It is easy to check that A_i is a closed convex cone, and clearly $h_K = \langle x_i, \cdot \rangle$ is linear on A_i . Thus h_K is piecewise linear.

Conversely, suppose that h_K is linear on the convex cones A_1, \ldots, A_k which cover \mathbb{R}^n . Then we may assume that A_i is closed, since we can replace A_i by cl A_i , which is still a convex cone, and use that h_K remains linear on cl A_i . Moreover, we can assume that all closed convex cones A_1, \ldots, A_k have interior points, since lower-dimensional closed sets A_i can be omitted (if a point $x_0 \in \mathbb{R}^n$ lies only in lower-dimensional closed convex cones, then there is a point in a neighbourhood of x_0 which is not covered by the union of all cones, a contradiction). Then, for $i=1,\ldots,k$ there is some (uniquely determined) $x_i \in \mathbb{R}^n$ such that $\langle x_i,\cdot \rangle = h_K$ on A_i . This already implies that

$$\max\{\langle x_i,\cdot\rangle:i=1,\ldots,k\}\geq h_K.$$

For the reverse inequality, let $x \in \mathbb{R}^n$. For $i \in \{1, ..., k\}$, we can choose $z \in \operatorname{int}(A_i) \setminus \{x\}$. Then there are $y \in A_i$ and $\lambda \in (0, 1)$ such that $z = \lambda x + (1 - \lambda)y$. Hence,

$$\langle x_i, z \rangle = h_K(z) = h_K(\lambda x + (1 - \lambda)y)$$

$$\leq \lambda h_K(x) + (1 - \lambda)h_K(y) = \lambda h_K(x) + (1 - \lambda)\langle x_i, y \rangle,$$

and thus $\langle x_i, x \rangle \leq h_K(x)$. Since this holds for i = 1, ..., k, we get

$$\max\{\langle x_i, x \rangle : i = 1, \dots, k\} \le h_K(x)$$

for $x \in \mathbb{R}^n$. This finally yields that $h_K = \max\{\langle x_i, \cdot \rangle : i = 1, \dots, k\}$.

Exercises and Supplements for Sect. 2.3

/1.*Let $f: \mathbb{R}^n \to \mathbb{R}$ be positively homogeneous and twice continuously partially differentiable on $\mathbb{R}^n \setminus \{0\}$. Show that there are $K, L \in \mathcal{K}^n$ such that

$$f = h_K - h_L.$$

Hint: Use Exercise 2.2.4 (b).

- 2. Let $K \in \mathcal{K}^n$ with $0 \in \text{int } K$, and let K° be the polar of K (see Exercise 1.1.14). Show that
 - (a) K° is compact and convex with $0 \in \text{int } K^{\circ}$,
 - (b) $K^{\circ\circ} := (K^{\circ})^{\circ} = K$,
 - (c) K is a polytope if and only if K° is a polytope,
 - (d) $h_K = d_{K^{\circ}}$.

3. Let $K \in \mathcal{K}^n$ with $0 \in \text{int } K$. Then the radial function of K is defined by

$$\rho(K, x) := \rho_K(x) := \max\{\lambda \ge 0 : \lambda x \in K\}, \quad x \in \mathbb{R}^n \setminus \{0\}.$$

Show that $\rho(K, x) = h(K^{\circ}, x)^{-1}$ for $x \in \mathbb{R}^n \setminus \{0\}$. See Exercise 1.1.14 for the definition of the polar body K° .

- 4. Let $f: \mathbb{R}^n \to \mathbb{R}$ be sublinear. Then there is a uniquely determined $K \in \mathcal{K}^n$ satisfying $f = h(K, \cdot)$. Prove the existence of K by using Helly's theorem.
- 5.* Let $K \subset \mathbb{R}^n$ be a compact set, and for $k \in \mathbb{N}$ let $f_k : \mathbb{R}^n \to \mathbb{R}$ be a convex function. Assume that for $x \in \mathbb{R}^n$ the limit $f(x) := \lim_{k \to \infty} f_k(x)$ exists. Prove the following assertions.
 - (a) $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function.
 - (b) There is a constant $M \in \mathbb{R}$ such that $|f_k(x)| \leq M$ for $x \in K$ and $k \in \mathbb{N}$.
 - (c) The sequence $(f_k)_{k \in \mathbb{N}}$ converges uniformly on K to f.
- 6. Let $K, L \in \mathcal{K}^n$ and let C > 0 be a constant such that $K, L \subset B^n(0, C)$. Show that
 - (a) h_K is Lipschitz continuous with

$$|h_K(x) - h_K(y)| \le C||x - y||, \quad x, y \in \mathbb{R}^n.$$

(b)

$$|h_K(u) - h_L(v)| \le C||u - v|| + ||h_K - h_L||, \quad u, v \in \mathbb{S}^{n-1},$$

where $||f|| := \sup\{|f(u)| : u \in \mathbb{S}^{n-1}\}\$ for a function $f: \mathbb{S}^{n-1} \to \mathbb{R}$.

7. Let $0 < r \le R < \infty$, $K, L \in \mathcal{K}^n$ with $B^n(0, r) \subset K, L \subset B^n(0, R)$ and $u, v \in \mathbb{S}^{n-1}$. Prove that

$$|\rho(K, u) - \rho(L, v)| \le \frac{R}{r} ||h_K - h_L|| + \frac{R^2}{r} ||u - v||.$$

8. Let $K \in \mathcal{K}^n$ with int $K \neq \emptyset$ and

$$l(K, u) := \sup\{||x - y|| : x, y \in K, x - y \in \mathbb{R}u\}, \quad u \in \mathbb{S}^{n-1}.$$

Prove the following assertions.

- (a) The supremum in the definition of l(K, u) is a maximum. (This is the maximal length of a segment in K having direction u.)
- (b) $l(K, u) = \rho(K K, u)$ for $u \in \mathbb{S}^{n-1}$.
- (c) $\min\{l(K, u) : u \in \mathbb{S}^{n-1}\} = \min\{h(K, u) + h(K, -u) : u \in \mathbb{S}^{n-1}\}.$

9. Determine the support functions of the following convex bodies (cube and cross-polytope).

(a)
$$K_1 := \{(x_1, \dots, x_n)^\top \in \mathbb{R}^n : |x_i| \le r \text{ for } i = 1, \dots, n\}, r \ge 0.$$

(b) $K_2 := \{(x_1, \dots, x_n)^\top \in \mathbb{R}^n : |x_1| + \dots + |x_n| \le r\}, r \ge 0.$

(b)
$$K_2 := \{(x_1, \dots, x_n)^\top \in \mathbb{R}^n : |x_1| + \dots + |x_n| < r\}, r > 0.$$

10. Let $K_1, K_2 \subset \mathbb{R}^n$ be convex bodies. Determine the support function of the convex body

$$conv(K_1 \cup K_2)$$
.

Suppose in addition that $K_1 \cap K_2 \neq \emptyset$. Prove that the function

$$g(u) := \inf\{h(K_1, u_1) + h(K_2, u_2) : u_1 + u_2 = u\}, \quad u \in \mathbb{R}^n,$$

is sublinear. In fact, g is the support function of $K_1 \cap K_2$.

11. Let $f, g : \mathbb{R}^n \to \mathbb{R}$ be convex functions, and let $x \in \mathbb{R}^n$. Show that

$$\partial (f+g)(x) = \partial f(x) + \partial g(x).$$

12. Hints to the literature: Analytic aspects of convexity and convex functions are the subject of [37, 45, 55, 56, 65, 76, 87]. There exists a vast literature on optimization related to convexity. In this respect, we mention only the classical text [89].