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Preface

The goal of this thesis is to study the number of partitions with a given property.
More precisely, we introduce special sets of partitions called partition ideals and
we are concerned about counting functions of these sets. The main aim is to
determine the maximal growth of the counting function of some partition ideal,
which is in�nitely many times equal to zero.

In the �rst chapter we introduce integer partitions and give several basic
theorems. We present both combinatorial and analytical ways to study parti-
tions and show their advantages. After that, we give a brief summary of partition
identities with stress on famous Euler's identity. The rest of the chapter is de-
voted to Cohen�Remmel theorem, with easy combinatorial proof and a number
of corollaries.

The second chapter gathers results about asymptotics of counting functions.
At the beginning we formulate the most important Hardy�Ramanujan asymp-
totics for the counting function p(n) of partitions without restriction with a proof
of two estimates. Afterwards we jump to the Schur's theorem about asymptotics
for the number of partitions with parts in a given �nite set A of positive integers,
which implies two nice statements. Next sections survey asymptotics of counting
function of other famous partition ideals and shows that there is also a explicit
formula for p(n).

Main and original theorems can be found in the third chapter. In introduc-
tion, we introduce partition ideals and their property (P), which demands count-
ing function to be in�nitely many times equal to zero. Second section brings
out partition ideal satisfying (P), whose counting function grows very fast. Con-
sequently, in Theorem 3.3.2 we present exact upper bound for asymptotics of
counting functions of a special family of partition ideals. Main Theorem 3.4.4
bounds fastest counting function with property (P). Final results of this chapter
can be found in Theorem 3.4.3, which characterizes fastest counting functions of
partition ideals. All this work indicates that oscillations for the counting functions
are really large.

The last chapter gives us a summary of asymptotics and oscillations of count-
ing functions of similar structures like partitions. We bring out the framework
of counting functions of hereditary sets in graphs, permutations and words and
show that oscillations in these structures are very bounded and sometimes even
impossible, which makes our results more valuable.
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1. Introduction to the partitions

At the beginning of 17th century G. W. Leibniz wrote a letter to J. Bernoulli,
where he asked him in how many ways can one write a positive integer as a sum
of positive integers. From this moment on many mathematicians studied this
question and developed new branch of mathematics called the partition theory.

1.1 Basic de�nitions

De�nition 1.1.1 Let n, k be positive integers and λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λk be a �nite
non-increasing sequence of positive integers. We call λ = (λ1, λ2, . . . , λk) a parti-
tion of a positive integer n, if

n = λ1 + λ2 + ⋅ ⋅ ⋅ + λk.

The positive integers λi, where i ∈ [k], are called the parts of the partition λ.
We denote the fact that λ is partition of n by λ ⊢ n. Number n is also called

the absolute value or the norm of the partition λ and denoted by ∣λ∣.

Second notation we use is multisets. Multiset is a pair λ = (A,f), where A is
a set of positive integers and f ∶ N → N0 is a multiplicity (multiset) mapping.
The value f(t) denotes how many times t appears in the multiset λ, which means
f(t) = 0 for t ∉ A. So we can write

λ = (1f(1)2f(2)3f(3) . . . ),

where the exponent does not mean the power, but the multiplicity of part in
the partition λ.

De�nition 1.1.2 Let P be the set of all partitions and Pn be the set of partitions
of n. Let p(n) = ∣Pn∣ be the number of partitions of n, usually called the partition
function.

For a negative n we de�ne p(n) = 0 and we set p(0) = 1, because the empty
set is the only partition of zero. We call that partition the empty partition and
mark it θ.

Example 1.1.3. Let us list all partitions of number 6. Because

6 = 6 = 5 + 1 = 4 + 2
= 4 + 1 + 1 = 3 + 3 = 3 + 2 + 1
= 3 + 1 + 1 + 1 = 2 + 2 + 2 = 2 + 2 + 1 + 1
= 2 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1,

therefore p(6) = 11.

De�nition 1.1.4 Let S ⊂ P be a set of partitions. We denote

p(n,S) = ∣Pn ∩ S∣

the counting function of the set S.
When A is a set of positive integers, then the counting function pA(n) counts

the number of partitions with parts from the set A.
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One of the most important problem of the theory of partitions is to evaluate
the counting function of some sets S. This is not di�cult for �nite S, but even
for S = P it took nearly 300 years to �nd an asymptotic formula.

De�nition 1.1.5 Suppose we have two partitions λ,µ ∈ P. We say that λ is
a subpartition of µ, if no part λi of partition λ has more occurrences inλ than
in µ. We use the notation λ ≺ µ.

The set P with relation "to be a subpartition" is a partially ordered set. In
the language of multisets, multiset λ = (A,f) is a subset of the multiset µ = (B,g),
which means that f(n) ≤ g(n) for every positive integer n.

De�nition 1.1.6 Let λ1, λ2, . . . λk be partitions in P. Their union λ1 ∪ . . . ∪ λk
is the smallest (i.e. with the smallest absolute value) partition µ satisfying µ ≻ λi
for all i ∈ [k].

Similarly their intersection λ1 ∩ . . . ∩ λk is the greatest (i.e. with the greatest
absolute value) partition µ such that µ ≺ λi for all i ∈ [k].

Their sum λ1 + . . . + λk is the partition µ of the positive integer ∣λ1∣ + ⋅ ⋅ ⋅ + ∣λk∣
such that the multiplicity of i ∈ N in µ is the sum of multiplicities of i in λ1, . . . , λk.

Finally, for two partitions λ ≺ µ de�ne the di�erence µ − λ as a partition
with parts same as partition µ and their multiplicity equal to the di�erence of
their multiplicities in the partitions µ and λ. In the case λ ⊀ µ we de�ne the
di�erence µ − λ as a partition µ − (λ ∩ µ).

To illustrate these de�nitions in the multiset notation, consider multisets λi =
(Ai, fi) for i ∈ [k]. Then their union, intersection and sum is

λ1 ∪ . . . ∪ λk = (A1 ∪ . . . ∪Ak,max fi)
λ1 ∩ . . . ∩ λk = (A1 ∩ . . . ∩Ak,min fi)
λ1 + . . . + λk = (A1 ∪ . . . ∪Ak,∑fi)

λ1 − λ2 = (A1,max{0, f1 − f2}).

Example 1.1.7. Set λ = (5,2,2,1,1) and µ = (7,5,3,1). Then their union is
the partition λ ∪ µ = (7,5,3,2,2,1,1), intersection is the partition λ ∩ µ = (5,1),
their sum is the partition λ + µ = (7,5,5,3,2,2,1,1,1) and di�erence λ − µ is
the partition (2,2,1).

1.2 Analytical and combinatorial view

There are two major ways how to describe partitions, analytical and combinato-
rial. Whilst combinatorial approach is more illustrative, the analytical approach
works with generating functions and often gets better results. We introduce both
methods in this section.

The combinatorial approach represents partition as a set of lattice points
in the plane and works with the graphical properties of diagrams.

De�nition 1.2.1 Let λ = (λ1, λ2, . . . , λk) be the partition from P. Then the Fer-
rers diagram Fλ of λ is the set of points with integer coordinates (j,−i) such that
0 < i ≤ k and 0 < j ≤ λi. Sometimes instead of the lattice points we draw unit
squares centered in the lattice points.
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Example 1.2.2. We demonstrate the Ferrers diagram Fλ for λ = (5,4,4,2)
in the following �gure, �rst by the lattice points, then by unit squares.

De�nition 1.2.3 Let λ = (λ1, λ2, . . . , λk) be a partition. We de�ne a conjugate
partition λ′ = (λ′1, λ′2, . . . , λ′k′) of λ by setting λ′i to be the number of parts of λ
that are greater or equal i.

Example 1.2.4. Take λ = (6,3,3,2,1). Then the conjugate λ′ is the partition
λ′ = (5,4,3,1,1,1). The following Figure visualizes process of conjugation:

The diagrams Fλ and Fλ′ are in coordinate system images of one another
in the axial symmetry with the axis passing through all points of the form (i,−i),
i ∈ Z.

That is why some partitions are self-conjugates (e.g. partition (5,3,3,1,1))
and the mapping "conjugation" C ∶ P → P , which maps λ to λ′ is a bijection.

We demonstrate the strength of this observation by the following theorem.

Theorem 1.2.5 Let n,m be positive integers. Then the number of all partitions
of n with all parts not exceeding m is equal to the number of partitions of n with
at most m parts.

Proof. We use the one-to-one correspondence between partitions and their con-
jugates. The fact that partition λ has at most m parts means that the parts of
the conjugate partition λ′ are at most m and vice versa. This conjugation maps
partitions of n with all parts not exceeding m to the partitions of n with at most
m parts, which concludes the proof.

The analytical approach uses generating functions and mathematical analysis.
First we introduce the generating function.

De�nition 1.2.6 Let a0, a1, a2, a3, . . . be sequence of positive integers. Then
the power series

f(x) =
∞
∑
n=0

anx
n,

where x ∈ C, is called the generating function of the sequence {an}∞n=0.
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De�nition 1.2.7 Let A be a set of positive integers. Denote by pA(n) the number
of partitions, whose parts lie in A and by pA,k(n) the number of partitions λ, whose
parts lie in A and their multiplicity in λ is at most k.

Example 1.2.8. Take A = {1,2,7}. Then

pA(4) = 3 and pA,2(4) = 2,

because in both cases the partitions 4 = 2+2 = 2+1+1 are acceptable and moreover
in the �rst case 4 = 1 + 1 + 1 + 1 is possible.

Theorem 1.2.9 Let A be the set of positive integers. Set

f(x) =
∞
∑
n=0

pA(n)xn and fk(x) =
∞
∑
n=0

pA,k(n)xn.

Then for ∣x∣ < 1 we have

f(x) = ∏
a∈A

1

1 − xa ,

fk(x) = ∏
a∈A

(1 + xa + x2a + ⋅ ⋅ ⋅ + xka) = ∏
a∈A

1 − x(k+1)a

1 − xa .

Proof. Let us start with the power series

1

1 − xa = 1 + xa + x2a + x3a + . . .

which converges absolutely for ∣x∣ < 1. If A = {a1, a2, . . . , ak} is a �nite set, then
just multiplying the parentheses we obtain

∏
a∈A

1

1 − xa = ∏a∈A
(1 + xa + x2a + . . . )

= (1 + xa1 + x2a1 + . . . ) ⋅ . . . ⋅ (1 + xak + x2ak + . . . )

=
∞
∑
n=0

pA(n)xn,

because any partition of n is of the form t1a1 + t2a2 + ⋅ ⋅ ⋅ + tkak, where t1, . . . , tk
are some non-negative integers. This means that every partition of n contributes
to the coe�cient p(A,n) of xn precisely one times and we are done.

If A is in�nite, denote A = {a1, a2, a3, . . .}. Since

∑
a∈A

∞
∑
i=1

∣x∣ia = ∑
a∈A

∣x∣a
1 − ∣x∣a ≤ ∑a∈A

∣x∣a
1 − ∣x∣ ≤

1

1 − ∣x∣
∞
∑
a=1

∣x∣a = ∣x∣
(1 − ∣x∣)2 < ∞,

our in�nite product converges absolutely and we can multiply the parentheses
in the same way to get

f(x) =
∞
∑
n=0

pA(n)xn = ∏
a∈A

1

1 − xa .
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The second identity uses the �nite geometric progression instead of the in�-
nite geometric progression, therefore the justi�cation of the convergence will be
the same and we get

∏
a∈A

1 − x(k+1)a

1 − xa = ∏
a∈A

(1 + xa + x2a + ⋅ ⋅ ⋅ + xka)

= (1 + xa1 + ⋅ ⋅ ⋅ + xka1) ⋅ (1 + xa2 + ⋅ ⋅ ⋅ + xka2) ⋅ . . .

=
∞
∑
n=0

pA,k(n)xn,

which completes the proof.

1.3 Partition identities

This section is devoted to the identities of restricted counting functions. That
means the counting function of the set of partitions satis�es given condition.

The best example is the famous identity of L. Euler, who discovered and
proved it in 1748 in [14]. It was the �rst known theorem asserting the identity
of two apparently di�erent counting functions. We introduce two proofs of this
theorem, �rst by combinatorial methods, second by generating functions.

Theorem 1.3.1 (Euler identity) For every positive integer n the number of
partitions of n with mutually distinct parts is equal to the number of partitions
of n into odd parts.

First proof. Let us construct the one-to-one correspondence between the parti-
tions with distinct parts and the partitions with odd parts. Such a construction
proves the statement of theorem.

Take any partition λ with mutually distinct parts λi, i ∈ [k]. Write λi
in the form λi = 2aibi, where ai is a non-negative integer and bi is an odd positive
integer. This form is unique. De�ne mapping which maps part λi to 2ai parts
bi. Doing this with every part of λ, we get partition µ. Clearly all parts of µ are
odd.

Now consider partition µ with only odd parts. Take all of its parts with
the same absolute value b, and denote their number by m. Write m in 2-adic
notation

m = 2c0 + 2c1 + 2c2 + ⋅ ⋅ ⋅ + 2cl−1 ,

where c0, c1, . . . , cl−1 are distinct positive integers. This notation is also unique.
De�ne mapping which maps allm parts of µ with length b to the l parts 2c0b, 2c1b,
. . . , 2cl−1b. Repeating this with all parts of µ we get the partition λ. The parts
of λ are di�erent, because the 2-adic notation is unique.

Both mappings de�ned above are inverses of one another, so they de�ne bi-
jection, which concludes the proof.

Second proof. Denote by pO(n) the counting function of the partitions with odd
parts and by pD(n) the counting function of the partitions with distinct parts.
Then Theorem 1.2.9 states

∞
∑
n=0

pD(n)xn =
∞
∏
n=1

(1 + xn)
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and
∞
∑
n=0

pO(n)xn =
∞
∏
n=1

1

1 − x2n−1 .

Simple algebraic manipulation gives
∞
∏
n=1

(1 + xn) =
∞
∏
n=1

1 − x2n
1 − xn =

∞
∏
n=1

1

1 − x2n−1 .

Let us show one example of the bijection described in the �rst proof. All
partitions of 7 with distinct parts are paired with the partitions of 7 with only
odd parts:

7 = 7 = 7
= 6 + 1 = 3 + 3 + 1
= 5 + 2 = 5 + 1 + 1
= 4 + 3 = 3 + 1 + 1 + 1 + 1
= 4 + 2 + 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1

Theorems such as this are called partition identities. There are many of
them, but their proofs are usually not as simple as in the case of Euler's identity.
The progress in this branch of mathematics came at the beginning of 20th century
with the generating functions. Here we mention Rogers�Ramanujan identities,
which were proved by Rogers and Ramanujan [29] in 1919 and independently
by Schur [31] in 1917.

Theorem 1.3.2 The number of partitions of n in which the minimal di�erence
between parts is at least 2 is equal to the number of partitions of n with the parts
of the form 5k + 1 and 5k + 4.

Theorem 1.3.3 The number of partitions of n in which the minimal di�erence
between parts is at least 2 and 1 does not appear is equal to the number of
partitions of n with the parts of the form 5k + 2 and 5k + 3.

In 1894 Rogers [28] proved the identities

1 +
∞
∑
n=1

xn
2

(1 − x)(1 − x2) . . . (1 − xn) =
∞
∏
n=0

1

(1 − x5n+1)(1 − x5n+4)

1 +
∞
∑
n=1

xn
2+n

(1 − x)(1 − x2) . . . (1 − xn) =
∞
∏
n=0

1

(1 − x5n+2)(1 − x5n+3) ,

from which it is possible to deduce Theorems 1.3.2 and 1.3.3. Nevertheless Rogers
did not �nd the connection, which was revealed by Ramanujan in 1913. However,
Ramanujan was not able to �nd the proof of the analytic identities. Therefore
the desired proof was made in 1919 and this theorem is named after Rogers and
Ramanujan, although Schur proved it earlier.

Nowadays we known several more general theorems including both preceding
theorems as a special case. Their formulation can be found in Gordon's [16] or
in Andrew's paper [1]. Very good but somewhat dated summary can be found
in the Andrew's review [2].
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1.4 The Cohen�Remmel theorem

This section is devoted to the remarkable general identity of D. Cohen and J.
Remmel published by Cohen [12] in 1981 and by Remmel [27] one year later.
The charm of this theorem is that it needs only the principle of inclusion and
exclusion to prove and is so strong, that many partition identities, including
Euler identity, can be obtained from it as special cases.

Before its formulation we prepare for the proof by two theorems. The �rst
one is the well-known principle of inclusion and exclusion, whose proof is only
a technical exercise which can be found in many textbooks, therefore we skip it.
After that we formulate immediate corollary.

Theorem 1.4.1 (Principle of inclusion and exclusion (PIE)) Let X1,X2, . . .Xk

be �nite sets, all subsets of a set X. Then

∣X/
k

⋃
i=1
Xi∣ = ∑

I⊂[k]
(−1)∣I ∣∣⋂

i∈I
Xi∣.

Corollary 1.4.2 Let X1,X2, . . . ,Xk and Y1, Y2, . . . , Yk be �nite sets, all subsets
of X. Suppose that for all I ⊂ [k] one has

∣⋂
i∈I
Xi∣ = ∣⋂

i∈I
Yi∣.

Then

∣X/
k

⋃
i=1
Xi∣ = ∣X/

k

⋃
i=1
Yi∣.

Proof. The condition on intersections substituted in the sum in the PIE gives
desired equality.

Theorem 1.4.3 (Cohen�Remmel) Let Λ = {λ1, λ2, . . .} and Γ = {γ1, γ2, . . .}
be two (in�nite) sequences of partitions, which for every �nite I ⊂ N satisfy
the condition

∣⋃
i∈I
λi∣ = ∣⋃

i∈I
γi∣.

Then for every positive integer n the number of partitions of n not containing
any partition from Λ is equal to the number of partitions of n not containing any
partition from Γ.

Proof. Fix a positive integer n. For every positive integer i set

Xi = {µ ∈ Pn ∶ µ ≻ λi} and Yi = {µ ∈ Pn ∶ µ ≻ γi}.

Take a �nite set of indices 1 ≤ i1 ≤ i2 ≤ ⋅ ⋅ ⋅ ≤ ik and construct the sets

X =Xi1 ∩ . . . ∩Xik and Y = Yi1 ∩ . . . ∩ Yik .

Our aim is to prove ∣X ∣ = ∣Y ∣. Observe thatX is the set of partitions µ from Pn
such that µ ≻ λij for all j ∈ [k]. That equivalently means µ ≻ λi1∪. . .∪λik . Likewise
Y is the set of partitions µ of Pn satisfying µ ≻ γi1 ∪ . . . ∪ γik . This makes the
characterization of X and Y .
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For every partition µ ∈X de�ne the partition

µ′ = (µ − λi1 ∪ . . . ∪ λik) + γi1 ∪ . . . ∪ γik ,

which lies in Y , because of the characterization of X. Analogically for ν ∈ Y
de�ne the partition

ν′ = (ν − γi1 ∪ . . . ∪ γik) + λi1 ∪ . . . ∪ λik ,

which lies in X. The only problem is whether the images µ′ and ν′ are really
in Pn. They are, because the condition from the statement says ∣λi1 ∪ . . . ∪ λik ∣ =
∣γi1 ∪ . . . ∪ γik ∣, which implies ∣µ∣ = ∣µ′∣ and ∣ν∣ = ∣ν′∣.

That means the mappings µ ↦ µ′ and ν ↦ ν′ are inverses of one another and
establish one-to-one correspondence between X and Y . Therefore ∣X ∣ = ∣Y ∣. Let
k0 be the smallest k such that the absolute value of the partitions λk, λk+1, . . .
and γk, γk+1, . . . is greater than n.

Now using the previous Corollary 1.4.2 we get

∣Pn/(X1 ∪X2 ∪ . . . ∪Xk0−1)∣ = ∣Pn/(Y1 ∪ Y2 ∪ . . . ∪ Yk0−1)∣.

Because the lack of the other partitions λk0 , λk0+1, . . . and γk0 , γk0+1, . . . does not
in�uence any partition of n, we get desired statement.

This theorem produces many partition identities. It su�ces to choose the sets
Λ = {λ1, λ2, . . .} and Γ = {γ1, γ2, . . .} with the condition on the cardinality of
the unions. One (but not the only one) way how to ful�ll it is to take Λ and Γ
such that the partitions λ1, λ2, . . . are independent, the partitions γ1, γ2, . . . are
independent and ∣λi∣ = ∣γi∣ for all positive integers i.

Corollary 1.4.4 (Glaisher's identity) Let d be a positive integer. Then every
positive integer n has as many partitions not containing any multiple of d as
partitions in which no part appears more than d − 1 times.

Proof. Denote

Λ = {(d), (2d), (3d), . . .}
Γ = {(1,1, . . . ,1), (2,2, . . . ,2), (3,3, . . . ,3), . . .},

where every partition in Γ has exactly d parts, and use Cohen�Remmel theorem
1.4.3.

Observe, that for d = 2 we derive Euler identity 1.3.1.

Corollary 1.4.5 (Schur's identity) The number of partitions of positive integer
n whose parts are congruent to ±1 (mod 6) equals to the number of partitions
with distinct parts congruent to ±1 (mod 3).

Proof. It su�ces to use Cohen�Remmel Theorem 1.4.3 with the sets

Λ = {(2), (3), (4), (6), (8), (9), (10), (12), (14), (15), . . .}
Γ = {(1,1), (3), (2,2), (6), (4,4), (9), (5,5), (12), (7,7), (15), . . .}.
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2. Asymptotics of counting function

The main task of the theory of partitions is to study the number of partitions
satisfying some conditions. But it appears to be really di�cult to �nd the exact
formula for the counting functions, therefore one attempts to �nd some estimates
on the growth. These estimates are called the asymptotics of the counting func-
tion.

Recall that p(n,S) is the counting function of the set of partitions S and
pA(n) is the counting function of the partitions with the parts in the set of
positive integers A.

2.1 Partitions without restriction

First question that comes in mind is how many partitions positive integer n
has, that means we have no restrictions on the partitions. G. H. Hardy and S.
Ramanujan [17] found the answer in 1918.

Theorem 2.1.1 (Hardy, Ramanujan) The asymptotic formula for the number
p(n) of all partitions of n is

p(n) ∼ 1

4n
√

3
exp

⎛
⎝
π

√
2n

3

⎞
⎠
.

Proofs of this famous theorem are of two types, analytical and combinatorial.
Whilst the original one of Hardy and Ramanujan used complex analysis, the ele-
mentary one published by Erd®s [13] (without evaluating the constant 1/(4

√
3))

in 1942 and improved by Newman [26] in 1951 is based on the recurrent formula

np(n) = ∑
kv≤n
k,v≥1

vp(n − kv),

whose proof is not di�cult. But "elementary" here means that the proof does
not use complex analysis, because the proof itself is fairly technical. We will
not prove this theorem, we present only some estimates on the counting function
p(n), as given in [22, Chapter 12].

Theorem 2.1.2 For su�ciently large n the counting function p(n) satis�es
the estimate

e1.99
√
n < p(n) < eπ

√
2
3
n = e2.56

√
n.

Proof. First we prove the upper bound. Dividing the result of Theorem 1.2.9
by xn we obtain for every x ∈ (0,1) the inequality

p(n) ≤ 1

xn

∞
∑
k=0

p(k)xk = 1

xn

∞
∏
k=1

1

1 − xk .

We want to determine the value x in order to minimize the right side. Applying
logarithm on both sides gives

log p(n) ≤ −n logx −
∞
∑
k=1

log (1 − xk).

11



Taylor formula for log(1 − y), y ∈ (0,1), and some algebraic manipulation imply

−
∞
∑
k=1

log (1 − xk) =
∞
∑
k=1

∞
∑
j=1

xkj

j
=

∞
∑
j=1

1

j

∞
∑
k=1
xkj =

∞
∑
j=1

1

j

xj

1 − xj

=
∞
∑
j=1

1

j

xj

(1 − x)(1 + x + ⋅ ⋅ ⋅ + xj−1)

≤
∞
∑
j=1

1

j

xj

(1 − x)jxj−1 =
x

1 − x
∞
∑
j=1

1

j2
= π

2

6

x

1 − x,

therefore
log p(n) ≤ −n logx + π

2

6

x

1 − x.

Substituting u = x/(1 − x) we transform the interval x ∈ (0,1) to the interval
u ∈ (0,∞). Variable x is expressed by the formula x = u/(1 + u), so we obtain

log p(n) ≤ n log (1 + 1

u
) + π

2

6
u < n

u
+ π

2

6
u.

Simple calculation �nds the minimum of the right side in u =
√

6n/π, so the �nal
and required estimate is

log p(n) < π
√

2n

3
.

The lower bound is the result of combinatorial interpretation and is not so
sharp. Denote p∗(n, k) the number of partitions of n with k parts, where the order
of parts is important (e.g. (2,1,1) and (1,1,2) are di�erent partitions). Then
simple argument gives p∗(n, k) = (n−1

k−1), because we distribute k − 1 breakpoints
into n−1 positions. But this process counts every partition of P at most k! times,
therefore

p(n) ≥
(n−1
k−1)
k!

≥ (n − 1)(n − 2) . . . (n − k + 1)
(k!)2

for any k ∈ [n]. Simple reasoning inspire us to take k = ⌊√n⌋, because we want
to �nd k such that (k + 1)2 ≥ n− k and k2 < n− k + 1, which is roughly

√
n. Since

we have the estimates k2 ≤ n and (1 − 1/k)k−1 > e−1, from the monotonicity of
(1 + 1/m)m → e we have

(n − 1)(n − 2)⋯(n − k + 1) ≥ (n − k)k−1 = nk−1 (1 − k
n
)
k−1

≥ nk−1 (1 − 1

k
)
k−1

≥ n
k

en
.

And the basic approximation k! ≤ ek(k/e)k concludes the computing

p(n) ≥ n
k

en

e2k−2

k2k+2
= ( n

k2
)
k e2k−3

nk2
≥ e

2k−3

n2
≥ 1

e5n2
e2

√
n,

which for su�ciently large n implies the desired result.
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2.2 Partitions with parts from a �nite set A

Another famous theorem which counts partitions came from I. J. Schur, 1926.
In his paper [32] he found asymptotic formula for partitions with parts from a
�nite set A of relatively prime positive integers

Let A = {a1, a2, . . . , ak} such that gcd (a1, a2, . . . , ak) = 1. Using the famous
claim stating that there are integers ci, i ∈ [k], for which ∑k

i=1 ciai = 1 gives us
that the equation n = ∑k

i=1 diai has solution in non-negative integers di, i ∈ [k]
for every su�ciently large positive integer n. Therefore the counting function
pA(n) is non-zero for su�ciently large n.

In the case A = {1,2,3, . . . , k} it is known the asymptotics

pA(n) ∼
nk−1

k!(k − 1)! .

We generalize this result to the theorem called Schur's asymptotic theorem.
Although Schur's proof was analytical, we present here a combinatorial proof
from M. B. Nathanson [25, Chapter 15].

Theorem 2.2.1 (Schur) Let A be a nonempty �nite set of relatively prime pos-
itive integers, such that ∣A∣ = k. Then

pA(n) =
nk−1

(k − 1)! (
1

∏a∈A a
) +O(nk−2).

Proof. We use induction on the cardinality of ∣A∣ = k. When k = 1, then A = {1}
due to the condition on greatest common divisor of the elements of A. That
means pA(n) = 1, because the only partition of n in this case is the sum of 1's.

Let k ≥ 2. Assume the theorem holds for k − 1. Set A = {a1, a2, . . . , ak}.
The idea of the induction step is simple. According to the gcd (a1, . . . , ak−1) we
�nd the possible multiplicities u′ of the last partition ak and due to the assumption
we count pA∗(n − u′ak), where A∗ = A − {ak}. Then we sum it over all possible
multiplicities u′ and several estimates conclude the proof.

Denote d = gcd (a1, . . . , ak−1). Because a1, . . . , ak are relatively prime, we have
gcd (d, ak) = 1. For i ∈ [k − 1] we set

a′k =
ak
d
.

Then gcd (a′1, . . . , a′k−1) = 1 and we can use the induction assumption on the set
A′ = {a′1, . . . , a′k−1} and get for all positive integers n the formula

pA′(n) =
nk−2

(k − 2)! (
1

∏a′∈A′ a
′) +O(nk−3). (2.1)

Let n ≥ (d − 1)ak. Because d and ak are relatively prime, there is a unique
integer u ∈ [d − 1]0 that satis�es the congruence

n ≡ uak (mod d).

Let
m = n − uak

d
.

13



Then m is non-negative, because n ≥ (d − 1)ak. Trivially m ≤ n. Now u is one
of the possible multiplicities for ak. If we want to �nd all of them, we solve for
non-negative integer v the congruence

n ≡ vak (mod d). (2.2)

Hence modulo d we have vak ≡ uak, which implies u ≡ v. Because u was the lowest
non-negative integer satisfying n ≡ uak (mod d), that means there exists a non-
negative integer l such that v = u + ld. We want n − vak = n − (u + ld)ak to be
non-negative, so we have the estimate

0 ≤ l ≤ ⌊n − uak
dak

⌋ = ⌊m
ak

⌋ =∶ r ≤m.

So there are r solutions v of the congruence (2.2) satisfying n − vak ≥ 0.
Let λ be a partition of n with parts in A. If exactly v parts of λ are equal

to ak, then the rest n − vak is partitioned by parts from {a1, . . . ak−1}, therefore
d ∣ n− vak and v is the solution of the congruence (2.2), hence v = u+ ld for some
l ∈ [r]0.

So every partition λ of n with the parts belonging to A has the part ak
exactly v times, where v = u+ ld for some 0 ≤ l ≤ r. It su�ces to �nd the number
of partitions of n − vak with parts belonging to {a1, . . . ak−1}, or equivalently to
�nd the number of partitions of

n − vak
d

= n − (u + ld)ak
d

=m − lak

with parts in the set A′ = {a′1, . . . , a′k−1}. Hence we use the induction hypothesis
(2.2) and get

pA(n) =
r

∑
l=0
pA′(m − lak)

= ( 1

∏k−1
i=1 a

′
i

)
r

∑
l=0

((m − lak)k−2
(k − 2)! +O(mk−3))

= ( dk−1

∏k−1
i=1 ai

)
r

∑
l=0

(m − lak)k−2
(k − 2)! +O(nk−2).

Now we sum up three claims, whose consequence gives the proof. Since we
know the estimate

r

∑
l=0
lj = rj+1

j + 1
+O(rj),

can modify the expression

(k − 2

j
) 1

(k − 2)!(j + 1) = 1

(k − 2 − j)!(j + 1)! = (k − 1

j + 1
) 1

(k − 1)! ,

and binomial theorem gives

k−2
∑
j=0

(−1)j(k − 1

j + 1
) = −

k−1
∑
j=1

(−1)j(k − 1

j
) = −(1 − 1)k−1 + 1 = 1,

14



hence we have

r

∑
l=0

(m − lak)k−2
(k − 2)! = 1

(k − 2)!
r

∑
l=0

k−2
∑
j=0

(k − 2

j
)mk−2−j(−lak)j

= 1

(k − 2)!
k−2
∑
j=0

(k − 2

j
)mk−2−j(−ak)j

r

∑
l=0
lj

= 1

(k − 2)!
k−2
∑
j=0

(k − 2

j
)mk−2−j(−ak)j (

rj+1

j + 1
+O(rj))

= 1

(k − 2)!
k−2
∑
j=0

(k − 2

j
)mk−2−j(−ak)j (

mj+1

aj+1k (j + 1)
+O(mj))

= m
k−1

ak

k−2
∑
j=0

(k − 2

j
) (−1)j
(k − 2)!(j + 1) +O(mk−2)

= mk−1

ak(k − 1)!
k−2
∑
j=0

(−1)j(k − 1

j + 1
) +O(mk−2)

= mk−1

ak(k − 1)! +O(mk−2).

Applying to the formula for pA(n) gives

pA(n) = ( dk−1

∏k−1
i=1 ai

)
r

∑
l=0

(m − lak)k−2
(k − 2)! +O(nk−2)

= ( dk−1

∏k−1
i=1 ai

)( mk−1

ak(k − 1)! +O(mk−2)) +O(nk−2)

= ( 1

∏k
i=1 ai

) (n − uak)k−1
(k − 1)! +O(nk−2)

= ( 1

∏k
i=1 ai

) nk−1

(k − 1)! +O(nk−2),

which completes the proof.

Corollary 2.2.2 Let pk(n) be the number of partitions of a positive integer n
into at most k parts. Then

pk(n) =
nk−1

k!(k − 1)! +O(nk−2).

Proof. The proof of Theorem 1.2.5 maps the partitions with at most k parts
bijectively to the partitions with parts in the set Ak = {1,2, . . . , k}. Applying
Schur's Theorem 2.2.1 to the set Ak concludes the proof.

Corollary 2.2.3 Let A be an in�nite set of positive integers such that gcd (A) =
1. Then

lim
n→∞

log pA(n)
logn

= ∞.

In particular, pA(n) > 0 for su�ciently large n.
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Proof. For any positive integer k, the condition gcd (A) = 1 gives existence of
a set Ak ⊂ A with cardinality k and gcd (Ak) = 1. By Schur's Theorem 2.2.1

pA(n) ≥ pAk
(n) = nk−1

(k − 1)! (
1

∏a∈Ak
a
) +O(nk−2),

so there is a constant ck such that for all su�ciently large positive integers n we
have

pA(n) ≥ cknk−1.
Hence

log pA(n)
logn

≥ (k − 1) logn + log ck
logn

> k − 1.

Because we can make k su�ciently large, applying limes inferior on the both sides
gives us the desired result.

2.3 Asymptotics for other sets of partitions

In 1954 G. Meinardus published two papers [23] and [24], where he described
the asymptotics for the wide range of restricted partition functions. As a corollary
we present here the asymptotic formula for the partitions with all parts congruent
to a modulo k, which we use in the Chapter 3. It can be found in [3]

Theorem 2.3.1 (Meinardus) Let Ha,k be the set of all partitions with parts
congruent to a modulo k, a ∈ [k]. Then we have asymptotic formula

p(n,Ha,k) ∼ Cnκ exp
⎛
⎝
π

√
2n

3k

⎞
⎠
,

where

C = C(a, k) = Γ(a
k
)π(a/k)−12−(3/2)−(a/2k)3−(a/2k)k−(1/2)+(a/2k)

depends on the Gamma function Γ and

κ = −1

2
(1 + a

k
) .

There are many asymptotic formulas for various sets of partitions. Here are
examples of three asymptotics. The �rst is for partitions consisting of primes,
the second is for partitions with parts equal to some square number and third is
for partitions with parts equal to powers of 2, all can be found in [15, Chapter
VIII]. Note that the second result is also the corollary of general Meinardus
theorem [25].

Theorem 2.3.2 If P is the set of all prime numbers Then

log pP(n) ∼ 2π

√
n

3 logn
.
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Theorem 2.3.3 Let S be the set of all squares, that is S = {1,4,9,16, . . .}, then

pS(n) ∼
C

n7/6 exp (K 3
√
n) ,

where C and K are some constants.

Theorem 2.3.4 Let T be the set of all powers of 2, that is T = {1,2,4,8, . . .},
then

log pT(2n) ∼
(logn)2
2 log 2

.

The asymptotic formulas for the partitions with parts k-th power of primes
or squares are also known and can be found in [15], but this is not the aim of this
work.

2.4 Explicit formula for p(n)
The work of Hardy and Ramanujan [17] on asymptotic formula for p(n) was ex-
tended nearly twenty years later by Rademacher, who improved the asymptotical
expansion of Hardy and Ramanujan to the convergent series. This was the �rst
explicit formula for the counting function p(n).

Theorem 2.4.1 Let p(n) be the number of partitions of n. Then

p(n) = 1

π
√

2

∞
∑
k=1
Ak(n)k

1
2

⎡⎢⎢⎢⎢⎢⎢⎣

d

dx

sinh(πk
√

2
3(x − 1

24))
√
x − 1

24

⎤⎥⎥⎥⎥⎥⎥⎦x=n

,

where
Ak(n) = ∑

h∈[k−1]0
gcd(h,k)=1

exp(−2πi
nh

k
+ πis(h, k))

and

s(h, k) =
k−1
∑
m=1

(m
k
− ⌊m

k
⌋ − 1

2
)(hm

k
− ⌊hm

k
⌋ − 1

2
) .

Another man who studied the paper of Hardy and Ramanujan [17] was A.
Selberg. He independently proved explicit formula 2.4.1 (not published) and
Nathanson [25] mentions his funny quotation: "I am inclined to believe that
Rademacher and I were the only ones to have studied this paper thoroughly since
the time it was written."

Recently J. H. Bruiner and K. Ono discovered a new explicit algebraic formula
for p(n) using modular equations. In their preprint [11] they express p(n) as
a �nite sum of algebraic numbers. They also show an example how to count
p(1) = 1, but it take almost one page to evaluate it.
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3. Oscillations of counting function

This chapter is devoted to studying fastest possible growth of counting functions
of partition ideals, which are in�nitely many times zero. All obtained results
are original and are based on several combinatorial and fundamental analytical
methods like principle of inclusion and exclusion or Taylor series.

First we introduce several de�nitions, then we make lower bound for the sought
counting function. Afterwards we �nd asymptotic formula for fastest counting
function of special family of partition ideals. This chapter is concluded by the up-
per bound with little characterization of partition ideals with fastest counting
funtions.

3.1 Partition ideals

De�nition 3.1.1 We say that a set of partitions X ⊂ P is a partition ideal,
if λ ≺ µ and µ ∈X always implies λ ∈X.

De�nition 3.1.2 Let A be a (�nite) set of distinct positive integers and p be
a positive integer. Denote by Xp(A) the set of all partitions λ, whose parts lie
in A and their multiplicity in λ is at most p. In addition, let X∞(A) be the set
all partitions with parts in A and unbounded multiplicity. We say that A is the
set of allowable parts of partition ideal Xp(A), p ∈ N.

Clearly, Xp(A) is a partition ideal for p ∈ N. Because the mapping Xp ∶ A ↦
Xp(A) is injective, the de�nition of allowable parts is correct.

De�nition 3.1.3 The sum X + Y of two partition ideals X and Y is the set of
all partitions λ of the form λ = µ + ν, where µ ∈X and ν ∈ Y .

Similarly we de�ne the �nite sum X1 +X2 + . . . +Xk of partition ideals X1,
X2, . . . ,Xk as a set of all partitions λ of the form λ = µ1 + µ2 + ⋅ ⋅ ⋅ + µk, where
µi ∈Xi, i ∈ [k].

Finally, if X1,X2, . . . are partition ideals, denote the in�nite sum X1+X2+⋯
as a set of all partitions λ of the form λ = µ1 + µ2 + ⋅ ⋅ ⋅ + µk such that µi ∈ Xg(i),
i ∈ [k], g(i) ∈ N and g is strictly increasing function.

In particular, we have X ⊂X + Y and Y ⊂X + Y

De�nition 3.1.4 We say that the partition ideal X is proper partition ideal, if
there are disjoint sets of positive integers A1,A2, . . . ,A∞ such that

X =X∞(A∞) +
∞
∑
L=1

XL(AL).

That means X is a proper partition ideal if in any partition from X every
part from Ak has multiplicity at most k and every part of A∞ has unrestricted
multiplicity.

These de�nitions allow us to present the main theorems of this thesis.
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3.2 Lower bound for the greatest counting func-
tion satisfying (P)

Let X be a partition ideal. Suppose that X satis�es the condition (P), which
states that there is an in�nite set of integers S such that Pn ∩X = ∅ for all n ∈ S,
that is

p(n,X) = 0 for all n ∈ S. (P)

Our aim is to study maximal growth of the counting function p(n,X). Discovering
this we get the oscillation of the counting function. We call it oscillation at the
bottom, because of the condition (P).

Little trying gives basic example with very fast growth p(n/2).

Example 3.2.1. Considering E = {2,4,6,8, . . .} the set of all even numbers, we
get for even numbers n the asymptotic formula

p(n,X∞(E)) = p(n/2) ∼ 1

2n
√

3
exp(π

√
n

3
) .

and for odd n we have p(n,X∞(E)) = 0.

Now we can ask, if there is some partition ideal X with the counting function
growing faster.

The answer is "yes". Moreover, for every β ∈ (0,1) we will construct a parti-
tion ideal Xβ, whose counting function is in�nitely many times zero and grows
faster than p(βn). Exact formulation gives Corollary 3.2.6.

Before that we make several computations in the next lemma.

De�nition 3.2.2 Let X be a partition ideal and Q = {q1, q2, . . . , qm} a �nite set
of positive integers. Denote

p−Q(n,X) = ∣{λ ∈X ∶ qi ⊀ λ for all i ∈ [m]}∣

the number of partitions from X with no part from Q.

Lemma 3.2.3 Let X be a partition ideal such that X = X∞(A) for some set A
of positive integers. Let p(n,X) be the counting function of X with asymptotic
growth

p(n,X) ∼ Cnκ exp (K
√
n) ,

for some nonzero constants C,K and κ. Suppose we have a �nite set Q ⊂ A.
Then

p−Q(n,X) ∼ C ( K

2
√
n
)
m ∏m

i=1 qi
n−κ

exp (K
√
n) .

Proof. First let m = 1 and Q1 = {q}. If we take some partition λ ∈ X of n, which
contains part q, and remove part q from λ, we get partition of n − q. Conversely
to any partition of n− q we can add another part q to get partition of n from X,
because q ∈ A. Therefore

p−Q1(n,X) = p(n,X) − p(n − q,X).
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Using assumption on asymptotic of p(n,X) with some basic computing gives

p−Q1(n,X) = C (eK
√
n+κ logn − eK

√
n−q+κ log(n−q))

= CeK
√
n+κ logn (1 − eK(√n−q−√n)+κ(log(n−q)−logn))

= CnκeK
√
n (1 − eK(− q

2
√

n
+O(n−3/2))+κ(− q

n
+O(n−2)))

= CnκeK
√
n (1 − e−

Kq
2
√

n
+O(n−1))

= CnκeK
√
n ( Kq

2
√
n
+O(n−1))

∼ C ( K

2
√
n
) q

n−κ
exp (K

√
n) .

Hence we have the required asymptotics for p−Q1(n,X), which is counting func-
tion of partition ideal X∞(A/Q1). Applying the preceding procedure m-times
for q1, q2, . . . , qm, we get the desired result

p−Q(n,X) ∼ C ( K

2
√
n
)
m ∏m

i=1 qi
n−κ

exp (K
√
n) .

Theorem 3.2.4 There is a non-decreasing function f ∶ N → [0,1) such that
f(n) → 1 for n → ∞ and a partition ideal X with the counting function p(n,X)
satisfying p(n,X) = 0 for in�nitely many positive integers n and p(n,X) >
p(nf(n)) for in�nitely many positive integers n.

Proof. The idea of construction is simple. We consider integer intervals1 It, t ∈ N,
ordered such that i < j for all i ∈ Ik, j ∈ Il, k < l. Desired partition ideal will be of
the type

X =
∞
⋃
t=3
Xt(It).

Property P will be ensured by the suitable length of the sets between It and It+1
and the asymptotic growth will be guaranteed by the length of sets It.

Now we try to be more speci�c. Denote

Ak = {k, k + 1, k + 2, . . .}, A∗
k = {1,2, . . . , k − 1},

the set of positive integers greater than k−1 (resp. less than k). Let L be a positive
integer, k = Lm multiple of L and s ∈ [L − 1]. Denote B(s) the set of positive
integers, which are congruent to s modulo L. Moreover, denote Bk(s) = B(s)∩Ak
the set of positive integers greater than k − 1, which are congruent to s modulo
L. Let

Bk =
L−1
⋃
s=1

Bk(s)

be the set of all positive integers greater or equal to k, which are not congruent
to 0 modulo L. Then Theorem of Cohen and Remmel 1.4.3 gives

p(n,XL−1(Ak)) = p(n,X∞(Bk)), (3.1)

1Integer interval is a real interval intersected with the set of positive integers.
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because assumptions for this theorem are satis�ed for sets

Λ = {(1), (2), (3), . . . , (k − 1), (kL), ((k + 1)L), . . .}
Γ = {(1), (2), (3), . . . , (k − 1), (Lk), (L(k + 1)), . . .}.

According to Theorem 2.3.1 we have asymptotic formula for p(n,X∞(B(s))),
which states

p(n,X∞(B(s))) ∼ Csn−
1
2
(1+ s

L
) exp

⎛
⎝
π

√
2n

3L

⎞
⎠

and Lemma 3.2.3 used with

X =X∞(B(s)), C = Cs, K = π
√

2

3L
, κ = −1

2
(1 + s

L
) ,

Q = {s, s +L, s + 2L, . . . , s + (m − 1)L}
implies

p(n,X∞(Bk(s))) ∼ Cs
⎛
⎝
π

√
1

6Ln

⎞
⎠

m

∏m−1
i=0 (s + iL)
n

1
2
(1+ s

L
)

exp
⎛
⎝
π

√
2n

3L

⎞
⎠

= Cs,k n−
1
2
(m+1+ s

L
) exp

⎛
⎝
π

√
2n

3L

⎞
⎠
, (3.2)

where

Cs,k = Cs
⎛
⎝
π

√
1

6L

⎞
⎠

m
m−1
∏
i=0

(s + iL).

We can write every partition in X∞(Bk) of some positive integer n as a sum
of partitions of positive integers k1, . . . , kL−1 in partition ideals X∞(Bk(1)), . . . ,
X∞(Bk(L − 1)), with the property k1 + ⋅ ⋅ ⋅ + kL−1 = n. Combining this with (3.1)
and (3.2) we get

p(n,XL−1(Ak)) = p(n,X∞(Bk))

= ∑
k1+⋅⋅⋅+kL−1=n

L−1
∏
s=1

p(ks,X∞(Bk(s)))

≥
L−1
∏
s=1

p(n/(L − 1),X∞(Bk(s)))

∼ Ck,1Ck,2 ⋯Ck,L−1

( n
L−1)

1
2 ∑

L−1
s=1 (1+m+ s

L
)
exp(π(L − 1)

√
2n

3L(L − 1))

= Cn−(m+2)(L−1)/2 exp
⎛
⎝
π

√
2n

3

√
L − 1

L

⎞
⎠
,

where C = Ck,1Ck,2 ⋯ Ck,L−1 is a constant depending only on L and k. Hence if
we choose k,L arbitrary positive integers such that L > 1, then from preceding
asymptotic we have existence of positive integer nL(k) such that for all n ≥ nL(k)
we have

p(n,XL−1(Ak)) ≥ exp
⎛
⎝
π

√
2n

3

√
L − 2

L

⎞
⎠
. (3.3)

We construct sequences {kt}∞t=3 and {nt}∞t=3 inductively in following two steps.
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� Take k3 = 1. From (3.3) there is positive integer n3 such that for all n ≥ n3

we have

p(n,X3(Ak3)) ≥ exp
⎛
⎝
π

√
2n

3

√
1

3

⎞
⎠
.

� Assume we have ki and ni for 3 ≤ i ≤ t − 1. De�ne

kt = (t − 1)nt−1(nt−1 + 1)
2

+ 2.

From (3.3) there exist nt such that for all n ≥ nt we have

p(n,Xt(Akt)) ≥ exp
⎛
⎝
π

√
2n

3

√
t − 2

t

⎞
⎠
.

Denote the partition ideal by

X =
∞
∑
t=3
Xt(Akt ∩A∗

nt
)

and the function f by the formula

f(n) = t − 2

t
for nt ≤ n < nt+1. (3.4)

We show that X and f have the required properties.
Clearly f → 1 for n→∞. Furthermore, for all positive integers t we have

p(kt − 1,X) = 0,

because the sum of all allowable parts of partitions of X, which are less than kt,
is less than kt − 2, due to de�nition of kt. Finally

p(nt,X) ≥ p(nt,Xt(Akt)) ≥ exp
⎛
⎝
π

√
2nt
3

√
t − 2

t

⎞
⎠
> p(ntf(nt)),

which completes the proof.

Note 3.2.5. Assuming some conditions, we made claim that there is some f ∶
N → [0,1) such that f(n) → 1 for n → ∞. One can ask how fast this function
goes to 1. According the formula (3.4) the growth of f depends on the growth
of nt for t →∞, which partly depends on size of k and partly on the strength of
estimates which we made.

Corollary 3.2.6 Let β ∈ (0,1). Then there exists partition ideal Xβ such that
its counting function p(n,Xβ) is in�nitely many time equal to zero and in�nitely
many times greater than p(βn).

Proof. Theorem 3.2.4 ensures the existence of a non-decreasing function f ∶ N →
[0,1) with the property that f(n) → 1 for n→∞ and a partition ideal Xf , whose
counting function is in�nitely many times zero and for in�nitely many positive
integers p(n,X) > p(nf(n)) holds. Because f(n) > β for su�ciently large n, we
have also p(n,X) > p(βn) for su�ciently large n.
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3.3 Upper bound for a special case

We proved that there is a partition ideal with fast growing function. What kind
of assumptions we have to add in order to receive the growth of the counting
function from Example 3.2.1 as best as possible? Natural condition is to demand
the partition ideal to be proper. But Theorem 3.2.4 shows that this is not enough.
So we add the condition about the partitions of some numbers, as the following
Theorem 3.3.2 shows.

De�nition 3.3.1 Let X be partition ideal with counting function p(n,X). De�ne

F (n,X) = max{p(m,X) ∶m ∈ [n]}.

Theorem 3.3.2 Let X be a proper partition ideal such that two following con-
ditions are true:

(i) There is a positive integer r, such that for almost all2 positive integers
k the number kr has in X at least one partition with parts in the set
R = {r,2r,3r, . . .} of multiples of r.

(ii) The counting function p(n,X) = 0 for in�nitely many positive integers n.

Then the maximal asymptotic growth of F (n,X) is p(n/2).

Proof. Let

X =X∞(A∞) +
∞
∑
L=1

XL(AL).

Let R be the set of all positive integers satisfying (i) and r be the smallest of
them. If A∞ ⊄ R, say a ∈ A∞/R, then gcd (a, r) = r0 < r. Because r0 ∈ R, we have
a contradiction with the choice of r. Therefore A∞ ⊂ R.

Denote A = ∪∞i=1Ai. The condition (ii) gives r > 1. For r = 2, there cannot be
any odd number in A, because then condition (ii) is false. So we have F (n,X) ≤
F (n,X∞(A)) ≤ p(n/2).

Let r > 2. If A ⊂ R, then X ⊂X∞(R) and

F (n,X) < F (n,X∞(R)) = p(n/r) ≪ p(n/2),

so we assume that the set A/R is nonempty.
Suppose that A/R is �nite. Then there is a positive integer i0 such that

AL/R = ∅ for all L > i0. Therefore the partition ideal X∗ ∶= ∑i0
L=1XL(AL/R) is

�nite and we can bound the number of partitions in this partition ideal by

∣X∗∣ ≤
i0

∏
L=1

L∣AL∣.

Because every partition of n contains some parts from A/R and the remaining
parts from R, we have the estimate

p(n,X) ≤ (
i0

∏
L=1

L∣AL∣)p(n,X∞(R)) ≤ (
i0

∏
L=1

L∣AL∣)p(n/r) ≪ p(n/2),

2in the sense at most �nitely many positive integers does not have this property
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because r > 2. Therefore F (n,X) ≪ p(n/2).
If the set A/R is in�nite, we distribute the numbers of A/R to the residue

classes M1,M2, . . . ,Mr−1, so that x ∈ Ma i� x ≡ a (mod r). De�ne numbers
a1 < a2 < ⋅ ⋅ ⋅ < am with condition that the sets Ma1 ,Ma2 , . . . ,Mam are in�nite and
m is maximal possible.

If gcd (r, a1, a2, . . . , am)= 1, then there is a positive integer n0, such that for ev-
ery n > n0 the statement p(n,X) > 0 holds, which is in contradiction with the con-
dition (ii). So we have gcd (r, a1, a2, . . . , am) = s0 > 1. De�ne S0 = {s0,2s0,3s0, . . .}
the set of multiples of s0. If s0 = 2, then because of condition (ii), there cannot
be any odd number in A, therefore

p(n,X) ≤ p(n,X∞(S0)) = p(n/2),

which implies F (n,X) ≤ p(n/2).
In the case s0 > 2, we have the set A −S0 �nite and using the same argument

like above we get desired result. We �nd positive integer i1 such that AL/R = ∅
for all L > i1. Then

p(n,X) ≤ (
i1

∏
L=1

L∣AL∣)p(n,X∞(S0)) ≤ (
i1

∏
L=1

L∣AL∣)p(n/s0) ≪ p(n/2).

Hence F (n,X) ≪ p(n/2).
Note that we have F (n,X) = p(n/2) only for X =X∞(E), where E is the set

of all even numbers.

3.4 Counting function at the top

We have shown in Theorem 3.2.4 and Corollary 3.2.6 several examples of fast
growing counting functions with property (P). One could conjecture that we can
make partition ideal with counting function growing arbitrarily fast but slower
than the function p(n).

This conjecture is false because we can show that for every real constants κ
and C and every partition ideal with property (P) we have

p(n,X) < Cn−κ exp
⎛
⎝
π

√
2n

3

⎞
⎠
.

In this section we set the constants c and K as

c = 1

4
√

3
, K = π

√
2

3
.

De�nition 3.4.1 Let Z be a set of partitions that forms an antichain in the
sense, that there are no two partitions in Z such that one is the subpartition of
the other. Denote F (Z) set of all partitions λ ∈ P such that for any µ ∈ Z we
have λ ⊁ µ. We call the set Z the forbidden set of partition ideal F (Z).

Observe that the set F (Z) is partition ideal, because λ ⊁ µ and ν ≺ λ implies
ν ⊀ µ.

Remark that if Z is a set of positive integers, then Z is also the set of partitions,
and we have double notation p(n,F (Z)) and p−Z(n) = p−Z(n,P) for the number
of partitions of n that do not contain any part from Z.
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De�nition 3.4.2 We say that two partitions λ,µ ∈ P are independent, if the parts
of λ and µ are pairwise distinct. We say that a set S of partitions is independent,
if any two partitions in S are independent.

Theorem 3.4.3 Let X be a partition ideal with counting function p(n,X) and
forbidden set of partitions Z. Let Z contains an in�nite independent subset. Let
κ, C be any positive real constants. Then

p(n,X) < Cn−κeK
√
n

for su�ciently large n.

Proof. Let Z ′ be in�nite independent subset of Z. Denote

Z ′ = {λ1, λ2, . . .} and Z ′′ = {∣λ1∣, ∣λ2∣, . . .}.

Because Z ′ is independent, the conditions of Cohen�Remmel Theorem 1.4.3 are
satis�ed for the sets

Λ = {λ1, λ2, λ3, . . .}
Γ = {∣λ1∣, ∣λ2∣, ∣λ3∣, . . .},

and we have
p(n,F (Z ′)) = p(n,F (Z ′′)).

Now �x C and κ positive real numbers independent on n. Denote

Z ′′
m = {∣λ1∣, ∣λ2∣, . . . , ∣λm∣},

where m > 2(κ − 1) is a positive integer. Using Lemma 3.2.3 with

X = P, C = c, κ = −1, Q = Z ′′,

we get

p(n,F (Z ′′
m)) ∼ c( K

2
√
n
)
m ∏m

i=1 ∣λi∣
n

eK
√
n

= cK
m∏m

i=1 ∣λi∣
2m

n−
m
2
−1eK

√
n.

Because m > 2(κ − 1), we have −m/2 − 1 < −κ. Hence

p(n,F (Z ′′
m)) < Cn−κeK

√
n

for su�ciently large n. In total

p(n,X) ≤ p(n,F (Z)) ≤ p(n,F (Z ′))
= p(n,F (Z ′′)) < p(n,F (Z ′′

m))
< Cn−κeK

√
n,

which yields the theorem.

Theorem 3.4.4 Let X be a partition ideal satisfying (P). Then following is true.
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(1) There is a partition ideal X and a sequence {nk}∞k=1 such that p(nk,X) >
p(nkf(nk)) for some f ∶ N→ [0,1) with condition f(n) → 1 for n→ 1.

(2) For any κ and C positive reals we have p(n,X) < Cn−κeK
√
n for su�ciently

large n.

Proof. The �rst part of the statement is a result of Theorem 3.2.4, the second
part we prove using Theorem 3.4.3.

Denote S the set of positive integers, such that p(n,X) = 0 for n ∈ S. We
can regard the set S also as a set of partitions with only one part. Because S is
in�nite, Theorem 3.4.3 implies

p(n,X) < p(n,F (S)) < Cn−κeK
√
n

for su�ciently large n, which is what we wanted to prove.

From the Lemma 3.2.3 we have the asymptotics for counting functions of par-
tition ideals, which cannot use numbers from some �nite set Y , and we call them
p(n,F (Y )). Are there other counting functions of some partition ideals, which
grows faster than p(n,F (Y ))? The answer is partially hidden in the following
theorem.

Theorem 3.4.5 Let X = F (Z) be the partition ideal with the �nite nonempty
forbidden set Z. Than the asymptotics for the counting function p(n,F (Z)) is
of the form

p(n,F (Z)) ∼ CnκeK
√
n,

where C is a constant and κ = −m/2 for some m ∈ N/ {1,2}.
Proof. First we show that the counting function p(n,X) has asymptotics greater
than K1nκ1eK

√
n for some constants K1 = K1(Z) and κ1 = κ1(Z). We de�ne Z∗

the set of all distinct parts, which are contained in some partition of Z. Because
Z is �nite, so is Z∗. Let Z∗ = {a1, a2, . . . , am}. From F (Z∗) ⊂ F (Z) =X we have

p(n,X) ≥ p(n,F (Z∗)).
But from Lemma 3.2.3 we know the asymptotic for p(n,F (Z∗)), which is

p(n,F (Z∗)) ∼ c( K

2
√
n
)
m ∏m

i=1 ai
n

exp (K
√
n) .

Hence
K1 = c(

K

2
)
m m

∏
i=1
ai, κ1 = −

m

2
− 1.

Second observation counts the number of partitions of n which contain par-
tition λ as a subpartition. We show that p(n − ∣λ∣) is wanted number, because
there is a one-to-one mapping between partitions of n which contain λ and all
partitions of n− ∣λ∣. If µ is a partition of n− ∣λ∣, then partition µ+λ is a partition
of n which contains λ. In the other way, from any partition µ of n which contains
λ we can remove λ, so we obtain partition µ − λ of n − ∣λ∣.

Now we focus on the proof of theorem. Because Z is �nite, we denote k = ∣Z ∣
the number of partitions in Z. We use the principle of inclusion and exclusion
(PIE) to count all partitions in F (Z) in the following way.

First allow all partitions from P , their number is p(n). Then subtract all
partitions which contain any partition from the forbidden set Z3, whose number

3That means if any partition contains more partitions from Z, we subtract them more times.
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is the sum ∑λ1∈Z p(n − ∣λ1∣)). Now we have subtracted several partitions more
times, so we add all partitions, which are the union of two partitions of Z. Their
number is ∑{λ1,λ2}∈(Z2)

p(n− ∣λ1∪λ2∣)). And continue according to the principle of
inclusion and exclusion until we add (−1)k∑{λ1,...,λk}∈(Zk)

p(n− ∣ ∪kj=1 λj ∣)). We get

p(n,X) = p(n) − ∑
λ1∈Z

p(n∣λ1∣)) + ∑
{λ1,λ2}∈(Z2)

p(n − ∣λ1 ∪ λ2∣)) + . . .

+ (−1)k ∑
{λ1,...,λk}∈(Zk)

p(n − ∣ ∪kj=1 λj ∣))

=
k

∑
i=0

(−1)i ∑
{λ1,...,λi}∈(Zi )

p(n − ∣ ∪ij=1 λj ∣)).

Together with Theorem 2.1.1 we get

p(n,X) ∼
k

∑
i=0

(−1)i ∑
λ1,...,λi∈(Zi )

c

n − ∣ ∪ij=1 λj ∣
e
K

√
n−∣∪i

j=1λj ∣,

hence denoting q = ∣ ∪ij=1 λj ∣ we get

p(n,X)
p(n) ∼

k

∑
i=0

(−1)i ∑
λ1,...,λi∈(Zi )

exp(K√
n − q −K

√
n − log

n − q
n

)

= −
k

∑
i=0

(−1)i ∑
λ1,...,λi∈(Zi )

(1 − exp(K√
n − q −K

√
n − log

n − q
n

))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Q(n,q)

,

because the ones sum up to 0 due to the binomial theorem. Let us modify
the expression Q(n, q) by expanding

√
n − q − √

n and log (1 − q/n) for n → ∞
and 1 − ex for x→ 0. We have

Q(n, q) = 1 − exp(K√
n − q −K

√
n − log

n − q
n

)

= 1 − exp(K
∞
∑
i=1

(−1)i(1/2
i

)
√
n( q

n
)
i

+
∞
∑
i=1

1

i
( q
n
)
i

)

=
∞
∑
i=1
Ci,qn

−i/2,

where Ci,q are some constants depending on i and q. Therefore the fraction

p(n,X)
p(n) ∼

∞
∑
i=1
Cin

−i/2,

where Ci are some constants, must be of same type. Hence

p(n,X) ∼ p(n)
∞
∑
i=1
Cin

−i/2 = c( C1

n3/2 +
C2

n2
+ C3

n5/2 + . . .) e
K

√
n.

From the �rst part of the proof we have lower boundK1nκ1eK
√
n for the asymp-

totic of p(n,X), therefore there is i0 such that Ci0 /= 0. We take the smallest i0
with such a condition. Then

p(n,X) ∼ cCi0n−i0/2−1eK
√
n,
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so de�ning C = cCi0 and κ = −i0/2 − 1 we concludes the proof.

Example 3.4.6. The preceding proof gives us exact way how to count the count-
ing functions of partition ideals with �nite forbidden sets. We shall show one ex-
ample, how to count them. We analyse the counting function p(n,X) of the par-
tition ideal X = F (Z), where Z = {(2,3), (2,4), (3,4)}.

According to the PIE we have

p(n,X) = p(n) − p(n − 5) − p(n − 6) − p(n − 7) + 2p(n − 9).

Hence

p(n,X)
p(n) = ∑

q∈{5,6,7}
(1 − exp(−K(

√
n −√

n − q) − log
n − q
n

))+

2 exp(−K(
√
n −

√
n − 9) − log

n − 9

n
) − 2

= ∑
q∈{5,6,7}

(1 − exp(− Kq

2
√
n
+O(n−3/2) + q

n
+O(n−2)))+

2 exp(− 9K

2
√
n
+O(n−3/2) + 9

n
+O(n−2)) − 2

= K

2
√
n
(5 + 6 + 7 − 2 ⋅ 9) − 1

n
(5 + 6 + 7 − 2 ⋅ 9)

− K
2

8n
(52 + 62 + 72 − 2 ⋅ 92) +O(n−3/2)

= 13K2

2n
+O(n−3/2).

Therefore
p(n,X) ∼ 13K2

8
√

3n2
eK

√
n.

Example 3.4.7. If Z = {(2,3), (2,4), (2,5), (3,4), (3,5), (4,5)} and X = F (Z),
then

p(n,X) ∼ 77K3

16
√

3n5/2
eK

√
n.
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4. Combinatorial enumeration

Up to now we were studying partitions, partition ideals and growth of their
counting functions. In order to make idea what claims can be made in partitions,
we introduce similar structures and sum up couple of theorems that are proved
for them.

So the �rst aim of this chapter is to generalize this theory to more combi-
natorial structures and then present several results for special cases like graphs,
permutations and words. We put emphasize on asymptotics and oscillations of
"counting functions" of these structures.

This chapter is inspired by surveys of Bollobás [4] and Klazar [20].

4.1 General de�nitions

De�nition 4.1.1 We say that a set U is a universe, if it is a set of some com-
binatorial structure. We introduce a partial ordering ≺ on U , that means ≺ is
a substructure relation U , and a size function s ∶ U → N0. We denote this fact by
a triple (U,≺, s). Let P ⊂ U , denote

p(n,P ) = #{A ∈ P ∶ s(A) = n}

the labeled counting function of the set P .
We say that a set X ⊂ U is an ideal, if A ≺ B and B ∈X implies A ∈X.

Most of the time we consider the size function s strictly increasing. That
means for every A,B ∈X such that A ≺ B holds s(A) < s(B).

Example 4.1.2. In the case of partitions, the universe U is the set of all par-
titions P, the partial ordering is the subpartition relation and the size function
is the absolute value of the partition. The ideals are called partition ideals and
the labeled counting function of the set has the same notion when we drop labeled.

De�nition 4.1.3 Let Z ⊂ U . De�ne

F (Z) = {A ∈ U ∶ A ⊁ B for every B ∈ Z}.

the set of all elements of U that do not contain (in the sense of ≺) any element
of Z.

Moreover we request that the set Z is an antichain, which means that no two
elements of Z are comparable by relation ≺. Then the mapping F ∶ 2A → 2A

de�nes a one-to-one correspondence between antichains of U and the ideals of U .

De�nition 4.1.4 Let (U,≺, s) be the universe with relation ≺ and size function
s. In addition, suppose we have on U an equivalence relation ∼, hence we get
(U,≺, s,∼). Then the function

q(n,P ) = #({A ∈ P ∶ s(A) = n}/ ∼)

is called the unlabeled counting function.
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Example 4.1.5. Now suppose, that P∗ is the set of all partitions, where the order
of parts is important. That means partitions (2,1,1) and (1,2,1) are di�erent
partitions, both belong to P∗. On P∗ we introduce the equivalence ∼, such that
λ ∼ µ if and only if they di�er only in the order of the parts. That means P∗/∼ = P .

Taking U = P∗, ≺ to be the subpartition relation and s to be the absolute
value, we have two counting functions, labeled and unlabeled. While unlabeled
counting function counts the number of partitions in P with certain property,
labeled counting function counts the number of partitions in P∗ with the same
property.

4.2 Properties of the counting function of graphs

This section is devoted to several combinatorial properties of �nite graphs. Our
terminology is standard, V (G) denotes the vertex set of a graph G and E(G) its
edge set. The order or the number of vertices of graphG is denoted by ∣V (G)∣ = ∣G∣
and the size or the number of edges is denoted by ∣E(G)∣. For a graph G and
its vertex x ∈ V (G) we de�ne graph G − x, which is obtained from G by deleting
vertex x and all edges incident with it. Graph Kr denotes the complete graph on
r vertices, graph Cr denotes the cycle on r vertices.

De�nition 4.2.1 Let Gn be the set of graphs with the vertex set [n]. Denote
G = ∪∞i=1Gi set of all �nite graphs.

Now we apply de�nitions from the general theory to the graph theory. The
universe U is the set of all graphs G. The ordering ≺ here means the relation to be
induced subgraph and the size function denotes the order of graph G. If P ⊂ G,
we have the labeled counting function ∣Pn∣p, which we mostly denote by ∣Pn∣.

If we introduce a (isomorphic) relation ∼ on G such that G1 ∼ G2 whenever G1

is isomorphic to G2, that means the labeling of the vertices is not important, we
get structure (G,≺, ∣ ⋅ ∣,∼). Then for a set P ⊂ G we have the unlabeled counting
function ∣Pn∣q. To prevent misunderstanding, we will always write the lower index
q in this notation.

Clearly, ∣Pn∣ ≥ ∣Pn∣q for all P ⊂ G, and moreover ∣Pn∣ ≤ n!∣Pn∣q, because there
are at most n! graphs with the vertices in [n], which are mutually isomorphic.
Therefore we have

∣Pn∣q ≤ ∣Pn∣ ≤ n!∣Pn∣q.

Example 4.2.2. Let K∗ be a star graph with in�nitely many terminal vertices
and P = P (K∗) be a set of all graphs which are induced subgraphs of K∗. Then

∣Pn∣ = n + 1 and ∣Pn∣q = 2.

De�nition 4.2.3 A set L ⊂ G of graphs is called hereditary, if it is closed under
taking induced subgraphs. Equivalently, L is hereditary, if G − x ∈ L for all G ∈ L
and x ∈ V (G). Further, de�ning Ln = L ∩ Gn we can write L = ∪∞i=1Li.

Finally, we say that property L is monotone, if it is closed under taking
any subgraph.

Obviously, if the set L of graphs is monotone, then it is hereditary.
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Hereditary or monotone sets of graphs are analogical to partition ideals. When
we have some properties about hereditary or monotone sets of graphs, we can try
to carry them to partition ideals. Therefore we are interested in the labeled
counting functions, their asymptotic formulas and their oscillations.

The next theorem summarizes the results about the growth of labeled counting
function p(n,P ) for P hereditary set of graphs. We will not prove it, but make
only several observations. The proofs can be found in papers [6], [8], [9] and [30].

Theorem 4.2.4 Let L be the hereditary property of graphs. Then one of the fol-
lowing cases holds for su�ciently large n.

1. ∣Ln∣ is identically zero, one or two.

2. There is an integer k > 0 such that ∣Ln∣ is a polynomial degree k in n.

3. There is an integer k > 1 such that ∣Ln∣ has exponential order of the form
∑k
i=1 pi(x)in, where pi(n) is a polynomial in n and pk(n) is non-zero.

4. There is an integer r > 1 such that ∣Ln∣ = n(1−1/r)n+o(n).

5. One has B(n) ≤ ∣Ln∣ ≤ 2o(n
2), where B(n) is the n-th Bell number, which

denotes the number of partitions1 of a set S with ∣S∣ = n.

6. There is an integer r > 1 such that ∣Ln∣ = 2(1−1/r)n2/2+o(n2).

The jump from 1 to 2 is surprisingly easy to justify. As observed in [30], if
∣Ln∣ > 2, then Ln contains a graph G1 which is neither empty nor complete. Such
a graph must contain a vertex x such that 1 ≤ deg(x) ≤ n − 2. So there must be
at least ( n−1

deg(x)) labellings of G1, thus ∣Ln∣ > n − 1.
If we restrict boundaries for deg(x) in the sense 2 ≤ deg(x) ≤ n − 3, we get

∣Ln∣ > n2/2 − n/2. With a little more e�ort one can show, as shown in [6], that
the polynomial range in case 2. is divided into separated subranges with minimum
and maximum, which implies case 2.

For the jump between cases 2 and 3, the structure of the case 3 and the jump
between cases 3 and 4 the statement is not so easy, there is important the cardi-
nality of the set L. The proof can be found in [6].

The jump from 4 to 5 is associated with the set S consisting of all graphs,
whose components are complete graphs. Clearly S is a hereditary set. To �nd
the cardinality of S is not di�cult. Su�ces to partition the set of vertices [n] to
the sets, which can be made exactly B(n) times. So every hereditary set R of
graphs such that S ⊂ R has the counting function at least B(n). The other case
is described in [8].

Till this time we could expect that the function ∣Ln∣ is well-behaved. But
as the following Theorem 4.2.5, which can be found in [7], shows, growth of the
counting functions in the case 5 is really confusing. Although the statement
proves only existence of monotone set with big oscillations, it is conjectured that
it holds for hereditary sets.

1This is not integer partition, but partition of the set. That means we want to divide set to

non-overlapping and non-empty sets.
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Theorem 4.2.5 Let 1 < c < c′ and ε > 1/c. Let f(n) be a function such that
nc

′n < f(n) < 2n
2−ε for all n. Then there are integer sequences {ri}∞i=1 and {si}∞i=1

and a monotone set L of graphs such that

(1) ∣Ln∣ = ncn+o(n) for n = ri,

(2) ncn+o(n) ≤ ∣Ln∣ ≤ f(n) for all n,

(3) ∣Ln∣ > f(n) − n! for n = si.

Notice that the constant ε depends on c. It is conjectured that preceding
Theorem 4.2.5 holds for c, ε independent.

Let us sum up gained properties of hereditary sets of graphs. Theorem 4.2.5
shows, that the counting function ∣Ln∣ is well-behaved at the bottom. In partic-
ular, if we have ∣Ln∣ = 0 for some n, then ∣Ln∣ = 0 for all n. Therefore entirely
at the bottom oscillations are not possible. Going higher we have exactly polyno-
mial or exponential growth, so there could be oscillations, but very small. Only
case, where the oscillations can be very large, is case 5. in Theorem 4.2.5.

4.3 Permutations

De�nition 4.3.1 A permutation π of [n] is a injective mapping π ∶ [n] →
[n]. We mark π as a sequence π(1)π(2) . . . π(n). Number n denotes the length
or the absolute value of π. We denote the set of all permutations of [n] as Sn
and the set of all �nite permutations as S.

On the set S we introduce a relation ≺ in the following way. Let π = a1a2 . . . an
be a permutation on [n] and ρ = b1b2 . . . bm be a permutation on [m]. We say,
that π ≺ ρ if n ≤ m and π can be obtained from ρ by deleting m − n terms of
ρ and reducing the remaining into [n] while keeping their order. More precisely
there are indices 1 ≤ m1 < m2 < ⋅ ⋅ ⋅ < mn such that ρ(mi) < ρ(mj) if and only if
π(i) < π(j), for i, j ∈ [n]. Instead of π ≺ ρ we sometimes say that ρ contains π.
When this is not true, we say that ρ avoids π.

Let us make an example. Permutation ρ = 14752638 contains permutation
π = 14325, because numbers 1,7,6,3 and 8 has the same order in ρ as numbers
1,4,3,2,5 in π.

At this time we have structure (S,≺, ∣ ⋅ ∣). We introduce an ideal sets.

De�nition 4.3.2 Let X ⊂ S be a set of permutations. We say, that X is heredi-
tary, if X is closed under containment. Denote the counting function of X as

p(n,X) = ∣X ∩ S∣.

De�nition 4.3.3 Let Z ⊂ S be a set of permutations. Denote F (Z) the set of
all permutations that do not contain any permutation of Z. We say, that set Z
is the forbidden set for the hereditary set F (Z).

One can easily check, that F maps sets of permutations on the hereditary
sets of permutation. If Z is one-element set, Z = {ρ}, we write F (ρ) instead of
F ({ρ}). Now we can focus on the growth of the counting functions.
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Obviously, p(n,S) = n! = nn+o(n). But what speed has the counting function
of a non-trivial hereditary set? In particular, we want to �nd the counting func-
tion of F (ρ) for some permutation ρ. Stanley�Wilf conjecture (�rst mentioned
by Bóna [10]) states that for every permutation ρ ∈ S there is a constant c such
that p(n,F (ρ)) ≤ cn. Although this statement is rather strong, because avoid-
ing only one permutation ρ the growth of the counting function falls from n! to
the exponential growth, it was proved by Marcus and Tardos [21] in 2004 with
a contribution by Klazar [19].

Theorem 4.3.4 Let X be the hereditary set of permutations which is not equal
to the set of all permutations. Then there is a constant c such that we have
the estimate

p(n,X) < cn

for every positive integer n.

Second theorem about the growth of counting functions was published Kaiser
and Klazar [18] in 2002. Before that we introduce generalized Fibonacci numbers
as follows: Fn,k = 0 for n ≤ 0, Fn,1 = 1 and

Fn,k = Fn−1,k + Fn−2,k + ⋅ ⋅ ⋅ + Fn−k,k

for n > 0. Thus the function Fn,k grows as αk, as a function of n, where αk is
the largest positive root of xk − xk−1 − xk−2 − . . . − 1. And now promised theorem.

Theorem 4.3.5 Let X be a hereditary set of permutations. Then exactly one
of the following possibilities holds.

1. Counting function p(n,X) is bounded.

2. There are integers k, l ≥ 1 such that for every n

Fn,k ≤ p(n,X) ≤ nlFn,k.

3. We have the estimate p(n,X) ≥ 2n−1 for every n.

These two Theorems 4.3.4 and 4.3.5 are su�cient to make a observation, that
oscillations of permutations at the bottom are not large.

4.4 Words

Let A be a �nite set and n positive integer. We say that ω is a word of length n
over the alphabet A, or n-word, if a is a sequence a = a1a2a3 . . . an, where ai ∈ A
for i ∈ [n]. A word a is �nite, if it is n-word for some n.

An n-block of a word a = a1a2a3 . . . an is a sequence aj+1aj+2 . . . aj+n for some
j ∈ N. Let n ≥ k. Observe that n-word has exactly n − k + 1 blocks of length k.

De�nition 4.4.1 Set L of words is said to be hereditary, if any block of a word
from L is in L. Denote all n-words of L as Ln. We have L = ∪∞i=1Ln. We say that
function n↦ ∣Ln∣ is a counting function of the set L.

Let W be the set of (�nite) words. Denote L(W ) the set of all words which
forms a block of words from W . In particular, L(a) is a set of blocks of the word
a. We mostly write L(a) instead of L({a}).
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Example 4.4.2. Let A = {0,1} and a = 10101010 . . . . Then ∣L4(a)∣ = 2, because
L4(a) = {1010,0101}. Actually ∣Ln(a)∣ = 2 for all n ≥ 1.

Using the theory of word graphs, Balogh and Bollobás [5] proved in 2005
theorem about the growth of counting function of hereditary sets of words. This
paper contains the note about possible oscillations, therefore it is important for us
and we sum it to the next theorem and consecutive note.

Theorem 4.4.3 Let L be hereditary set of �nite words over an alphabet A.
Then the counting function Ln is either bounded or at least n + 1 for every n.

Although ∣Ln∣ is in the �rst case bounded, Balogh and Bollobás [5] proved,
that for every k there is a hereditary set L of the words such that

lim sup
n→∞

∣Ln∣ = k2 and lim inf
n→∞

∣Ln∣ = 2k − 1,

or similarly
lim sup
n→∞

∣Ln∣ = k(k + 1) and lim inf
n→∞

∣Ln∣ = 2k.

However, if ∣Ln∣ ≤ n for some n, then the counting function is not just bounded,
but cannot even be larger than examples above.

Therefore possible oscillations at the bottom in the case of �nite words over
alphabet A are bounded independently on n.
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Conclusion

We made upper bound and lower bound in Theorem 3.4.4 for the fastest counting
function of the partition ideal of integer partitions, which satis�es condition (P).
Especially the lower bound grows very fast, which means there is an enormous
oscillation of the counting function of some partition ideals with the condition
(P).

When we consider partition ideals satisfying both condition (P) and condi-
tion on partitions of some positive integers, we deduced in Theorem 3.3.2 that
the counting function cannot have greater asymptotics than p(n/2).

Chapter 4 shows that in similar combinatorial structures like graphs, permuta-
tions or words there are no such big oscillations, therefore our paper signi�es that
this results cannot be generalized to any theory, which contains integer partitions.

Open problems

1. It would be interesting to �nd the exact asymptotics for the fastest growing
function of partition ideals with the property P.

2. Theorem 3.4.5 shows that asymptotic formula of p(n,F (Z)) for �nite set
of partitions Z is of the form CnκeK

√
n, where C = C(Z) is constant and

κ = −m/2 for some m ∈ N/ {1,2}. Are there any antichains Z such that
p(n,F (Z)) ∼ CnκeK

√
n for some constant C ∈ R and κ, which is not of

the form κ = −m/2 for some m ∈ N?
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Notation

Notation Meaning

∅ empty set
N {1,2,3,4, . . .}
N0 {0,1,2,3,4, . . .}
N N ∪∞
[k] {1,2,3, . . . , k}
[k]0 {0,1,2, . . . , k}
(A
k
) set of all k-element subsets of A

gcd (a1, . . . , ak) greatest common divisor of numbers a1, . . . , ak
gcd (A) greatest common divisor of all numbers from A
A/B {a ∈ A ∶ a ∉ B}
∣A∣ or #A number of elements (cardinality) of A
2A the power set of A
f(n) ≪ g(n) f(n) = o(g(n))
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