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Example 0: Smallness by number of elements

Theorem (Cantor)

The set R is uncountable.
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There are only countably many algebraic numbers.
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Example 0: Smallness by number of elements

Theorem (Cantor)

The set R is uncountable.

There are only countably many algebraic numbers.
Hence, there are uncountably many transcendental numbers.
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Example 0: Smallness by number of elements

Theorem (Cantor)

The set R is uncountable.

There are only countably many algebraic numbers.
Hence, there are uncountably many transcendental numbers.

Existence proof.
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Example 1: Baire category

Let (M, d) be a metric space.
A set A C M is said to be nowhere dense if Int A = &.
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Example 1: Baire category

Let (M, d) be a metric space.

A set A C M is said to be nowhere dense if Int A = &.

A set B C M is said to be meagre if it is the union of countably
many nowhere dense sets. (M \ B is then comeagre.)
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Example 1: Baire category

Let (M, d) be a metric space.

A set A C M is said to be nowhere dense if Int A = &.

A set B C M is said to be meagre if it is the union of countably
many nowhere dense sets. (M \ B is then comeagre.)

Theorem (Baire)
Let (M, d) be complete. Then M is not meagre (in itself).
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Example 1: Baire category

Let (M, d) be a metric space.

A set A C M is said to be nowhere dense if Int A = &.

A set B C M is said to be meagre if it is the union of countably
many nowhere dense sets. (M \ B is then comeagre.)

Theorem (Baire)

Let (M, d) be complete. Then M is not meagre (in itself).

The space (C[0,1],]| - ||so) is complete.
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Example 1: Baire category

Let (M, d) be a metric space.

A set A C M is said to be nowhere dense if Int A = &.

A set B C M is said to be meagre if it is the union of countably
many nowhere dense sets. (M \ B is then comeagre.)

Theorem (Baire)
Let (M, d) be complete. Then M is not meagre (in itself).

The space (C[0,1],]| - ||so) is complete.

Theorem (Banach, Mazurkiewicz (independently), 1931)

The set D C CJ0, 1] of all functions with a point of differentiability
is meagre in C[0, 1].
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Example 1: Baire category

Let (M, d) be a metric space.

A set A C M is said to be nowhere dense if Int A = &.

A set B C M is said to be meagre if it is the union of countably
many nowhere dense sets. (M \ B is then comeagre.)

Theorem (Baire)
Let (M, d) be complete. Then M is not meagre (in itself).

The space (C[0,1],]| - ||so) is complete.

Theorem (Banach, Mazurkiewicz (independently), 1931)

The set D C CJ0, 1] of all functions with a point of differentiability
is meagre in C[0, 1].

Baire = CJ0, 1] is not meagre.
So C[0,1]\ D # &, i.e. there exist nowhere-differentiable
functions.
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Example 1: Baire category

Let (M, d) be a metric space.

A set A C M is said to be nowhere dense if Int A = &.

A set B C M is said to be meagre if it is the union of countably
many nowhere dense sets. (M \ B is then comeagre.)

Theorem (Baire)
Let (M, d) be complete. Then M is not meagre (in itself).

The space (C[0,1],]| - ||so) is complete.

Theorem (Banach, Mazurkiewicz (independently), 1931)

The set D C CJ0, 1] of all functions with a point of differentiability
is meagre in C[0, 1].

Baire = CJ0, 1] is not meagre.
So C[0,1]\ D # &, i.e. there exist nowhere-differentiable
functions. We say that the typical continuous function is n.-d.
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Example 1: Baire category & differentiability

Let X be Banach space. A function f: X — R is said to be
Fréchet differentiable at a point xg if there is x* € X* such that

f(xo + u) = f(xo) + x*(u) + o(||u]]), u — 0.
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Example 1: Baire category & differentiability

Let X be Banach space. A function f: X — R is said to be
Fréchet differentiable at a point xg if there is x* € X* such that

f(xo 4+ u) = f(xo) + x*(u) + o(||u]|), u — 0.
We also define the directional derivative of f at xg in direction u as

F(x0: 1) = lim f(xo + tu) — f(xo)
0 t—0 t '

If f(xo;-) is a bounded linear operator, f is Gateaux diff. at x.
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Example 1: Baire category & differentiability

Let X be Banach space. A function f: X — R is said to be
Fréchet differentiable at a point xg if there is x* € X* such that

f(xo 4+ u) = f(xo) + x*(u) + o(||u]|), u — 0.
We also define the directional derivative of f at xg in direction u as

F(x0: 1) = lim f(xo + tu) — f(xo)
0 t—0 t '

If f(xo;-) is a bounded linear operator, f is Gateaux diff. at x.

Theorem (Mazur, 1933)
X separable, f: X — R cts. and convex = Ng(f) meagre.
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Example 1: Baire category & differentiability

Let X be Banach space. A function f: X — R is said to be
Fréchet differentiable at a point xg if there is x* € X* such that

f(xo 4+ u) = f(xo) + x*(u) + o(||u]|), u — 0.
We also define the directional derivative of f at xg in direction u as

F(x0: 1) = lim f(xo + tu) — f(xo)
0 t—0 t '

If f(xo;-) is a bounded linear operator, f is Gateaux diff. at x.

Theorem (Mazur, 1933)
X separable, f: X — R cts. and convex = Ng(f) meagre.

Theorem (Asplund, 1968)

X* separable, f: X — R cts. and convex = Ng(f) meagre.
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Example 2: Lebesgue measure

Let f: Df CR"” — R; set N(f) := {x € D¢: f'(x) does not exist}.

Theorem (Rademacher)
Let f: R" — R be Lipschitz. Then |[N(f)| = 0.
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Example 2: Lebesgue measure

Let f: Df CR"” — R; set N(f) := {x € D¢: f'(x) does not exist}.
Theorem (Rademacher)
Let f: R" — R be Lipschitz. Then |[N(f)| = 0.

This theorem is sharp for n = 1:

Theorem (Zahorski)

Given a Gy, set A C R with |A| = 0, there exists a Lipschitz
function f: R — R such that N(f) = A.
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Example 2: Lebesgue measure

Let f: Df CR"” — R; set N(f) := {x € D¢: f'(x) does not exist}.

Theorem (Rademacher)
Let f: R" — R be Lipschitz. Then |[N(f)| = 0.

This theorem is sharp for n = 1:

Theorem (Zahorski)

Given a Gy, set A C R with |A| = 0, there exists a Lipschitz
function f: R — R such that N(f) = A.

For higher dimensions, Rademacher’s theorem is not sharp:

Theorem (Preiss)

There exists A C R? with |A| = 0 such that for any Lispchitz
f: R2 — R we have D(f) N A # @ (where D(f) = R?\ N(f)).
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Example 2: Baire category & Rademacher

Rademacher’s theorem states that a Lipschitz function on R" is
differentiable up to a negligible set. This negligibility is meant in
the sense of Lebesgue measure.
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Example 2: Baire category & Rademacher

Rademacher’s theorem states that a Lipschitz function on R" is
differentiable up to a negligible set. This negligibility is meant in
the sense of Lebesgue measure.

Q: Is this true for another notion of negligibility? E.g. for meager?
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Example 2: Baire category & Rademacher

Rademacher’s theorem states that a Lipschitz function on R" is
differentiable up to a negligible set. This negligibility is meant in
the sense of Lebesgue measure.

Q: Is this true for another notion of negligibility? E.g. for meager?
A: NOT for meager.
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Example 2: Baire category & Rademacher

Rademacher’s theorem states that a Lipschitz function on R" is
differentiable up to a negligible set. This negligibility is meant in
the sense of Lebesgue measure.

Q: Is this true for another notion of negligibility? E.g. for meager?
A: NOT for meager.

Find a dense G5 set G C R with |G| =0. Then F:=R\ G is
meagre and R = F U G. Zahorski ~» Lipschitz f with N(f) = G.
Then f is non-differentiable on a comeagre set; so f is not
differentiable up to a meagre set as R is not meagre by Baire. [
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Example 2: Baire category & Rademacher

Rademacher’s theorem states that a Lipschitz function on R" is
differentiable up to a negligible set. This negligibility is meant in
the sense of Lebesgue measure.

Q: Is this true for another notion of negligibility? E.g. for meager?
A: NOT for meager.

Find a dense G5 set G C R with |G| =0. Then F:=R\ G is
meagre and R = F U G. Zahorski ~» Lipschitz f with N(f) = G.
Then f is non-differentiable on a comeagre set; so f is not
differentiable up to a meagre set as R is not meagre by Baire. [

This can easily be generalized to any Banach space.
Hence, meagre sets are not suitable for the study of differentiability
of Lipschitz functions.
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Example 2: Baire category & Rademacher

Rademacher’s theorem states that a Lipschitz function on R" is
differentiable up to a negligible set. This negligibility is meant in
the sense of Lebesgue measure.

Q: Is this true for another notion of negligibility? E.g. for meager?
A: NOT for meager.

Find a dense G5 set G C R with |G| =0. Then F:=R\ G is
meagre and R = F U G. Zahorski ~» Lipschitz f with N(f) = G.
Then f is non-differentiable on a comeagre set; so f is not
differentiable up to a meagre set as R is not meagre by Baire. [

This can easily be generalized to any Banach space.

Hence, meagre sets are not suitable for the study of differentiability
of Lipschitz functions.

Note that we used a decomposition result on R, namely, R can be
expressed as the union of two sets “negligible” in different senses.
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Example 3: Haar null sets

Let G be a locally compact Polish group. Then there exists a
(“unique”) Haar measure p on G, i.e. a non-trivial (left-)translation
invariant Radon (o-additive) measure. Lebesgue measure is Haar.

Martin Rmoutil Some reasons why we are interested in o-porous sets



Example 3: Haar null sets

Let G be a locally compact Polish group. Then there exists a
(“unique”) Haar measure p on G, i.e. a non-trivial (left-)translation
invariant Radon (o-additive) measure. Lebesgue measure is Haar.
The sets A C G with p(A) = 0 are small in the sense of measure,
(but not necessarily e.g. in the sense of Baire category).
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Example 3: Haar null sets

Let G be a locally compact Polish group. Then there exists a
(“unique”) Haar measure p on G, i.e. a non-trivial (left-)translation
invariant Radon (o-additive) measure. Lebesgue measure is Haar.
The sets A C G with p(A) = 0 are small in the sense of measure,
(but not necessarily e.g. in the sense of Baire category).

But: In non-locally compact groups there is no Haar measure.
(Easy to see.) Nonetheless, is it possible to define a corresponding
notion of small sets? Yes!
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Example 3: Haar null sets

Let G be a locally compact Polish group. Then there exists a
(“unique”) Haar measure p on G, i.e. a non-trivial (left-)translation
invariant Radon (o-additive) measure. Lebesgue measure is Haar.
The sets A C G with p(A) = 0 are small in the sense of measure,
(but not necessarily e.g. in the sense of Baire category).

But: In non-locally compact groups there is no Haar measure.
(Easy to see.) Nonetheless, is it possible to define a corresponding
notion of small sets? Yes!

Definition (Christensen: Haar null sets (HN))

Let G be an Abelian Polish group.
A C G Borel is HN €25 3 Borel prob. 11 Vx € G: pu(x+ A) =0.
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Example 3: Haar null sets

Let G be a locally compact Polish group. Then there exists a
(“unique”) Haar measure p on G, i.e. a non-trivial (left-)translation
invariant Radon (o-additive) measure. Lebesgue measure is Haar.
The sets A C G with p(A) = 0 are small in the sense of measure,
(but not necessarily e.g. in the sense of Baire category).

But: In non-locally compact groups there is no Haar measure.
(Easy to see.) Nonetheless, is it possible to define a corresponding
notion of small sets? Yes!

Definition (Christensen: Haar null sets (HN))

Let G be an Abelian Polish group.
A C G Borel is HN €25 3 Borel prob. 11 Vx € G: pu(x+ A) =0.

(i) G loc. cpt. = HN = Haar measure zero;
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Example 3: Haar null sets

Let G be a locally compact Polish group. Then there exists a
(“unique”) Haar measure p on G, i.e. a non-trivial (left-)translation
invariant Radon (o-additive) measure. Lebesgue measure is Haar.
The sets A C G with p(A) = 0 are small in the sense of measure,
(but not necessarily e.g. in the sense of Baire category).

But: In non-locally compact groups there is no Haar measure.
(Easy to see.) Nonetheless, is it possible to define a corresponding
notion of small sets? Yes!

Definition (Christensen: Haar null sets (HN))

Let G be an Abelian Polish group.
A C G Borel is HN €25 3 Borel prob. 11 Vx € G: pu(x+ A) =0.

(i) G loc. cpt. = HN = Haar measure zero;
(i) G non-loc. cpt. & AC G cpt. = Ais HN;
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Example 3: Haar null sets

Let G be a locally compact Polish group. Then there exists a
(“unique”) Haar measure p on G, i.e. a non-trivial (left-)translation
invariant Radon (o-additive) measure. Lebesgue measure is Haar.
The sets A C G with p(A) = 0 are small in the sense of measure,
(but not necessarily e.g. in the sense of Baire category).

But: In non-locally compact groups there is no Haar measure.
(Easy to see.) Nonetheless, is it possible to define a corresponding
notion of small sets? Yes!

Definition (Christensen: Haar null sets (HN))

Let G be an Abelian Polish group.
A C G Borel is HN €25 3 Borel prob. 11 Vx € G: pu(x+ A) =0.

(i) G loc. cpt. = HN = Haar measure zero;
(i) G non-loc. cpt. & AC G cpt. = Ais HN;
(iii) Ap C G is HN for each n = [J72; A, is HN.
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Example 3: HN & Rademacher

Theorem (Christensen, 1972)

X separable BS, f: X — R Lipschitz = Ng(f) is HN.
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Example 3: HN & Rademacher

Theorem (Christensen, 1972)

X separable BS, f: X — R Lipschitz = Ng(f) is HN.

This was followed by Mankiewicz, Aronszajn and Phelps who
proved the same result for different notions of smallness, namely
cube null, Aronszajn null and Gauss null.
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Example 3: HN & Rademacher

Theorem (Christensen, 1972)

X separable BS, f: X — R Lipschitz = Ng(f) is HN.

This was followed by Mankiewicz, Aronszajn and Phelps who
proved the same result for different notions of smallness, namely
cube null, Aronszajn null and Gauss null.

X separable BS; consider Lipschitz functions f,: X — R. Then, by
Christensen, B = ;- Ng(f,) is HN. Since X is not HN, there is a
large set (namely X \ B) where all the functions are Gateaux d.
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Example 3: HN & Rademacher

Theorem (Christensen, 1972)
X separable BS, f: X — R Lipschitz = Ng(f) is HN.

This was followed by Mankiewicz, Aronszajn and Phelps who
proved the same result for different notions of smallness, namely
cube null, Aronszajn null and Gauss null.

X separable BS; consider Lipschitz functions f,: X — R. Then, by
Christensen, B = ;- Ng(f,) is HN. Since X is not HN, there is a
large set (namely X \ B) where all the functions are Gateaux d.

Compare to the following (difficult) result:

Theorem (Preiss, 1990)

X* separable, f Lipschitz = f is Fréchet diff. on a dense set.
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o-ideals

Common property of these notions:

Martin Rmoutil Some reasons why we are interested in o-porous sets



o-ideals

Common property of these notions:

Definition

Let X be a set and S C P(X). We say S is a o-ideal if:
(i) AeSand BC A= BeS;

(i) ApeSforallne N=[J2, A, €S.
S is nontrivial if X ¢ S.
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o-ideals

Common property of these notions:

Definition

Let X be a set and S C P(X). We say S is a o-ideal if:
(i) AeSand BC A= BeS;

(i) ApeSforallne N=[J2, A, €S.
S is nontrivial if X ¢ S.

All the aforementioned notions of smallness correspond to o-ideals.
Countable: well-known;

Meagre: trivial;

Lebesgue measure zero: o-additivity of measure;

HN: requires a proof (Christensen provided one).
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o-ideals

Common property of these notions:

Definition

Let X be a set and S C P(X). We say S is a o-ideal if:
(i) AeSand BC A= BeS;

(i) ApeSforallne N=[J2, A, €S.
S is nontrivial if X ¢ S.

All the aforementioned notions of smallness correspond to o-ideals.
Countable: well-known;

Meagre: trivial;

Lebesgue measure zero: o-additivity of measure;

HN: requires a proof (Christensen provided one).

The letter o corresponds to countable unions, sums, limits etc.
Its importance is clear to anyone who can appreciate the difference
between Riemann and Lebesgue integrals.
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o-ideals & Rademacher

In finite dimension, Rademacher’s result is fairly satisfactory.
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o-ideals & Rademacher

In finite dimension, Rademacher’s result is fairly satisfactory.

Rademacher type theorem: On a certain space X there exists a

nontrivial o-ideal S C P(X) such that every Lipschitz f: X — R is
differentiable up to a set from S.
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o-ideals & Rademacher

In finite dimension, Rademacher’s result is fairly satisfactory.
Rademacher type theorem: On a certain space X there exists a

nontrivial o-ideal S C P(X) such that every Lipschitz f: X — R is
differentiable up to a set from S.

Corollary: Given Lipschitz functions f, (n € N), there is a set
B (= U2y N(f,)) € S s.t. each x € B is a point of diff. for all f,.
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o-ideals & Rademacher

In finite dimension, Rademacher’s result is fairly satisfactory.
Rademacher type theorem: On a certain space X there exists a
nontrivial o-ideal S C P(X) such that every Lipschitz f: X — R is
differentiable up to a set from S.

Corollary: Given Lipschitz functions f, (n € N), there is a set

B (= U2y N(f,)) € S s.t. each x € B is a point of diff. for all f,.
Q: Given a certain setting, is there a suitable o-ideal?
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o-ideals & Rademacher

In finite dimension, Rademacher’s result is fairly satisfactory.
Rademacher type theorem: On a certain space X there exists a
nontrivial o-ideal S C P(X) such that every Lipschitz f: X — R is
differentiable up to a set from S.

Corollary: Given Lipschitz functions f, (n € N), there is a set

B (= U2y N(f,)) € S s.t. each x € B is a point of diff. for all f,.
Q: Given a certain setting, is there a suitable o-ideal?

Theorem (Lindenstrauss & Preiss, 2003 (Ann. of Math.))

Let K be a countable compact set. Then any Lipschitz
f: C(K) — R is diff. up to a I'-null set.
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o-ideals & Rademacher

In finite dimension, Rademacher’s result is fairly satisfactory.
Rademacher type theorem: On a certain space X there exists a
nontrivial o-ideal S C P(X) such that every Lipschitz f: X — R is
differentiable up to a set from S.

Corollary: Given Lipschitz functions f, (n € N), there is a set

B (= U2y N(f,)) € S s.t. each x € B is a point of diff. for all f,.
Q: Given a certain setting, is there a suitable o-ideal?

Theorem (Lindenstrauss & Preiss, 2003 (Ann. of Math.))

Let K be a countable compact set. Then any Lipschitz
f: C(K) — R is diff. up to a I'-null set.

(i) K is countable & C(K) is separable and Asplund;
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o-ideals & Rademacher

In finite dimension, Rademacher’s result is fairly satisfactory.
Rademacher type theorem: On a certain space X there exists a
nontrivial o-ideal S C P(X) such that every Lipschitz f: X — R is
differentiable up to a set from S.

Corollary: Given Lipschitz functions f, (n € N), there is a set

B (= U2y N(f,)) € S s.t. each x € B is a point of diff. for all f,.
Q: Given a certain setting, is there a suitable o-ideal?

Theorem (Lindenstrauss & Preiss, 2003 (Ann. of Math.))

Let K be a countable compact set. Then any Lipschitz
f: C(K) — R is diff. up to a I'-null set.

(i) K is countable & C(K) is separable and Asplund;

(i) X BS is Asplund if every cts. convex f: X — R is Fréchet
differentiable up to a meagre set.
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o-ideals & Rademacher

In finite dimension, Rademacher’s result is fairly satisfactory.
Rademacher type theorem: On a certain space X there exists a
nontrivial o-ideal S C P(X) such that every Lipschitz f: X — R is
differentiable up to a set from S.

Corollary: Given Lipschitz functions f, (n € N), there is a set

B (= U2y N(f,)) € S s.t. each x € B is a point of diff. for all f,.
Q: Given a certain setting, is there a suitable o-ideal?

Theorem (Lindenstrauss & Preiss, 2003 (Ann. of Math.))

Let K be a countable compact set. Then any Lipschitz
f: C(K) — R is diff. up to a I'-null set.

(i) K is countable & C(K) is separable and Asplund;

(i) X BS is Asplund if every cts. convex f: X — R is Fréchet
differentiable up to a meagre set.

(iii) X not Asplund =- there is |||-|| renorming s.t. Ne(|-|) = X.



Aronszajn null & -null

Let X be a BS. Given 0 # u € X We define A(u) as the family of
all Borel sets that are null on every line parallel to u.
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Aronszajn null & -null

Let X be a BS. Given 0 # u € X We define A(u) as the family of
all Borel sets that are null on every line parallel to u.
Lebesgue: Every Lipschitz f : R — R is diff. a.e.
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Aronszajn null & -null

Let X be a BS. Given 0 # u € X We define A(u) as the family of
all Borel sets that are null on every line parallel to u.

Lebesgue: Every Lipschitz f : R — R is diff. a.e.

Hence, given a Lip. f: X — R, the set B(u) of points where f is
non-diff. in direction u is from A(u).
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Aronszajn null & -null

Let X be a BS. Given 0 # u € X We define A(u) as the family of
all Borel sets that are null on every line parallel to u.

Lebesgue: Every Lipschitz f : R — R is diff. a.e.

Hence, given a Lip. f: X — R, the set B(u) of points where f is
non-diff. in direction u is from A(u).

Fact: Let S be the o-ideal generated by A(u), u € X. Then every
Lip. f: X — R satisfies Ng(f) € S. Moreover, S is nontrivial.
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Aronszajn null & -null

Let X be a BS. Given 0 # u € X We define A(u) as the family of
all Borel sets that are null on every line parallel to u.

Lebesgue: Every Lipschitz f : R — R is diff. a.e.

Hence, given a Lip. f: X — R, the set B(u) of points where f is
non-diff. in direction u is from A(u).

Fact: Let S be the o-ideal generated by A(u), u € X. Then every
Lip. f: X — R satisfies Ng(f) € S. Moreover, S is nontrivial.

A set A C X is Aronszajn null if for every sequence {u;}%2; € X
with span{u;} = X we have A =J2; Ai where A; € A(y;).
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Aronszajn null & -null

Let X be a BS. Given 0 # u € X We define A(u) as the family of
all Borel sets that are null on every line parallel to u.

Lebesgue: Every Lipschitz f : R — R is diff. a.e.

Hence, given a Lip. f: X — R, the set B(u) of points where f is
non-diff. in direction u is from A(u).

Fact: Let S be the o-ideal generated by A(u), u € X. Then every
Lip. f: X — R satisfies Ng(f) € S. Moreover, S is nontrivial.

A set A C X is Aronszajn null if for every sequence {u;}%2; € X
with span{u;} = X we have A =J2; Ai where A; € A(y;).

Definition (Lindenstrauss, Preiss)

Define I',(X) as the space of all C'-maps 7: [0,1]” — X. A Borel
set E C X is [p-null if {y € To(X): |[y"1(E)| > 0} is meagre.
This makes sense even for n = oo (then ['(X) = I'o(X) is only a
Fréchet space).
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Aronszajn null & -null

Let X be a BS. Given 0 # u € X We define A(u) as the family of
all Borel sets that are null on every line parallel to u.

Lebesgue: Every Lipschitz f : R — R is diff. a.e.

Hence, given a Lip. f: X — R, the set B(u) of points where f is
non-diff. in direction u is from A(u).

Fact: Let S be the o-ideal generated by A(u), u € X. Then every
Lip. f: X — R satisfies Ng(f) € S. Moreover, S is nontrivial.

A set A C X is Aronszajn null if for every sequence {u;}%2; € X
with span{u;} = X we have A =J2; Ai where A; € A(y;).

Definition (Lindenstrauss, Preiss)

Define I',(X) as the space of all C'-maps 7: [0,1]” — X. A Borel
set E C X is [p-null if {y € To(X): |[y"1(E)| > 0} is meagre.
This makes sense even for n = oo (then ['(X) = I'o(X) is only a
Fréchet space).

Fact: I'(p)-null sets form a nontrivial (Baire) o-ideal in any BS.
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[-null & problems

Theorem (Lindenstrauss, Preiss, Tiser, 2008)

Any two Lipschitz functions on a separable Hilbert space have a
common point of Fréchet differentiability.
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[-null & problems

Theorem (Lindenstrauss, Preiss, Tiser, 2008)

Any two Lipschitz functions on a separable Hilbert space have a
common point of Fréchet differentiability.

More generally, this works on any spaces with sufficient
(asymptotic) smoothness.
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[-null & problems

Theorem (Lindenstrauss, Preiss, Tiser, 2008)

Any two Lipschitz functions on a separable Hilbert space have a
common point of Fréchet differentiability.

More generally, this works on any spaces with sufficient
(asymptotic) smoothness.
Open problem: Is this true for 3 functions?

Martin Rmoutil Some reasons why we are interested in o-porous sets



[-null & problems

Theorem (Lindenstrauss, Preiss, Tiser, 2008)

Any two Lipschitz functions on a separable Hilbert space have a
common point of Fréchet differentiability.

More generally, this works on any spaces with sufficient
(asymptotic) smoothness.

Open problem: Is this true for 3 functions?

The main Rademacher-type thm of Lindenstrauss and Preiss:
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[-null & problems

Theorem (Lindenstrauss, Preiss, Tiser, 2008)

Any two Lipschitz functions on a separable Hilbert space have a
common point of Fréchet differentiability.

More generally, this works on any spaces with sufficient
(asymptotic) smoothness.

Open problem: Is this true for 3 functions?

The main Rademacher-type thm of Lindenstrauss and Preiss:

Let X be a Banach space with separable dual. If c-porous sets in X
are [-null, then every Lipschitz f: X — R satisfies Ne(f) € T.
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[-null & problems

Theorem (Lindenstrauss, Preiss, Tiser, 2008)

Any two Lipschitz functions on a separable Hilbert space have a
common point of Fréchet differentiability.

More generally, this works on any spaces with sufficient
(asymptotic) smoothness.

Open problem: Is this true for 3 functions?

The main Rademacher-type thm of Lindenstrauss and Preiss:

Let X be a Banach space with separable dual. If c-porous sets in X
are [-null, then every Lipschitz f: X — R satisfies Ne(f) € T.

The spaces ¢y, even C(K) for K countable compactum, and the
Tsirelson space are known to have the property.
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[-null & problems

Theorem (Lindenstrauss, Preiss, Tiser, 2008)

Any two Lipschitz functions on a separable Hilbert space have a
common point of Fréchet differentiability.

More generally, this works on any spaces with sufficient
(asymptotic) smoothness.

Open problem: Is this true for 3 functions?

The main Rademacher-type thm of Lindenstrauss and Preiss:

Let X be a Banach space with separable dual. If c-porous sets in X
are [-null, then every Lipschitz f: X — R satisfies Ne(f) € T.

The spaces ¢y, even C(K) for K countable compactum, and the
Tsirelson space are known to have the property. By separable
reduction this was shown by Cath even for C(K) with K scattered.
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o-porous sets

Let (M, d) be a metric space, AC M, x € M. We say that
A is porous at x, if there are x, — x and r, — 0 with:
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o-porous sets

Let (M, d) be a metric space, AC M, x € M. We say that
A is porous at x, if there are x, — x and r, — 0 with:

® B(xp,mm)NA=g;
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o-porous sets

Definition

Let (M, d) be a metric space, AC M, x € M. We say that
A is porous at x, if there are x, — x and r, — 0 with:

® B(xp,mm)NA=g;

("] ||mn_>oo m > 0.
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o-porous sets

Definition

Let (M, d) be a metric space, AC M, x € M. We say that
A is porous at x, if there are x, — x and r, — 0 with:

® B(xp,mm)NA=g;

("] ||mn_>oo m > 0.

Definition (equivalent)
v(x, R,A) =sup{r > 0: for some z € M, B(z,r) C B(x,R)\ A},

: ’Y(Xa R7A)

2 R, A 2
P(A, x) = limsup M, p(A, x) = liminf
- R—>0+ R

R—0., R

A is porous at x if p(A, x) > 0 and lower porous at x if p(A, x) > 0.
A set B is o-porous if B =J;2; An with A, porous for all n.
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Basics about o-porosity

(i) The definition makes sense in any metric space.
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Basics about o-porosity

(i) The definition makes sense in any metric space.

(i) M uncountable and complete = o-porous sets form a nontriv.
o-ideal.

Martin Rmoutil Some reasons why we are interested in o-porous sets



Basics about o-porosity

(i) The definition makes sense in any metric space.

(i) M uncountable and complete = o-porous sets form a nontriv.
o-ideal.

(i) o-porous sets are always meagre (trivial).
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Basics about o-porosity

(i) The definition makes sense in any metric space.

(i) M uncountable and complete = o-porous sets form a nontriv.
o-ideal.

(i) o-porous sets are always meagre (trivial).

(iv) In R", each o-porous set is Lebesgue null (easy — density).
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Basics about o-porosity

(i) The definition makes sense in any metric space.

(i) M uncountable and complete = o-porous sets form a nontriv.
o-ideal.

(i) o-porous sets are always meagre (trivial).
(iv) In R", each o-porous set is Lebesgue null (easy — density).

(v) (Zajicek:) There is a closed F C R” which is both n.-d.
(= meagre) and Lebesgue null, but is not o-porous.

(vi) (Foran:) Graph of a cts. function. (Zeleny:) AC function.

Let ACR. Then
M is porous < x — dist(x, A) is differentiable at no point of A.
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o-porosity & Rademacher (for cts. convex)

Recall Asplund, 1968: X BS with X* separable = for any cts
convex f: X — R, Ng(f) is meagre.
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o-porosity & Rademacher (for cts. convex)

Recall Asplund, 1968: X BS with X* separable = for any cts
convex f: X — R, Ng(f) is meagre.
Preiss, Zajicek (1980s): Same for o-porous, even cone small sets.
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o-porosity & Rademacher (for cts. convex)

Recall Asplund, 1968: X BS with X* separable = for any cts
convex f: X — R, Ng(f) is meagre.

Preiss, Zajicek (1980s): Same for o-porous, even cone small sets.
These results can be generalized to non-separable Asplund spaces
by a separable-reduction technique.
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o-porosity & Rademacher (for cts. convex)

Recall Asplund, 1968: X BS with X* separable = for any cts
convex f: X — R, Ng(f) is meagre.

Preiss, Zajicek (1980s): Same for o-porous, even cone small sets.
These results can be generalized to non-separable Asplund spaces
by a separable-reduction technique.

We first prove that the relevant notions, such as o-porosity and
Fréchet differentiability, are separably determined. For example:
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o-porosity & Rademacher (for cts. convex)

Recall Asplund, 1968: X BS with X* separable = for any cts
convex f: X — R, Ng(f) is meagre.

Preiss, Zajicek (1980s): Same for o-porous, even cone small sets.
These results can be generalized to non-separable Asplund spaces
by a separable-reduction technique.

We first prove that the relevant notions, such as o-porosity and
Fréchet differentiability, are separably determined. For example:

Theorem (Marek Cath, M.R.)

Let X be a Banach space, A C X be a Souslin set.
Then for every separable subspace Vy C X there exists a closed
separable space V. C X such that Vo C V and

(i) A is o-upper porous <= ANV is o-upper porous in V;

(i) A is o-lower porous <= ANV is o-lower porous in V.
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A separable reduction theorem

Using more refined methods we were able to prove the separable

determination of cone smallness, a smaller o-ideal than that of
o-porous sets.
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A separable reduction theorem

Using more refined methods we were able to prove the separable
determination of cone smallness, a smaller o-ideal than that of
o-porous sets.

As a consequence we obtained the following result, which is a
generalization of Zaji€ek's result to the non-separable setting.
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A separable reduction theorem

Using more refined methods we were able to prove the separable
determination of cone smallness, a smaller o-ideal than that of
o-porous sets.

As a consequence we obtained the following result, which is a
generalization of Zaji€ek's result to the non-separable setting.

Theorem (Marek Cath, M.R., Miroslav Zeleny)

Let X be an Asplund space and G C X be open. Let f: G — R be
a continuous and approximately convex function. Then the set of
all points of G at which f is not Fréchet differentiable is cone small.
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A separable reduction theorem

Using more refined methods we were able to prove the separable
determination of cone smallness, a smaller o-ideal than that of
o-porous sets.

As a consequence we obtained the following result, which is a
generalization of Zaji€ek's result to the non-separable setting.

Theorem (Marek Cath, M.R., Miroslav Zeleny)

Let X be an Asplund space and G C X be open. Let f: G — R be
a continuous and approximately convex function. Then the set of
all points of G at which f is not Fréchet differentiable is cone small.

Thank you for your attention.
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