) \in int K, the body K contains a ball $B^n(\alpha)$, $\alpha > 0$. For given $\varepsilon \in (0, 1)$, by (a) here is some $P \in \mathcal{P}^n$, $P \subset K$, such that $d(K, P) < \alpha \varepsilon/2$. Note that P depends on ε and α . Hence

$$h_P(u) \ge h_K(u) - \frac{\alpha \varepsilon}{2} \ge \alpha \left(1 - \frac{\varepsilon}{2}\right) > 0, \quad u \in \mathbb{S}^{n-1},$$

and therefore $\alpha(1-\varepsilon/2)B^n \subset P$. This shows that

$$P \subset K \subset P + \frac{\alpha \varepsilon}{2} B^n \subset P + \frac{\alpha \varepsilon}{2} \frac{1}{\alpha (1 - \varepsilon/2)} P = \left(1 + \frac{\varepsilon/2}{1 - \varepsilon/2}\right) P \subset (1 + \varepsilon) P.$$

Hence we obtain (c) and also get

$$||h_{(1+\varepsilon)P} - h_K|| \le \varepsilon ||h_P|| \le \varepsilon ||h_K||.$$

To deduce (b), we may assume that $0 \in \text{int } K$. Let $\varepsilon \in (0, 1)$ be given. Define $\varepsilon' := \varepsilon/(1 + \|h_K\|) \in (0, 1)$. Then by what we have already shown there exists a polytope P' such that $0 \in \text{int } P'$, $P' \subset K \subset (1 + \varepsilon')P'$ and

$$\|h_{(1+\varepsilon')P'}-h_K\|\leq \varepsilon'\|h_K\|\leq \varepsilon.$$

Thus the polytope $(1 + \varepsilon')P'$ satisfies all requirements.

Exercises and Supplements for Sect. 3.1

1. For $K, L \in \mathcal{K}^n$ show that

$$d(K, L) = \min\{\varepsilon \ge 0 : K \subset L + B^n(\varepsilon), L \subset K + B^n(\varepsilon)\},\$$

that is, the infimum in the definition of d(K, L) is attained.

- 2. Let \mathcal{K}_c^n denote the set of all $K \in \mathcal{K}^n$ for which there is some point $c \in \mathbb{R}^n$ such that K c = -(K c). Show that for each $K \in \mathcal{K}_c^n$ such a point c is uniquely determined. It is denoted by c(K) and called the *centre of symmetry* of K. Show that the map $c : \mathcal{K}_c^n \to \mathbb{R}^n$ is continuous.
- 3. Let $K, L, M \in \mathcal{K}^n$. Show that if $K + L \subset M + L$, then $K \subset M$ (generalized cancellation rule). Can you avoid the use of support functions? More generally, let A, B, C be sets in \mathbb{R}^n . Suppose that A is nonempty and bounded, that C is closed and convex, and that $A + B \subset A + C$. Show that then $B \subset C$.
- 4. Let $K, L, M \in K^n$. Let $u \in \mathbb{S}^{n-1}$. Show that K(u) + M(u) = (K + M)(u). Can you avoid the use of support functions?

- 5. Let $(K_i)_{i \in \mathbb{N}}$ be a sequence in K^n and $K \in K^n$. Show that $K_i \to K$ (in the Hausdorff metric) if and only if the following two conditions are satisfied:
 - (a) Every $x \in K$ is a limit point of a suitable sequence $(x_i)_{i \in \mathbb{N}}$ with $x_i \in K_i$ for $i \in \mathbb{N}$.
 - (b) For each sequence $(x_i)_{i \in \mathbb{N}}$ with $x_i \in K_i$, for $i \in \mathbb{N}$, every accumulation point lies in K.
- 6. Let K_i , $K \in \mathbb{K}^n$, $i \in \mathbb{N}$. Then the following statements are equivalent.
 - (i) If $U \subset \mathbb{R}^n$ is open and $K \cap U \neq \emptyset$, then $K_i \cap U \neq \emptyset$ for almost all $i \in \mathbb{N}$.
 - (ii) For $x \in K$, there are $x_i \in K_i$, $i \in \mathbb{N}$, such that $x_i \to x$ as $i \to \infty$.
- 7. Let K_i , $K \in \mathbb{K}^n$, $i \in \mathbb{N}$. Suppose that int $K \neq \emptyset$. Then the following statements (a), (b), and (c) are equivalent.
 - (a) $K_i \to K$ as $i \to \infty$.
 - (b) (i) If $x \in \text{int } K$, then $x \in \text{int } K_i$ for almost all $i \in \mathbb{N}$,
 - (ii) If $I \subset \mathbb{N}$ with $|I| = \infty$, $x_i \in K_i$ for $i \in I$, and $x_i \to x$, as $i \to \infty$, then $x \in K$.
 - (c) (i') If $x \in \text{int } K$, then $x \in K_i$ for almost all $i \in \mathbb{N}$,
 - (ii) If $I \subset \mathbb{N}$ with $|I| = \infty$, $x_i \in K_i$ for $i \in I$, and $x_i \to x$, as $i \to \infty$, then $x \in K$.
- 8.* (a) Let $K, M \in \mathcal{K}^n$ be convex bodies, which cannot be separated by a hyperplane (i.e., there is no hyperplane $\{f = \alpha\}$ with $K \subset \{f \leq \alpha\}$ and $M \subset \{f \geq \alpha\}$). Further, let $(K_i)_{i \in \mathbb{N}}$ and $(M_i)_{i \in \mathbb{N}}$ be sequences in \mathcal{K}^n . Show that

$$K_i \to K, M_i \to M \Longrightarrow K_i \cap M_i \to K \cap M.$$

(b) Let $K \in \mathcal{K}^n$ be a convex body, and let $E \subset \mathbb{R}^n$ be an affine subspace with $E \cap \text{int } K \neq \emptyset$. Further, let $(K_i)_{i \in \mathbb{N}}$ be a sequence in \mathcal{K}^n . Show that

$$K_i \to K \Longrightarrow E \cap K_i \to E \cap K$$
.

Hint: Use Exercise 3.1.5.

- 9. Let $K \subset \mathbb{R}^n$ be compact. Show that:
 - (a) There is a unique Euclidean ball $B_c(K)$ of smallest diameter with $K \subset B_c(K)$ (which is called the *circumball* of K). The map $K \mapsto B_c(K)$ is continuous.
 - (b) If int $K \neq \emptyset$, then there exists a Euclidean ball $B_i(K)$ of maximal diameter with $B_i(K) \subset K$ (which is called an *inball* of K). In general, inballs of convex bodies are not uniquely determined.
- 10. A body $K \in \mathcal{K}^n$ is *strictly convex*, if it does not contain any segments in the boundary.

- (a) Show that the set of all strictly convex bodies in \mathbb{R}^n is a G_{δ} -set in \mathcal{K}^n , that is, an intersection of countably many open sets in \mathcal{K}^n .
- (b) Show that the set of all strictly convex bodies in \mathbb{R}^n is dense in \mathcal{K}^n .
- 11. Let $(K_i)_{i\in\mathbb{N}}$ be a sequence in \mathcal{K}^n for which the support functions $h_{K_i}(u)$ converge to the values h(u) of a function $h:\mathbb{S}^{n-1}\to\mathbb{R}$, for each $u\in\mathbb{S}^{n-1}$. Show that h is the support function of a convex body and that $h_{K_i}\to h$ uniformly on \mathbb{S}^{n-1} .
- 12. Let P be a convex polygon in \mathbb{R}^2 with int $P \neq \emptyset$. Show that:
 - (a) There is a polygon P_1 and a triangle (or a segment) Δ with $P = P_1 + \Delta$.
 - (b) P has a representation $P = \Delta_1 + \cdots + \Delta_m$, with triangles (segments) Δ_j which are pairwise not homothetic.
 - (c) P is a triangle if and only if m = 1.
- 13. A body $K \in \mathcal{K}^n$, $n \geq 2$, is *indecomposable* if K = M + L implies that $M = \alpha K + x$ and $L = \beta K + y$, for some $\alpha, \beta \geq 0$ and $x, y \in \mathbb{R}^n$. Show that:
 - (a) If $P \in \mathcal{K}^n$ is a polytope and all 2-faces of P are triangles, then P is indecomposable.
 - (b) For $n \geq 3$, the set of indecomposable convex bodies is a dense G_{δ} -set in \mathcal{K}^n .
- 14. Let \mathcal{I}^n be the set of convex bodies $K \in \mathcal{K}^n$ which are strictly convex and indecomposable. Let $n \geq 3$. Show that \mathcal{I}^n is dense in \mathcal{K}^n . It seems to be an open problem to explicitly construct an element of \mathcal{I}^n .
- 15.* (Simultaneous approximation of convex sets, their unions and nonempty intersections) Let $K_1, \ldots, K_m \in \mathcal{K}^n$ be convex bodies such that $K := K_1 \cup \cdots \cup K_m$ is convex. Let $\varepsilon > 0$. Then there are polytopes $P_1, \ldots, P_m \in \mathcal{P}^n$ with $K_i \subset P_i \subset K_i + \varepsilon B^n$ for $i = 1, \ldots, m$ and such that $P := P_1 \cup \cdots \cup P_m$ is convex.
- 16. Let $K \in \mathcal{K}^n$ with dim K = n. Suppose that $H(u, t) = \{x \in \mathbb{R}^n : \langle x, u \rangle = t\}$, $u \in \mathbb{R}^n \setminus \{0\}$ and $t \in \mathbb{R}$, is a supporting hyperplane of K with $K \subset H^-(u, t)$. Show that

$$\lim_{s \nearrow t} (H(u,s) \cap K) = K \cap H(u,t),$$

where the convergence is with respect to the Hausdorff metric.

17. Let $K \in \mathcal{K}^2$. A convex body M is called a rotation average of K if there is some $m \in \mathbb{N}$ and there are proper rotations $\rho_1, \ldots, \rho_m \in SO(2)$ such that $M = \frac{1}{m}(\rho_1 K + \cdots + \rho_m K)$. Show that there is a sequence of rotation averages of K which converges to a two-dimensional ball (a disc) (which might be a point).