) for every o # 0,

(BFs) o(f +9) < o(f) +¢(9),

(BFy) [f] < lg| pra-e. implies o(f) < ©(g),

(BF5) 0 < fu 7 f p-ace. implies o(fm) /7 @(f),

(BFg) go(XE) < oo for every p-measurable set E C X, where u(E) < oo,

5



(BF7) for every f € M and every p-measurable set £ C X with pu(F) < oo,
there is a constant C' such that

ZgﬂdMSCEXﬁ

for all f, g, fr, € M, m €N, and a € R. If ¢ is a function norm, then the space
Z ={f € M,p(f) < oo} is called a Banach function space. For f € Z, we use

| f]l; instead of (f).

Remark: The above mentioned equivalence is meant as equality of functions
almost everywhere.

Even though a Banach function space is a collection of functions f € M such
that the function norm of f, o(f), is finite, a function norm in general is defined
for all f € M.

Remark: The letter C, without any subscript or superscript, will throughout
this thesis denote an universal constant. It may change its value between the
theorems and if it cannot cause any misunderstanding even from line to line.

We finish this section with two examples of classes of Banach function spaces.
Definition 1.1.5 (Lebesgue spaces) Let (X, o, 1) be a space of homogeneous

type, then for 1 < p < oo and a p-measurable function f on X we define the
Lebesgue norm

RS

(Jx |f @) du(z))?, 1<p< oo,

W= assuwplis@n, p=co
zeX
Then the Lebesgue space LP(X,0,1) is a space consisting of all y-measurable
functions f on X for which the Lebesgue norm || f[|, is finite. We further denote
the space LP(X, 0, ) by LP.
We also define the space of locally integrable functions L (X, 0, u) = L

loc loc
consisting of p-measurable functions f, where f € L!'(K) for every compact

subset K of X.

Definition 1.1.6 (Lorentz spaces) Let (X, o, 1) be a space of homogeneous type,
then for 1 < p,q < oo and a py-measurable function f on X we define the Lorentz
norm

" (J a5 (ulfr € X 2 | f@)] > sh)P ds) ", 1< p.a <o,
f P:q:

sups (u({e € X+ /()| > s})}, 1 <p< oo, g=oo.

Then the Lorentz space LP9(X, o,u) is a space consisting of all y-measurable
functions f on X for which the Lorentz norm |||, , is finite. We further denote
the space LP(X, o, ) by LP4.



Remark: Let (X, g, 1) be a space of homogeneous type. Then

(i) the Lebesgue norms .||, 1 <p < oo, are function norms,

(ii) the Lorentz norms [, , 1 < ¢ < p < oo, are function norms,

(iii) for every 1 < p < oo and 1 < ¢ < oo there is another norm ||.||
equivalent to the Lorentz norm |||, , i.e. there are two constants Cj, C,, > 0
satisfying Cy |||, , < [[[llx < Cu [l such that the space L7 with ||.[|  is
a Banach function space,

(iv) the Lorentz space LPP = LP for every 1 < p < oo and if we considered
L>9 for every 1 < ¢ < oo, then L**? would contain only zero function,

(v) for every 1 < ¢ < oo the Lorentz norm ||.[[, , is only a quasi-norm and
there exists no norm |.||x equivalent to [|.||; , as in (iii).

»,q’

Proof. For (i) — (iv) see e.g. Chapter 1 and Chapter 4 in Bennett and Sharpley
[5] and for (v) see [12]. O

1.2 Weights and rearrangements

For both classes of function spaces defined in the previous section there is a
weighted variant, but before we introduce the weighted Lebesgue and Lorentz
spaces we need to recall a few facts about weights and also rearrangements. The
Lorentz spaces are closely associated with the distributions and rearrangements
and therefore they can be introduced by the means of the non-increasing rear-
rangement or the distribution function. We consider both approaches and prove
their equivalence.

Definition 1.2.1 (weights and Muckenhoupt weight classes) Let (X, o, ) be a
space of homogeneous type. Then a weight is a positive py-measurable function

w € Ll . and we set

w(B) = [ wie)du(a)
E
for any p-measurable set F C X. Moreover we say that

(i) w belongs to the Muckenhoupt A, class, w € A, if for given 0 < e < 1,
there exists 0 < & < 1 such that for every ball B from X and every
p-measurable set £ C B we have

pE) <&'u(B) = w(E) < ew(B),

(ii) w belongs to the Muckenhoupt A’_ class, w € A/_, if there are constants
Ca, = 1 and 6 > 1 such that for every ball B from X and every u-
measurable set £/ C B we have

w(E) w(E)\’
j(B) = O (m) ’

(iii) w belongs to the Muckenhoupt A, class, w € A,, 1 < p < oo, if there is
a positive constant C'y, such that for every ball B from X we have

(/Bw(x)d#(iﬂ)> </Bw($)plldu(x))pl < Oy, u(B)P.



(iv) w belongs to the Muckenhoupt A; class, w € Ay, if there is a positive
constant C'4, such that for every ball B from X and x € B we have

1 )
1(B) / w(z)du(w) < Caessipfu(e).

Before we formulate and prove lemma that shows some relations between the
A, and A, classes, we need to adopt one theorem from [I8] (Theorem 13 on
page 8). For the easier application and better understanding we reformulate it to
the form more suitable for our purpose. This modification is only a slightly less
general version of the original theorem and thus can be proved in the same way.

Theorem 1.2.2 Let (X, 0) be a quasi-metric space and suppose that p and v
are two measures on (X, g) satisfying the doubling condition and that there are
0 < eg,6 < 1 such that for each ball B C X and each pi-measurable set E C B we
have v(E) < (1 — gp)v(B) whenever u(E) < eop(B). Then there are a constant
C >0 and an index 6 > 1 such that

= ()

for each ball B C X and each p-measurable set B2 C B.

Proof. See [18], pages 16 and 17. O

Lemma 1.2.3 Let (X, 0, 1) be a space of homogeneous type. Then for a weight
w and 1 < p < 0o we have the following set of implications:

weA,=>weA =>we Ax.

Proof. Let 1 < p < oo and let w € A,. Then, using the Hélder inequality, we
obtain

W(E) = /B ey Fuly)  duly)

< (/Ew(y)du(w); (/Bw(y)f’lldu(y))p;

< O} w(E) u(B)w(B)

for any ball B C X, p-measurable set £ C B and 1 < p < oco. Notice that the
A, condition was used in the last estimate and therefore indeed w € A, implies

w € Al with 6 =L and Cy_ = C}/”.
For the proof of the second implication let w € A/ .Then, using the doubling
condition of p and w € A, we have

w(B(, )\’ _ wB@r) 1
Ca (w(B(a:, 2r>)) Z W(B(r.2r) = D
for any x € X and r > 0. Thus

(DCAgo)l/‘Sw(B(:c,r)) > w(B(x,2r))

8



and hence the measure v defined by dv(z) = w(x)du(x) also satisfies the doubling
condition with doubling constant (DC 4, )1/
From w € A/ also follows that

(B~ E) w(B\E)>‘S

<o (“am 1)

for each ball B C X and p-measurable set £ C B. Hence, if we suppose that
pw(E) < egou(B) for an arbitrary 0 < gy < 1, then certainly (1 — go)u(B) <
(B~ E). Now, using (|1.1]), we obtain

(1_60)<N(B\E) w(B\E))‘;‘

<o (050
#(B) “\ w(B)
.1
Thus (1 —¢¢):C,° w(B) < w(B \ E) which implies

1

Cyl)w(B) = (1 —&5)v(B),

=

V(E) = w(E) < (1— (1<)

_1
where &) = (1 — g)5C,,° . Evidently 0 < &) < 1 and therefore we have satisfied
all the assumptions of Theorem [1.2.2] Applying it we obtain

1
w(E) _ v(E) (M(E)> :
— L = —<<C|—= 1.2

w(B) ~ u(B) = " \uB) 2
for each ball B C X and each py-measurable set £ C B.

Now let 0 < e < 1, let B C X be a ball and let £ C B be a p-measurable set.
Let u(E) < €'u(B), where 0 < & < 1 with exact value to be specified later, then

from (|1.2)) follows
wB) _ (BN .
w5 < (i) <

Thus by setting ¢’ small enough such that C¢’ 5 < e we proved that w € A..
]

Definition 1.2.4 (distribution and rearrangement) Let (X, o, t) be a space of
homogeneous type, f be a pu-measurable function on X and let w be a weight.
Then for s > 0 we define the distribution function of f with respect to w by

Dyw(s) =w({z € X - [f(x)] > s}).

Furthermore, for ¢ > 0 we define the non-increasing rearrangement of f with
respect to w by
fo(t) =1inf{s > 0: Dy, (s) < t}

w

and the averaged rearrangement of f with respect to w by

1 t
=g [ g



Definition 1.2.5 (weighted Lebesgue spaces) Let (X, o, 1) be a space of homoge-
neous type, then for a weight w, a y-measurable function f on X and 1 < p < o0
we define the weighted Lebesgue norm

([ |f@)[Pw(z)du())?, 1<p < oo,

110 =
" esssup{| f ()| w(z)}, p = oc.
zeX
Then the weighted Lebesgue space L (X, o, ) consists of all u-measurable func-
tions f on X for which the weighted Lebesgue norm || f||,,, is finite. We further
denote the space LP (X, o, 1) by LP.

Definition 1.2.6 (weighted Lorentz spaces) Let (X, o, 1) be a space of homoge-
neous type, then for a weight w, a y-measurable function f on X and 1 < p,q < o0
we define the weighted Lorentz (quasi-)norm

1
<f0°o gsi~t (Df’w(s))% ds) o 1<p<oo, 1<qg< oo,

11l g0 = 1
sup{s (Dyuw(s))” }, 1<p<oo, ¢=o0,
s>0

or, in the terms of the rearrangement,

1
<f0°o %t%_l (f:j,(t))q dt) a , 1<p<oo, 1 <qg< o0,
If

pgw
sup{t%f:}(t)}, 1<p< o0, ¢g=o0.
>0

Then the weighted Lorentz space L24(X, o, 1) consists of all y-measurable func-
tions f on X for which the weighted Lorentz norm | f|[, , , is finite. We further
denote the space LP(X, o, i) by LP1.

Remark: The previous two definitions are equivalent.

Proof. For q = oo let f,, = 27:1 cixe;,m € N, be a simple function, where £
are w-measurable sets, u(E;) > 0 for every j = 1,...,m, E;NE, =0 if j # k
and ¢; > ¢ > ... > ¢y > G = 0. Let a; = w(Ey) + ... +w(E)), 1 <j <m,
and define ay to be 0. Then the distribution function Dy, ,, has the form

aj, Cip1 <s<¢j, 1<j7<m,

Dy, w(s) = {

0, ¢ <s,
and the non-increasing rearrangement (f,,,) has the form

C

7R aj—1§t<aj;]-§j§m7

(fm)u(t) = {

0, an,<t.

Thus we see that for p > 0 we have

sup(s(Dyuls))) = sup {afeh =supft (F)L(0). (13

s>0 1<5<m

10



It is easy to see that for every pu-measurable function f there is a sequence of
simple function f,,, defined as above, such that f,,(z) 7 |f(x)| for every z € X.
It is also clear that

E'={ze X :|fn(x)]|>s} CE,={zx e X :|f(x)] > s}
and J°_, ET" = E; for every s > 0. Thus also
Dy, w(s) =w(E) < w(Es) = Dysyw(s) and  lm Dy, (s) = Dyw(s) (1.4)
m—00

for every s > 0.
From the definition of the non-increasing rearrangement it now follows that

(fm)o(®) < (fms2) (@) < fo (1) (1.5)
for m = 1,2,3,... and every ¢t > 0. For fixed ¢t > 0 let | = lim,,_00(fin)5 (7).
Since (f)i(t) < I, we have Dy, (1) < Dy, w((fin)(t)) < t. Thus Dy, (1) =
limy;, 00 Dy,, (1) < t and since f;(¢) is infimum over s, where Dy, (s) < ¢, then
fx(t) < 1. But from the inequality (f,,)%(t) < f(¢) letting m tend to infinity we
obtain [ < f7(t). It therefore follows that

T (fu)u(t) = 1= fu(t). (1.6)
Now, using (L3), (L.4), (L3) and (L6), we obtain
1 . 1
sup{s(Dyw(s))?} = lim sup{s(Dy,, w(s))?}
>0 m—00 50
: 1 * 1 *
= lim sup{t?(fin),(t)} = sup{tr f;,(1)}.
m—00 ¢>( t>0

For 1 < ¢ < 00, using the Fubini’s theorem, we obtain

(/Ooo %ti‘l(fi(t))th>3 _ (/OOO a1 (/O(fm)q 1d5> dt>;

Q=

~
RISt

_1X(0 (f* ( )dtdS)

Qe

~
ARt

"X er(ry)esy (t )dde)

1
-1

(NS c\g
ENEQ

R QI "G&I:Q b=
kA ls}

Il
c\g O\é
ﬁ C\8
)@l@w ]
ke
|

~
RS

q
X{teR:(f2 (£)>r} (t)dtqrq_ldT)

Q=

XD (E )dtdr)

1
00 Dfﬂ,,(r) . q
/ / tE - tdtdr
0 0 p
1
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Remark: Let (X, o, 1) be a space of homogeneous type and let w be a weight.
Then

i) the weighted Lebesgue norms ||. , 1 < p < oo, are function norms,

(ii) the weighted Lorentz norms [.[[, . ., 1 < ¢ < p < 0o, are function norms,
(iii) for every 1 < p < oo and 1 < ¢ < oo there is another norm ||.||
equivalent to the Lorentz norm ||.||, ., i.e. there are two constants Cj, C,, >
0 satisfying Ci [, 5., < Illx < Cull- ||pq’w, such that the space LE9 with

||l ¢ is & Banach function space,
(iv) the weighted Lorentz space LEP = LP for every 1 < p < oo and if we
considered L7 for every 1 < ¢ < oo, then L7 would contain only zero
function.

Proof. Considering that dv(z) = w(x)du(x), x € X, is also a measure we can
again refer to [B]. O

Lemma 1.2.7 Let f be a p-measurable function on a space of homogeneous type
(X, 0, 1) and let w be a weight. Then for 1 < p < oo we have

p/O 1 D(s)s = [ 1@ w(a)dno)

Proof. By the Fubini’s theorem we have

p/ P Dy o (s)ds :p/ sp_l/ w(z)dp(x)ds
0 0 {If1>s}
:p/ / sPw(z)dp(z)ds
{If1>s}

_p/ /f<x o)dsdu(s)
- /X @) w(e)du(z).

1.3 Coverings

There are many versions of various covering lemmas and theorems with different
conditions and assertions. In this section we specify and prove those that will be
needed further. For reference see e.g. [1], [4], [10] and [14].

Lemma 1.3.1 Let (X, o, 1) be a space of homogeneous type and let E be a bounded
subset of X. Moreover assume that for every x € E there exists a pair (Y, 7.),
y: € X and ry > 0, such that the ball B(y,, ;) contains x and sup,cp o(x, y,) s
finite. Then there is a sequence of disjoint balls { B(Yx;, 72,) }221 C {B(YusT2) }oecr
such that

E C UB(yIi,SdQTH).

=1
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Proof. The set E is bounded, hence either we can suppose that there is at least
one ball from the collection {B(yy,7s)}zcr containing F, which would finish the
proof, or that sup,.pr, is finite. The latter case implies the existence of a ball
B such that B(y,,r,) C B for every x € E.

Now we inductively construct a sequence {x}rey C F in the following way.
For k = 1 we find x; € E such that

Ty, > = SUP Ty
zeE
Then certainly x1 € B(ys,,7z,). For a positive integer k > 1 we find 2}, € Ey, =
E~ U= B(ya,5d%r,,) such that
1
Typ > = SUD Ty
2 zeF)
Then certainly x € B(yy,, 7z, ) and moreover the ball B(ys, , s, ) is disjoint with
every ball B(y,,,7s,), @ < k, otherwise we can find i < k such that

and thus

0(hy yzy) < d(0(Thy Yup) + 0(Yays Yary)) < dry + d* (T + 7))
< 2d%r,, + d°ry, + 2d*r,, < 5d°r,,,

which is the contradiction with z; € Ey.

The construction can progress in two ways. FEither for a finite k& there is
no point x, € Ej, i.e. E is already fully covered with the balls B(y,,, 5d*r,,),
t=1,...,k—1, the construction stops and the proof is finished, or the construc-
tion continues infinitely. In the latter case r, has to tend to zero, otherwise
there is a constant € > 0 and infinitely many disjoint balls B(y,,, ;) with the
radius greater than ¢ contained in B. Recalling the lower bound condition we
have p(B(Yu,,72;)) > C,e™ and thus

ZC#s” < ZM(B(ymmi)) = M(U B(yz;;72,)) < w(B),

which is the contradiction with the assumption that every ball has finite measure
applied to B. Hence we have an infinite sequence B(y,,, 5d*r,,) of balls with the
radius tending to zero. Now for the contradiction we suppose that there is an
uncovered = € E ~\ ;2 B(Ya,, bd?rs,;). Since r,;, N\ 0, we can find big enough
k € N such that r, > 2r,,. Hence in the k-th step of the construction there was
x € E, such that %rw > 1y, and thus

Ty, > SUD =Ty > Ty,
$€Ek

which is a contradiction. Thus the collection {B(y.,, 5d*r,,)}2, covers E. O
Lemma 1.3.2 Let W be a collection of balls in a separable quasi-metric space

(X, 0). Then there is a mazximal disjoint countable subcollection W', i.e. for every
ball B from W there is a ball in W' with non-empty intersection with B.

13



Proof. In a separable quasi-metric space there is a countable collection of balls
{Bi}ien such that for every open set U we have U = (Jp - Bi- Now we construct
the subcollection W’ from W in the following way.

e For By, either there exists a ball V; € W such that B; C Vi and we put it
into W, or there is no such V; and we continue to the next step.

e For By, k > 1, k € N, either there exists a ball V,, € W such that B, C V
and Vj, is disjoint with every ball V; € W', i < k, and we put it into W', or
there is no such a V; and we repeat the process with k replaced by k + 1.

The constructed collection W' is obviously disjoint and countable. If we suppose
that there is a ball V' € W disjoint with every ball from W', i.e. W’ is not
maximal, then we can find £ such that B, C V. Hence either there was no
suitable Vj in the construction which is the contradiction because V' is suitable,

or there is V3, € W’ added in the k-th step and ) # B, € V NV, = () which is
also impossible. Thus W’ is also maximal. O

Lemma 1.3.3 Let E be a subset of a separable quasi-metric space (X, 0) and let
W be a collection of balls B(x,r) in X with v € E and r > 0 that covers E.
Assume that

R =sup{r > 0: B(x,r) € W} < .

Then there is a countable disjoint subcollection V C W such that

E C U x5d2

B(z,r)ev

Proof. Let W, be a collection of balls from W such that their radius r satisfies
;R <r < R. Using Lemma we find a maximal disjoint countable subcollec-
tion V. For a positive integer k£ > 1, let W, be a collection of balls from W such
that their radius satisfies 277 < & < 27%*! and their intersection with any ball

from Ui:ll V; is empty. Using Lemma we find a maximal disjoint countable
subcollection Vy,. Then the collection of balls V = [ J:2, V; is obviously disjoint
and countable. Last property needed is

E C U B(z,5d*r).
B(z,r)ev

We fix z € E and find B(y,s) € W such that z € B(y,s). Then we find k € N
such that 27% < £ < 27%+1 Now either B(y, s) € V; C V and the proof is finished
or B(y,s) ¢ Vi. In the latter case either B(y,s) € W and there is B(x,r) € Vy
such that B(z,7) N B(y,s) # 0 or B(y,s) ¢ Wy and there is B(x,7) € U Vi
such that B(z,r) N B(y,s) # (. Hence we certainly have

k
B(z,r) € U V; such that B(z,r) N B(y,s) # 0.

i=1
Moreover r > 27*R and s < 27%*1R implies s < 2r. Thus we have

o(z,2) < d(o(z,y) + oy, x)) < d(s +d(s + 1)) < 5d*r
and z € B(x, 5d?r). O

14



Definition 1.3.4 Let (X, o, ) be a space of homogeneous type and let £ be an
open subset of X. Let R > 0 and z € E. Then we say that B = B(z,r) is a
Whitney ball for £ bounded by R if

1
r = min {ZZ dist(z, X \ E),R} .
A Whitney covering V of E bounded by R is a collection of countably many
Whitney balls for £ bounded by R such that
(i) E= UBeV B,
(ii) the balls {B(z, T/5d2>}B(z,r)€V are pairwise disjoint,
(iii) there is a positive constant P such that

D xplx) <P

Bev
for every x € F.

As a consequence of Lemma [I.3.3] we have the following metric version of the
Whitney covering lemma.

Lemma 1.3.5 Let (X, o, i) be a space of homogeneous type and let E be an open
subset of X. Let R > 0 and let W be a collection of all Whitney balls B(z,1),
z € F, for E bounded by R. Then there is a Whitney covering ¥V C W of E
bounded by R.

Proof. Recalling the separability of X from Lemma and applying Lemma
to the balls B(z, %), B(z,7) € W, we obtain a collection of balls V =
{B(xj,7;)};2, that covers E and that B(x;, %) are pairwise disjoint. Let z € E.
Now if = € B(z;,r;) for any j € N, then for any y € B(x;, %) we have
T 5d% + 1
oy, x) < d(ely, ;) + olw,x;)) < 5 +dr; < ———;
5d 5d
and for any y € B(z, 5;) we have
r; 5d* + 1
oy, z;) < d(ely,x) + e(wj, 2)) < 27 +dry < ———;.

That implies

Tj 5d2 ‘|— 1
Tiven
sp) © Bl —;

Thus, using Lemma [1.1.2 we have
Ty _ Ty
S wB ) = | Bl ah) < u(Ble )

B(zj,rj)ox B(zjrj)oz

S Bl )z 3 wB, )

T Dy
B(xzj,rj)3x 5d°+d p

r;) and B(z, 7ﬁ—]) C B(xj, ——

B(z;, B2

(zj,rj)>z

1 T

> > u(B(z, —%))
Dsao 1a B(zj,rj)> 5d

1 5d? + 1
:'E .

>
Sdi+d B(aj,r;)5w
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Now for r; = R we have

5d% + 1 1 5d% + 1
u(B(a, ——R)) > B(x

which implies
Y. 1< Dip

B(zj,rj)o
Tj:R

For r; = 5 dist(z;, X \ E) denote A(z) = dist(x, X \ E). Then
2dr; = Az;) < d(A(z) + o(x, ;) < dA(x) +dr; = 15 < A)

and

Alz)
32

A(z) < d(A(z)) + o(w, x;)) < 2d%r; + drj < 3d°r; = <.

Hence, using Lemma [1.1.2], we have

LA = B, )

1 5d? + 1
Z pr > uB(z, 5d r5))

5d%+d B(xzj,rj)ox

pu(B(z,

7']'<R
1 5d% + 1
> D2 n(B( T (z)))
5d3+d B(xzj,rj)3x
Tj<R

1 5d* + 1
> n(B(z, A(z)))
DE’%d?’-ﬁ-dD?’d2 B(w%)ax 5d
7’]'<R

and that implies

B(xzj,r;)ox
ri<R

Thus for every x € E we have

S = Y 1+ Y 1< DRt Dy Dus

Bey B(xj,r;j)ox B(xj,r;j)ox
;<R ri=R

and the claim follows with P = D25, + D2 5. Dsg.
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2. Good M-inequalities in R"

2.1 Good A-inequality in R"

The idea of the good A-inequality was first introduced in early 1970s in the paper
of D.L. Burkholder and R.F. Gundy [6] as a method for studying operators on
the LP spaces. The authors developed a technique consisting of relating a pair
of operators by the distribution function on the n-dimensional Euclidean space
R™ with the Lebesgue measure m. The “bad” operator, i.e. the complex one with
unknown properties, was denoted by 7" and the “good” operator, i.e. the simpler
one, was denoted by M. The inequality obtained by this technique allowed to
transfer some of the properties of M to T. This inequality became later known
as the good A-inequality and it stated that for every ¢ > 0 there is v > 0 such
that

m({z € R" - |Tf(x)] > 2\, [M f(z)] <4A}) <em({z € R": |Tf(x)] > A})

for every A > 0. One of the important consequences of this inequality is the
desired LP(R™, m) norm estimate of the operator 7" in the terms of the operator
M. In other words, the LP(R"™, m) norm of T'f is bounded whenever the LP(R™, m)
norm of M f is bounded and that enables one to transfer the integrability of M
to T'. Often, the method of proof allows one to replace the Lebesgue measure by
a weighted one.

Remark: We can also consider the Muckenhoupt weight classes in the Euclidean
space with the Lebesgue measure. The only difference is that the balls B are
usually replaced by the cubes ) with sides parallel to the axes. This replacement
does not change any properties and in addition sometimes makes the calculation
easier. The Muckenhoupt cube-version weight classes in R™ are further denoted
by Ax(Q), AL(Q), Ap(Q), where 1 < p < oo, and for 1 < p < ¢ < oo they
satisfy
41(Q) € A(Q) € 4,(Q) € AL(@Q) = Ax(Q).
If we assume that the measure on R" satisfies only the doubling condition, then
41(Q) € 4(Q) € A(Q) € 4L(Q) € Ax(Q).
Indeed, if we first assume that we are on R with the Lebesgue measure. Then
w € A,(Q) if and only if
— B {66(_17])_1)7 p>1,
w = |z|”, where
B € (_Lp_ 1]a p=1L

Moreover we have

AL@ = | 4@

1<p<oo

Thus really A;(Q) # A,(Q) # Ay(Q) # AL (Q). For the Euclidean space R with
the doubling measure p let

%dm, 0<z<1,
dp(z) =< tde, 1<z<2, du(x):{

1 dx, otherwise,

Odr, O0<z<l,
1 dx, otherwise.

17



Then the weight w defined by dv(x) = w(z)du(zx) satisfies only A, condition. For
the more precise argument see Strémberg and Torchinsky [18] and Garcia-Cuerva
and Rubio de Francia [9].

Due to the generality of the technique for the operators 7" and M, this kind of
result can be improved for suitable-chosen M and T'. First improvement of this
type was introduced by R.R. Coifman and C. Fefferman [7]. They considered M f
to be the Hardy-Littlewood maximal function

1
Mp) = s s | 17001 d 2.1)

where () denote a cube in R™ with sides parallel to the axes, and T'f as the general
singular integral operator, i.e. such an operator 7' : f — K x f in R", where %
denotes the convolution, with the convolution kernel K that satisfies the standard
conditions:

(i) ||K]|e < C,
(i) [K(x)] < S,
(iii) |K(z) — K(z —y)| < S for |y < 2,

ER

where z,y € R" and K denotes the Fourier transform of K. For the maximal
operator

1 fa)=su| [ K- g) iy,

Qz Rn\Qz
where the supremum ranges over all cubes (), centered at x with sides parallel to
the axes, they derived that for every w € A/_(Q) there is a constant C' > 0 such
that

w{z € R": T*f(z) > 2\, M f(x) <yA\}) < CYw({x € R : T*f(x) > \})

for every A > 0, every v > 0 and § from A’_(Q) condition. With this so-called
“good A-inequality” as the heart of the proof they proved

Theorem 2.1.1 Let f be a Lebesque measurable function on R"™. Suppose that
the weight function w satisfies AL_(Q) condition, then

op

/R @ wla)de < — s / M@ w(z)d

for every 1 < p < oo and v small enough such that 2P~° < 1. Moreover, if
w € A,(Q), then there is a constant C' > 1 such that

T f ()" w(z)d LS -
)| wir)dr <
Rn (1 =27) e

for all f € LP (R™, m).

@) w@)ds

Taking the p-th root, this can be rewritten as
2C

1T fllpy < ————7
T A =2y

[f1lpw = C@A [l -
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This result has two main disadvantages. The first is that no single v > 0 works
for all values of p since v has to satisfy 2Py° < 1 in order to C(p,7) > 0. The
other is that due to the relation between p and ~y, the expression m is of
the order of 2P for p — oo. Thus the operator norm of T,

20
|7 = sup [[Tfll,, < sup C(p,7)[Ifl,. < T
£, <1 £, W<t (1 —2Py0)>

Y

is also of the order of 2P. However while operators such a 7" should have operator
norm of the order of p (see [I7]) when p — oco. Both problems are caused by
the constant 2 in the good A-inequality. With enough precision this constant can
be lowered to any S > 1, but never to 1, since it would imply boundedness of
the norm of T for large p. Unfortunately the improvement § > 1 does not solve
any of the problems, because the estimate then still yields only the exponential
growth.

2.2 Rearranged good M-inequality in R"

Next improvement was introduced by R.J. Bagby and D.S. Kurtz (see [2]). In their
joint work from 1986 they sharpened the good A-inequality by reformulating it in
the terms of rearrangement rather than the distribution and proved an inequality,
in which the relation between p and v is needed no more. Unlike Fefferman and
Coifman they worked with the Calderén-Zygmund kernel K, i.e. such a function
K (), homogeneous of the degree —n, that satisfies the conditions:

() 1K ()] < .

(ii) f{a<‘x|<b} K(z)der =0,0<a<b,
(i) 1K () — K(x — )| < S8 for [o] > 21y

for every z,y € R™. Then, in order to study the Calderén-Zygmund singular
integral operator

Kf(z) = lim K(z —y)f(y)dy,

£—0 {yeR™:|z—y|>e}

they considered the maximal singular integral operator

Tf(xz) = sup

e>0

/ K(z —y)f(y)dy|. (2.2)
{yeR™:|z—y|>e}

In the rest of this section 7" and M are defined by (2.2) and ([2.1) respectively
and for all proofs see [2].

Lemma 2.2.1 Let w € Al_(Q), then for every 0 < v < 1 there is a constant
C' = C(v) > 0 such that

(Tf)u®) < CM ), (vt) + (T f).,(21) (2.3)

for every Lebesgue measurable function f on R™ and everyt > 0.
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Iterating 1} with v = %, one can get

Theorem 2.2.2 Let w € A_(Q), then there are two constants Cy,Cy > 0 such

that
(TF)5 () < Cy(MF)S, (%) +01/t (Mf)fv(s)%
and

(T ) () < (Tf)(t) + Co(M [ (1)

for every Lebesgue measurable function f on R™ and everyt > 0.
A few applications of the previous theorem follow.

Corollary 2.2.3 Let w € A_(Q) and let f be a Lebesque measurable function
on R". If (Mf): is finite-valued and T f is bounded except on a set of finite
w-measure, then T f is finite almost everywhere.

Corollary 2.2.4 If w € AL (Q), then there is a constant C' > 0, independent of
f and p, such that

([ rsopuee) <co( [ mseraes)

for every Lebesgue measurable function f on R™ and every 1 < p < oo.

Note that in Corollary [2.2.4] the expression Cp yields a linear growth in p
compared to Theorem [2.1.1, where the growth is exponential. Note also that due
to the rearrangement approach it is easy to derive the same result for the Lorentz
spaces LE4(R™, m).

The following Corollary concerns the space weak-L* introduced by Bennett,
DeVore and Sharpley in [3]. This space consists of w-measurable functions f
such that f; is finite for ¢ > 0 and f*(t) — fx(t) is a bounded function of ¢. The
“norm” in the space Weak —L> is defined by

1 e = SR (1) = £3(0)

Remark: Function ||.||\y... ;e 15 Dot actually a function norm because it does
not satisfy (BF;). Indeed, if we take f = ¢, ¢ € R, then also f* = ¢ = f** and

”fHWeak—LOO = 0.

Corollary 2.2.5 Let w € A_(Q) and suppose that T f is bounded except on a set
of finite w-measure. If f € LY°(R™, m), then Tf is in the space Weak —L> and

||Tf||Weak—L°° S c ||f||007w :

If there is oo > 1 such that (M f)i(t) < C(log(2))*~! for every 0 <t < 1, then
there is € > 0 such that exp(s(Tf)é) is w-integrable over sets of finite w-measure.
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Lemma 2.2.6 Let w € A;(Q), then there is a constant C > 0 such that

(Mf),(t) < CF(t)

for every Lebesgue measurable function f on R™ and every t > 0.

Corollary 2.2.7 Let w € A1(Q), then there is a constant C' > 0 such that

(TF),(t) <Cfr () +C / i fif)<5>%
and
* 1 ! *% = * dS
(Tf)5(t) < 02/0 fx(s)ds + O/t fw(S);
t o0 ds
<oq [ rreiseo [T e

for every Lebesgue measurable function f on R™ and every t > 0.

2.3 Better good A-inequality in R"

A year later D.S. Kurtz introduced in [13] a slightly different approach. His idea
was to eliminate the requirement that allow the good A-inequality to hold only
for M f relatively small and replace it with a pointwise estimate between M f and
T f. Working with this idea and 7" and M defined by and respectively
he obtained

Theorem 2.3.1 Let w € Ax(Q) and let 0 < € < 1, then there is a constant
C > 0 such that

w{x eR" : Tf(x) >CMf(x)+ A}) <ew({z e R": Tf(x) > \})
for every Lebesgue measurable function f on R™ and every A > 0.

Notice that this “better good M-inequality” immediately implies the classical
one with v = % It is also easy to see that the assertion of Theorem m
is equivalent to the assertion of the Lemma and thus has also the same

applications.
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3. Better good A-inequality

3.1 Fractional maximal operators

In this section we consider two versions of the fractional maximal operator that
are variants of the Hardy-Littlewood maximal operator suitable for our purpose.

Definition 3.1.1 Let (X, o, 1) be a space of homogeneous type and let E be a
p-measurable subset of X. Let f be a py-measurable function on X, then

1
]é F@)du(e) = /E £ (@) du(x).

Definition 3.1.2 Let (X, o, ) be a space of homogeneous type, 0 < a < n,
R>0,z¢€ X and f € L. _, then we define the fractional maximal operators

loc

0<r<R

MPf(z) = sup ][ v £ () dp(y),
B(z,r)

1
Myf(z) = B(ilj«];)gz (B s /B(m) |f(y)] du(y).

It is easy to see that for every z € X we have
M (2) < Gy " Mo (2). (3.1)

Lemma 3.1.3 Let (X, 0, 1) be a space of homogeneous type and 0 < av < m, then
for the constant Dsqg from Lemma[Il.1.9 we have

n
n—aoa

W({o € X : Muf(x) > A}) < DyAes ( [ 15w du(y))

for every f € L' and X\ > 0.

Proof. Fix A > 0 and f € L'. Denote the set {z € X : M, f(z) > A} by Q) and
for every = € Q, let B, = B(y,r) be a ball containing z such that

1
———== [ fWlduly) > A 3.2
e, [l 3.2
Such a ball has to exist by the definition of €2, and M,. Obviously, the collection
of balls { B, }.eq, covers 2, and due to the integrability of f we have

/X @) duly) < C

for some C' > 0. Now we see that balls B,, z € ), with radius greater than

0;1/71 (Q)l/(n*a)
)

we would have

cannot exist, because, by applying the lower bound condition,

1 C C
B J,, 0140 < (g < e
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which is the contradiction with . Therefore B,, x € 2, have uniformly
bounded diameter. Recalling the separability of X from Lemma [1.1.3 we apply
Lemma to {B;}zeq, to obtain a countable disjoint subcollection {B,, =
B(yk, k) }32 C {Bs}zeq, such that

k=1

Therefore, combining (3.2)), (3.3) and Lemma we get

) <> u(Blyk, 5d°rk)) < Dse > By, i)
k=1 K1
< Dy 3Nt !f(y)\du(y)> -
< Dy Ao (Z/ \f(y)\du(y)> _ < Dy || fll75® o
k=1 Bxk

3.2 Better good A-inequality

The aim of this section is to prove the better good A-inequality for the Riesz po-
tential and a few of its corollaries, which create the base for deriving the weighted
Lebesgue and Lorentz norm estimates.

Definition 3.2.1 Let (X 0, 1+) be a space of homogeneous type, 0 < a < n,
R>0,z¢€ X and f € L _, then we define the Riesz potential

loc

IFf(x) = /OR (]i(x,t) f(y)du(y)) dt®.

The sharp Lorentz-norm estimates for this version of the Riesz potential are
thoroughly studied by Maly and Pick in [15] and a very similar version with a few
results also appear in [14].

Lemma 3.2.2 Let (X, 0, 1) be a space of homogeneous type, R > 0, 0 < a <n
and suppose that f, g are p-measurable functions on X. Then for the constant

Dyq from Lemma we have
[ 1 @@)auta) < D [ )5 0)nty)
X X
Proof. Fory € B(z,r) we have B(y,r) C B(x,2dr) and thus, using Lemmal([l.1.2]

we have

p(B(y,r)) < p(B(x,2dr)) < Dygpu(B(z, 7).
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[ i@t - [ ([ 4 ( Ji i) ) it
] /B(m) W éff))) () ) dute >) it
:/OR /X /Xf( )X(B(?;i(i/)) ( )dﬂ(y)

(

g
< )Xo t)lw)gm) ) .
([ S (o) ) duty) ) a
( )

u(B(x,t)
W)X 50 (@)g(2) )
(L e

< Dayyq /OR ( ; f(y) (/X %du(@) d#(?/)) dt®

o ([ (], s )

_ D, /X Ig(y) f(y)dp(y).

]

Theorem 3.2.3 (Better good A-inequality) Let (X, o, 1) be a space of homoge-
neous type, 0 <e <1, 0<a<n, R>0 and w € Ay. Then there is a constant
C' such that for every u-measurable function f on X we have

w({r € X : I8f(z) > CMEf(2) + O'N\}) <ew({zx € X : IFf(z) > \}) (3.4)

for C" = max{1, ;2‘1)3;} and every A > 0.

Proof. Fix A > 0, p-measurable function f on X and let C' > 0 be a constant
with the exact value to be specified later. Set

G={zeX Iff(x)> )}, G°={z e X : IBf(x) > OMEf(zx) + C')\}.

Obviously G, G¢ are open. Let z € G and r = min {%1 dist(z, X \ F), %}, then
B = B(z,r) is a Whitney ball for G bounded by £. At first we show that for
every 0 < & < 1 the constant C' can be set such that

1 (BNGY) <&u(B). (3.5)
Fix arbitrary 2z’ € B and set

,,,.a

"= W(B(z,3E0) /B<) f@)dn(y)

Now we define § = d(e, D) € (0,1) with the exact value to be specified later and
set
E=Bn{ze X :IJf(x)>a}.
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Since § € (0,1), for y € B(z,r), ¥ € B(7',3d?r) and = € B(z,r) we have
oy, ) < d(e(y, x) + o(x, 7)) < dr + d*(o(x, 2) + o(2, %)) < 3d’r

and
oy, 2) <d(o(y/,?) + o(¢,2)) < 3d°r + dr < 4d°r.

Thus B(z,0r) C B(x,r) C B(2,3d*r) C B(z,4dr) for every x € B(z,r). We
also notice that for y ¢ B(z2',3d?r), t € (0,0r), the intersection of B(y,t) and
B(z,r) is empty, otherwise there is y” € B(y,t) N B(z,r) and

o(2',y) < d(o(#',2) + o(z,y)) < dr + d*(e(2,y") + o(y",y)) < 3d’r,
which is the contradiction with y ¢ B(z’,3d?r). Thus for y ¢ B(2,3d*r) we have

e i o_ [T By, )N Bzr) .
faxs / ][yt ()t /0 Bl

and for y € B(Z/,3d?r) we have

or _ or N(B(%t)ﬂB(zar)) « oo
R R

Using Lemma, Lemma and the definition of E, we get
onlE) = [ adp(e) < [ 17 5(e)dnta)
E B
= / 1Y f ()X ()dp(z) < Dag / 12X () f () du(y)
X X

<Du [ 8 (0)duly) < Dasdan(B(E )
B(z',3d?r)

< Dygd®au(B(z,4d%r)) < DogD,gs0%ap(B(z, 1)),

which gives us u(E) < DogDygsd*u(B) and thus for § satisfying DogDygs0% < €’
we get

u(E) < 'u(B). (3.6)
To finish the proof of (3.5 we will show that we can set the constant C' such that
BNGY N\ E =0 and thus u (BNG \ E) = 0.

Fix z € BNGY \ E and suppose 4r < Then we decompose IZ f(z) as follows:

Lif(x) =

2d2

/ ]i St
+/”ﬁmf@w@wx
o[, L, S
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For the case 4r > % we consider the same decomposition only, the second
integral is treated as zero. Now we can easily see that

4r 4r dta
d dte R -
/M ]i(xyt)f(y) pu(y)dt SMaf(fr)/& v

— MEf(z) /( TS ) log (%) (3.7)

orye S

and analogously
/ ][ y)dt™ < aMPf(x)log(2d?). (3.8)
302 (z,t)

For the integration from 4r to 5 d2 we observe that for a non-trivial case we

have 4r < 25“2 and thus, from the definition of the Whitney balls, we can find

2" € B(z,3dr) ~ G. Due to 2" ¢ G we obtain
ITf(2") <A (3.9)
and since t > 4r, we have the following set of inclusions
B(z,t) C B(2",2d*t) C B(x,4dt). (3.10)

From (3.9) and (3.10) now follows

_R_
a2

/ ]{am iuar < [ m / oy )

R
& Dy

= / n(B(z,4d*t)) /( " ,2d2t) Flu)duly)dt”

%
/ D4d3][ d,u( )dta
4r B(z", 2d2t)

/ " Dap Fo wauar
= y)aply
sazr (2d%)* gy

D
< G ;;>a15 (2") < C'A. (3.11)

[

To estimate I°" f(z) we recall that 2’ was chosen arbitrarily. Therefore we can set
2/ = x and since x ¢ F, we get

or _ roz
@) S 0= s /B o [

,r,Oé

N [L(B(l’, 3d27")) /B(x,3d2r) f<y)d/‘b(y)
MEf(z). (3.12)

_ 1
— Ba?)e
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From (3.12), (3.7), (3.8) and (3.11) we see that for z € BN G \ E we have

IR f(2) < + log(g) + 10g(2d2)) MEf(x) + C'\.

((3d12)

Thus by setting C' = ((3d2) +log(3) +1og(2d*)) and because z € G we also have

IHf(x) > ((3dl?) + log(;l) + log(2d2)) MZEf(z) +C'\

Therefore (B NG\ E) =0 and
pBNG) <p(BNGY N E) + u(E) <e'u(B),

which proves (3.5). Now for any 0 < ¢ < 1 and P from Lemma [1.3.5 applying
A condition, we can set € small enough to get

w(BNGY) < Su(B).

Then, using Lemma [1.3.5] and summing over the balls in the Whitney covering
V), we obtain

w(@) =w(|JBNG) <Y wBnc®) <Y %w(B) < cw(@),
Bey Bev Bev
which is the assertion of the theorem. O

Because we have chosen the better good A-inequality approach, we obtain the
rearranged good A-inequality as an easy consequence.

Corollary 3.2.4 Let (X, 0,1) be a space of homogeneous type, w € Ay, R > 0
and 0 < o < n. Then for 0 <~ < 1 and a p-measurable function f there is a
constant C' > 0 such that

(L)) < COMEF),(0t) + C' (L), (2) (3.13)

for C" = max{1, 2;5)‘1} and every t > 0.

Proof. Setting A = (IZf)* (2t) in Theorem we get
w({z € X : [T f(x) > CM f(x) + C'(17f),(2t)})
<cw({r € X : L'f(x) > (I5'f),(26)}). (3.14)
Fix 0 <y < 1 and set ¢ = =2. By the definition of f; we have
Dyo(fu(t)) = Df7w(1nf{s >0: Dyy(s) <t}) <t.
Hence, using , we obtain
w({z € X+ [T f(z) > CMIf),(vt) + C'(17f),(20)})
<w({r € X : [Jf(z) > OM f(x) + C'(17 1), (20)})
+w({z € X+ M f(x) > C(Mf),(v)})
< ew({zw € X+ I f(x) > (17f)5(26)}) + Daggw (MGTf), (48))
< <Dy (IFD)5(20)) + Dagga (MEFY(30)) < 261 49 = 1.
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Thus
Dy (OO t) + CUEF Y (20)) <
and that implies
(L F)i(t) = inf{A > 0 Dyng () <t} < OO (0t) + C(IT),(28).
O

Next easy consequence of the better good A-inequality is the good A-inequality,
which is a bit weaker but on the other hand it is easier to work with.

Corollary 3.2.5 Let (X, 0, 1t) be a space of homogeneous type and w € Ay,. Let
0<5<1,1§p§oo,R>0anda>C”:maX{1,(§f—2d)i},O§a<n. Then

there is a constant o = o(e, D), where D is the doubling constant, such that
w({r € X : IEf(x) > a\ MEf(z) <o)}) <ew({z € X : [Ff(z) > \}) (3.15)
for every A > 0 and every p-measurable function f on X.

Proof. For fixed ¢ > 0 and a > C’ we obtain C > 0 from Theorem [3.2.3] By
setting 0 = C~!(a — C") we have

MEf(z)<od=C"Ya—-CH\ = a\>CMEf(x)+C'\ (3.16)

for any x € X and thus, using and , we obtain
w({r € X : IFf(z) > a)\, MEf(x) < o)})
<w({z e X IHf(x) > CMEf(x) + O\, MEf(z) <o)})
<w({x e X Iff(x) > CMEf(z) + C'\})
<ew({w e X : [Ff(x) > \}).
O

Corollary 3.2.6 Let (X, 0,1) be a space of homogeneous type. Let w € A,

Dyg3

R >0 and a > max{l,;—}, 0 < a<n. Then for every 1 < p < oo and every

2d2)o<
w-measurable function f on X we have

a
[ 22,0 < o1 = are) MG,

as long as e < a™P.

Proof. Let 1 <p<oo,e<a® z€ X, méeN and set
fm(®) = XB(z2m)(z) min{f (), 2" }.
Then, using , we have
Diry, w(aX) = Dyry, (0X) = w({z € X : 12 fon(x) > a)})
—w{zr € X : MEf,.(z) > oA}
<w({z e X : I8f,(x) > a\ MEf, () < oA})
<ew({r e X : IFf.(x) > \})
= eDyry,. w(N)
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and thus
chlx%fmm,(a/\) < €D[§fm7w()\) + DMC@fm,ZU(O-)‘)‘ (317)
Now, using (3.17), Lemma and several changes of variables, we get

J T uterwt)dnte) =p [ 730 Digg, (N
= ap /Oo(a/\)p_lDlgme(a)\)d)\
0
< ap /Ooo(a)\)pleDIDz;fm,w()\)d)\
+ap /Oo(a/\)p_lDMgfm,w(a/\)d/\
0

= app€/ )\pilDIgffm,w()\)d)\
0

aP

P

1 / (O')\)p_lDMé%fm’w<O'/\)d)\
0

s /X I ()P0 dp()

ayr R p
(8 [ Mttty
Since € < a™ P, from the last inequality we derive
p
R R
[ taapu@ante) < —m s | M P ul)dn)

Then letting m — oo, using Levi’s theorem and taking the p-th roots we obtain

a
1A = =gy 1M

]

Corollary 3.2.7 Let (X, 0,1) be a space of homogeneous type. Let w € A,
R>0and 0 < a <n. Then for p > 1 there is a constant C' > 0 such that

R R
HICYpr,oo,w S ¢ HMO! pr,oo,w
for every p-measurable function f on X.
Proof. Let p > 1, a > max{1, (2136;*—51)3;}, z € X, m e N and set

fm (%) = XB(z2m) (z) min{ f (), 2™ }.
Now, using Corollary [3.2.5, we get
(aNPw({z € X : IRf, (x) > a\}) < ea?Nw({x € X : I[Bf,.(x) > \})

+aPXNw({x € X : MEf, () > o)})
p|| TR p R p
< e [ 1l o + CIMe i
for every A > 0. Taking the supremum over A, letting m — oo and using Levi’s

theorem we obtain the required inequality whenever ¢ is chosen such that

eal < 1.
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3.3 Norm estimates

In this section we extend the results of the last two corollaries in the way that
we prove the norm estimates between M f and f on the weighted Lebesgue and
Lorentz spaces.

First we introduce some notation which will be used in the following two
lemmas and theorem inspired by [1] and [4]. Let B = B(z,7), x € X, r > 0, be a
ball. Let 0 < a < n, A= Dysps, b= 2A%2+1 and k € Z. Then set B = B(x, 5d2r),
B = B(x,15d°r) and Q; = {z € X : bF*1 > M, f(x) > b*}. If f is a non-negative
L' function and E is a pu-measurable set, we denote M(E)+a/n S 1 f@)|dp(y) by
mpgf. Note that if u(X) < oo, then mx f < M, f(x) for all x € X. In this case,
for each f, we denote by ko the integer such that v*o+! > mxf > b%. Then
clearly Q, = 0 for every k < ky.

Lemma 3.3.1 Let (X, 0,1) be a space of homogeneous type and let A, b, ko,
k and Q be as above. Then for any non-negative L' function f with bounded
support and any k € Z such that Q, # 0 there is a sequence {BF}ien of balls
satisfying:

(i) % C Uz, B

(i) BfNBF =0 if i # j.

(iii) If u(X) = oo, then for every BF there is x¥ € BY such that if r¥ is the
radius of BF, r > 5d*r¥ and x¥ € B = B(y,r), then

V> M f(2f) > mprf > 0" > mpf.

(iv) If w(X) < oo, then (iii) still holds for k > kg, but if k = ko we only have
one ball B¥ such that Q, C B¥ = X and

bRt > Mo f(21°) = mgre f > b

for some z¥° € B,

v) Ifz ¢ U2 Uz, B! and M, f(z) < oo, then M, f(z) < b*.

Proof. In order to obtain (i) — (iv) we first assume that pu(X) = co. If z € Q,
then the integrability of f implies that there is a constant C' > 0 such that
Jx f(y)du(y) < C. Thus, by the lower bound condition, we can take r > 0 big
enough such that for the ball with radius r, B(x,r), we have mpgf < b* for
every x € X. Therefore, for fixed k, the sets

Ri(x) = {r > 0: there is a ball B = B(y,r) >z, y € X, such that mpf > b*}

are uniformly bounded. Hence we can choose r, € Ry(x) in such a way that if
r > 5d*r,, then r ¢ Ry(z). Thus there is a point y, € X such that

prtt > Maf(x) > mB(yz,rz)f > ¥ > mB(y,,«)f (3.18)

for every ball B(y,r) > x whenever r > 5d*r,. Thus for every z € €, we have a
ball B(y,,r,) and the collection {B(yy, ) }zeq, is suitable for applying Lemma
1.3.1l Moreover, the boundedness of the support of f implies that €2 is also

30



bounded and therefore Lemma [1.3.1| can be used to obtain a countable sequence
{BF}Y2, C {B(yx,72) baeq, satisfying (i) — (iii). If u(X) < oo and k > ko, it is
easy to see that we can still find r, € Rg(z) and y, € X such that holds.
Then, using Lemma again, we obtain (i), (ii) and the first part of (iv). If
k = ko, we notice that u(X) < oo implies the finiteness of the diameter of X,
otherwise, due to the lower bound condition, we could find a ball B in X with
the radius big enough such that u(B) > pu(X) and that would be a contradiction.
Thus we are able to choose z € Q) and r > 0 such that B(z,r) = X. Then with
2% = 2 and ¥ = 7 we have the last part of (iv). To finish the proof we notice
that (v) follows easily from (i) — (iv). O

Now we add some more notation valid for the next lemma and theorem. For
every k € Z, let {BF}icn be a collection of balls satisfying (i) — (v) from the
previous lemma. Then set

IF={(l,m) € ZxN:1>k+2B},NB} #0},

J

Ab= ) B,  Ef=Bi~Al,  Ff =B\ AL (3.19)

k
(Im)€l;

Lemma 3.3.2 Let (X, 0, 1) be a space of homogeneous type. Let A, b, ko, k, Q,
Ij’?, Aé?, Ej’?, Ff be as above, let f be a non-negative L' function with bounded
support and for every k € 7, such that Q, # 0, let {B¥}ien be a collection of balls
satisfying (i) — (v) from Lemmal3.3.1 Then we have

(i) 2p(A7) < u(B}),
(ii) 2,u(Ej’?) > N(B]’?), (X ~ U;’;l U o Ej’“) =0 and if x € Ejk and
M, f(z) < oo, then M, f(x) < b*2,

(iil) w(Fy) > D and

33 ) <2
k=—o00 j=1
for any x € X.

Proof. In order to get (i), let us first show that if | > k+2,m € N and Efnﬂéf #0,
then

nl nk
B, C By, (3.20)

or even more, that 7!, < 7‘?. To prove it, we suppose that r! > rf and show
that it leads to a contradiction. From our assumption we get BJ’-c - Efn and from
inequalities in Lemma m (iii), (iv) (applying B(y,r) = B\fn in (iii) and in the
part of (iv), where k > ko, and setting Bf = Ef = Eﬁn in the other part) we
have

1(B)
w(BL,)

1_a
" 1
bk-i-l > mg f > ( > mBénf > ZmBénf
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Now the third inequality in Lemma [3.3.1] (iii) and (iv), applied to the pair (I, m)
and definition of b, gives

1
Pl > ilmBl f> Zb Zka (b%) 2 pet? > bk+zf%’

which is a contradiction.
Now, using again the third inequality in Lemma [3.3.1] (iii) and (iv), we obtain

Z uBl <A Z w(BL)

(lmelk (tm)el}
<A Z( /f e )
(,m)elk

Since B! are for fixed [ pairwise disjoint over index m and (3.20]) holds, we have

n

W‘?%A(i ) ( ()l >>H
I=k+2
(5 (1)) ) )
< A2 (b—"ff“f) (bf —~ 1) _1) bra” u(BF)

A? A?
S jm B S )
A2 4(B))
< - ky — 7
S s 1B =

In order to prove (ii), let z be a point such that M, f(z) < co. Then z €
for some k € Z. By Lemma [3.3.1] (i), # € B} for some j € N. Assume that

x € AF, then there exists (I,m) € I} such that z € B! and from Lemma [3.3.1
(iii) and (iv) we obtain

M. f(z) >mg f> A_lmBinf > AT > kit

which is a contradiction. Thus x ¢ A? and the sequence {E]’“} is a covering
of {x € X : M,f(x) < oco}. Moreover, on account of Lemma [3.1.3] we have
p({r € X 2 My f(z) = oo}) = 0. Thus we also have u(X ~ U2, U2 E}) = 0.
The inequality 2, (E}) > u(éf) now follows easily from 2u(A¥) < u(BY):
20(E}) = 2u(Bf) — 2u(A) > 2u(Bf) — w(Bf) = 2u(Bf) — p(Bf) = u(Bf).

And the estimate M, f(x) < 0¥ for 2 € EF is the consequence of the definition
of the set Ejk because = € E]k implies z ¢ Q' [ > k + 2.
To prove (iii) we notice that due to Lemma [3.3.1] (ii) we have

D oxer (@) = Xy, pe(@) < Xy, (@)
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for any k € Z. By the definition of Ef 1) it follows that no point of X belongs
to more than two of the sets E¥ = U;’;l E}. Indeed, if z € E* then thereis j € Z
such that z € BY and = ¢ A%, which implies that = ¢ B! for [ > k + 2 because if
x € le., then Bé- ﬁB;?’ #(and z € Aé?, which is a contradiction. Thus also x ¢ E!
for [ > k + 2 and z can only belongs to one additional set and that is E**! or

E*=1. Using this fact we get
kz ZlXFJk(x) < kZ XU]‘?‘;IEJ’?(x) <2
=—00 j= =—00

Again the inequality yu(F}) > u(éf)/(QA) follows easily from 2u(A¥) < u(BY):

() 2 p(BE) — () 2 ity - 20 < M) BB

That finishes the proof of (iii) and also the Lemma. O

Remark: In Lemma the items (i) and (ii) are rather auxiliary, the main
result is the uniformly bounded overlapping of the sets Ff over the both param-
eters.

Theorem 3.3.3 Let (X, 0,1) be a space of homogeneous type, 0 < a < n and
1
1 <qg<p<oo. Let w,v be a pair of weights with w,u =v a1 € A__. Then

||M06f||p,'w S C ||f||q,v (32]‘>
for all f € L% if and only if

w(B)ru(B)i~
p(B)—we

< (<00 (3.22)

for every ball B C X.

Proof. The inequality 1) follows easily from 1’ by taking f = v xp for
a fixed ball B.

Now assume that (3.22)) holds and let b, 2, and A be as above. Let f be a

function in LI. First, in order to prove (3.21f), we suppose that f has bounded

support. Then, from Lemma (i) — (iv), we have

[e.e]

(Maf(@)" = Y (Mof (@) xa,(z) SV Y V7x0, ()

k=—o0 k=—o0

<P i ib’”’ng(@ <V i i (mef>pX§§(x)'

k=—o00 i=1 k=—o00 i=1

Now, from w € Al and Lemma|l.1.2] we also have

u(BY)
u(BY)

3
w(Bf) < C4, ( ) w(Bf) < CD; ,w(Bf) < Cw(Bf)
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and analogously, from u € A’ and Lemma [3.3.2) (iii), we have

u(BY) < 3, (fﬁ; ) u(F¥) < CRAY u(FY).

Using all the three previous inequalities, (3.22), Lemma [3.3.2] (iii) and setting

M (@) = sup = [ 17 u(w)auty).
we obtain
Mo, <€ 303 (i) w(B
23D (MB,})lg ka(as)du(a:)) W}
= S w(BF)ru(Br)t !
<oy SRR (u(;k) ka(x)dm) u(B)
<cY Y (u (}% k f(x)ul(q:)u(x)du(:c)) u(FF)
k=—oc0 i=1 v B;
<C > Z/ (M“(fu=") ()" uly)duly)
k=—oc0 1=1 Fik
< Cl|me(fu 7, -

The operator M" is actually the Hardy-Littlewood maximal operator on the space
(X, d,udu). Hence, from its boundedness on (X, d, udu) for 1 < g < oo (see []]),
we get

1Mol < ClIM“fu |, < C N, = C g
which is (3.21)). When f does not have bounded support, the result follows by

using a density argument. O

Remark: For the implication (3.22)) = (3.21)) in the last theorem is the restrictive
assumption 1 < ¢ < p < oo not necessary.

Corollary 3.3.4 Let (X, o, ) be a space of homogeneous type. Let 0 < a < m,
1
wov Tt eA [ 1<g<p<oo, R>0 and

w(B)7 (u(B))""
(Bt

< 00

for every ball B € X, then there is a constant C' > 0 such that

15,0 < C Ul

for every f € L.
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Proof. Combining Theorem and Corollary we have
1EFN, W < CIMEF]L, < ClMafllyw < ClLly -
m

To obtain a similar estimate in the Lorentz space we need to introduce a few
facts.

Definition 3.3.5 Let (X, o, 1) be a space of homogeneous type, 0 < a < n and
let either 1 <p<ooand 1 < ¢ < ocorp=¢q=1. Let (w,v) be a pair of
weights. We say that the pair (w,v) is in A(p, ¢, ), (w,v) € A(p, q, @), if there
is a constant C' > 0 such that for any ball B C X we have
< Ou(B)'"n,

p,’q,’v -

1

X5 g0 X0

where 1 = %+1% and 1 = % + i Note that || x gl = w(E)% for every F C X.

p?q?w
For the proof of the following analogy of the Holder inequality in the Lorentz
space see [11] or [16].

Lemma 3.3.6 Let (X, 0,1) be a space of homogeneous type, let w be a weight
and let 1 < p,p1,p2,q, 1, g2 < 00 with

1 1 1 1 1 1
- =—+— and - =—+ —,
b D1 D2 q q1 q2

then there is a constant C' > 0 such that

Hngp,q,w S C ”prlyfh,w Hng27q27w
for every f € Ly 1w and g € Ly, g0 -

Lemma 3.3.7 Let (X, o, 1t) be a space of homogeneous type, let w be a weight,
1<qg<p<oo and let {Ej}?il be a collection of p-measurable sets such that
there is a positive constant C' so that Z;’il xg;(x) < C for any x € X. Then we
have

Z ||XE]fH§,q,U) S C Hf §7q7w '
j=1
Proof. Let r = £ > 1 and let [|.||;. be the classical norm of the sequence space.

Then

Ir

x jf v v p N Hq OO<D XE-JU(S))%Sq_ldS
(Shastt) =Jo [ 0n,

q
pg,w *

<q / (C(Dyls)) 57 1ds = CF | f
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Lemma 3.3.8 Let (X, 0, 1) be a space of homogeneous type, 1 < q < p < o0,
0<a<mn, (wov) e Alp,q,w) and w € AL, then there is a constant C > 0 such
that

1Mo flly o0 < C NS

p7w7w p7q7’U

for every f € LP1.

Proof. Let R >0 and Q) = {z € X : My rf(x) > A}, where
1
Monf(@) = s e [ [7(0)]duly)
B(er)sa W(B(2,7)) 7" I
r<R

For every x € €0y choose a ball B, such that = € B,, radius of B, is less than or

equal to R and
: /
= fy)]duly) > A
B BZ| )] du(y)

Since Q\ C U,cq, B: and Lemma ensures the separability of X, we apply
Lemma_ to obtaln a countable sequence of disjoint balls {B,, = B (xl, i) bien
such that

1
2 .
0 C iEUNB@i,w r;) and BT /B |f(y)] duly) > A, i € N.

Since (w,v) € A(p,q,a) and w € A/, we apply Lemma and Lemmam
to obtain

w(2y) <Z B(zy,5d*r;))

€N
u(B(zi, 5d2ri))) s
< B, <C B,

Z ((B;) / |f(y)|w(y)‘1w(y)du(y))
< %Z s, |17

p(1—2) p -
pqw mz) ||XBx1f||pqv HXBa:lw p’,q’,v
p

Z Hxszprqv !

1€N
Since the balls B,, are disjoint, by Lemma [3.3.7] we have

1
w(fd) < V 1 ge = ADMarrawA)? < Cl Sl g0

Now, taking the supremum over A and letting R tend to infinity we obtain the
assertion of the Lemma. O

Theorem 3.3.9 Let (X, 0, 1) be a space of homogeneous type, 1 < q¢ < p < oo,
p>1,0<a<n, (wv) € Alp,q,w) and w € A_, then there is a constant
C > 0 such that

5l e < C Ul g
for every f e LPA.
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Proof. Combining Corollary and Lemma [3.3.8 we have

< Cl|Maf

p,oo,w T

M1 = C 1M <C|fl

p,00,w — P,00,w p,q,v "

]

Remark: Unlike the case with the singular integral operator in R”, we are not
able to derive results in the spirit of Theorem and following Corollaries [2.2.3]
2.2.4]12.2.5(and [2.2.7|because the constant C" = max{1, (;‘—Qd)i} in our quasi-metric
rearranged good A-inequality is in general greater than one, which does not allow
us to run the iteration process of .
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