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Institut de Mathématiques de Jussieu – Paris Rive Gauche (IMJ-PRG)
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Titre : Théorie de Ramsey sans principe des tiroirs et applications à la preuve de
dichotomies d’espaces de Banach

Résumé : Dans les années 90, Gowers démontre un théorème de type Ramsey pour
les bloc-suites dans les espaces de Banach, afin de prouver deux dichotomies d’espaces de
Banach. Ce théorème, contrairement à la plupart des résultats de type Ramsey en dimen-
sion infinie, ne repose pas sur un principe des tiroirs, et en conséquence, sa formulation
doit faire appel à des jeux. Dans une première partie de cette thèse, nous développons un
formalisme abstrait pour la théorie de Ramsey en dimension infinie avec et sans principe
des tiroirs, et nous démontrons dans celui-ci une version abstraite du théorème de Gow-
ers, duquel on peut déduire à la fois le théorème de Mathias-Silver et celui de Gowers.
On en donne à la fois une version exacte dans les espaces dénombrables, et une version
approximative dans les espaces métriques séparables. On démontre également le principe
de Ramsey adverse, un résultat généralisant à la fois le théorème de Gowers abstrait et
la détermination borélienne des jeux dénombrables. On étudie aussi les limitations de
ces résultats et leurs généralisations possibles sous des hypothèses supplémentaires de
théorie des ensembles.

Dans une seconde partie, nous appliquons les résultats précédents à la preuve de
deux dichotomies d’espaces de Banach. Ces dichotomies ont une forme similaire à celles
de Gowers, mais sont Hilbert-évitantes : elles assurent que le sous-espace obtenu n’est
pas isomorphe à un espace de Hilbert. Ces dichotomies sont une nouvelle étape vers la
résolution d’une question de Ferenczi et Rosendal, demandant si un espace de Banach
séparable non-isomorphe à un espace de Hilbert possède nécessairement un grand nombre
de sous-espaces, à isomorphisme près.

Mots clefs : Logique, Théorie des ensembles, Théorie de Ramsey, Détermination,
Analyse fonctionnelle, Géométrie des espaces de Banach
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Title: Ramsey theory without pigeonhole principle and applications to the proof of
Banach-space dichotomies

Abstract: In the 90’s, Gowers proves a Ramsey-type theorem for block-sequences in
Banach spaces, in order to show two Banach-space dichotomies. Unlike most infinite-
dimensional Ramsey-type results, this theorem does not rely on a pigeonhole principle,
and therefore it has to have a partially game-theoretical formulation. In a first part
of this thesis, we develop an abstract formalism for Ramsey theory with and without
pigeonhole principle, and we prove in it an abstract version of Gowers’ theorem, from
which both Mathias-Silver’s theorem and Gowers’ theorem can be deduced. We give both
an exact version of this theorem in countable spaces, and an approximate version of it
in separable metric spaces. We also prove the adversarial Ramsey principle, a result
generalising both the abstract Gowers’ theorem and Borel determinacy of countable
games. We also study the limitations of these results and their possible generalisations
under additional set-theoretical hypotheses.

In a second part, we apply the latter results to the proof of two Banach-space di-
chotomies. These dichotomies are similar to Gowers’ ones, but are Hilbert-avoiding, that
is, they ensure that the subspace they give is not isomorphic to a Hilbert space. These
dichotomies are a new step towards the solution of a question asked by Ferenczi and
Rosendal, asking whether a separable Banach space non-isomorphic to a Hilbert space
necessarily contains a large number of subspaces, up to isomorphism.

Keywords: Logic, Set theory, Ramsey theory, Determinacy, Functional analysis, Ge-
ometry of Banach spaces
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pu séjourner quelques semaines en août suivant. J’ai apprécié au plus haut point notre
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de logique de l’ENS, que j’ai assuré pendant les trois dernières années. J’ai apprécié leur
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bien sûr de l’organisation et de la préparation du buffet. Merci aux B4ain.e.s pour les
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1ou à la secte, comme l’aurait dit mon père

7
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Courte introduction en français

Pour des raisons pratiques et afin de la rendre accessible à un public plus large, cette
thèse a entièrement été rédigée en anglais. Seule cette courte introduction sera rédigée
en français ; elle présente dans les grandes lignes les principales questions et travaux
qui ont dirigé mes recherches, ainsi que les résultats démontrés. Elle sera suivi d’une
introduction plus longue, en anglais, présentant de façon détaillée les notions nécessaires
à la compréhension de cette thèse et les travaux antérieurs sur lesquels elle s’appuie.

Les résultats présentés dans ce manuscrit prennent leurs racines dans les travaux de
Gowers. Dans les années 90, ce dernier a montré une dichotomie d’espaces de Banach
[24] qui, combinée avec un résultat antérieur dû à Komorowski et Tomczak-Jaegermann
[34], a répondu par la positive à une célèbre question de Banach, le problème de l’espace
homogène. Ce problème était le suivant : `2 est-il le seul espace de Banach, a isomor-
phisme près, qui est isomorphe à tous ses sous-espaces ?

Ce résultat a ouvert plusieurs nouvelles directions de recherche, qui seront étudiées
dans cette thèse. La première est de nature combinatoire et ensembliste. En effet,
la preuve de la dichotomie de Gowers utilise des méthodes mêlant théorie de Ramsey
et théorie des jeux ; plus précisément, cette dichotomie est déduite d’un théorème de
type Ramsey dans les espaces de Banach avec base, fortement inspiré de résultats de
théorie de Ramsey en dimension infinie plus classiques, dont le résultat fondateur est
le théorème de Mathias–Silver [43, 58]. Néanmoins, le théorème de type Ramsey de
Gowers diffère significativement de ces résultats classiques en cela qu’il ne repose pas sur
un principe des tiroirs, contrairement à eux. La conséquence est qu’il est plus faible et
a une formulation faisant intervenir des jeux. D’autre part, le fait qu’il soit énoncé dans
un espace non-dénombrable nécessite une approximation métrique.

Une partie de cette thèse a pour but d’étudier de façon plus systématique la théorie
de Ramsey en dimension infinie sans principe des tiroirs, énoncée à l’aide de jeux, et
de la comparer avec la théorie de Ramsey avec principe des tiroirs. De même qu’un
formalisme abstrait pour la théorie de Ramsey avec principe des tiroirs a été introduit
par Todorčević [61], permettant de déduire le théorème de Mathias–Silver ainsi que
d’autres résultats similaires dans différents contextes, nous introduirons ici un formalisme
abstrait unifiant théorie de Ramsey avec et sans principe des tiroirs, celui des espaces
de Gowers. Ce formalisme est inspiré de la version exacte du théorème de Gowers
donnée par Rosendal dans les espaces vectoriels dénombrables [56], et peut s’appliquer
à divers types de structures dénombrables. En particulier, une version abstraite du
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théorème de Rosendal sera démontrée (théorème II.14). Nous introduirons aussi une
version approximative des espaces de Gowers, permettant de travailler dans des espaces
non-dénombrables avec approximation métrique, et destinée a permettre de prouver
facilement des dichotomies d’espaces de Banach dans la même veine que celle de Gowers.
En particulier, un théorème abstrait généralisant à la fois le théorème de Mathias–Silver
et celui de Gowers sera démontré (théorème III.17).

Un étude plus approfondie des espaces de Gowers et de leurs propriétés combinatoires
sera effectuée. En particulier, on démontrera le principe de Ramsey adverse (théorème
II.4), un résultat conjecturé par Rosendal généralisant à la fois sa version du théorème
de Gowers et la détermination Borélienne des jeux dénombrables. On étudiera aussi les
limitations et les possibles extensions des résultats présentés. La plupart d’entre eux
sont démontrés pour les ensembles boréliens ou analytiques ; on verra sous quelles con-
ditions ces résultats sont optimaux dans ZFC, dans quels cas ils peuvent être étendus à
de plus grandes classes d’ensembles sous des hypothèses supplémentaires de théorie des
ensembles. On étudiera aussi la force métamathématique de ces résultats. Cela fera ap-
parâıtre une grande différence de comportement entre les espaces satisfaisant le principe
des tiroirs et les espaces ne le satisfaisant pas. On peut en particulier citer le résultat
suivant : le principe de Ramsey adverse, lorsqu’énoncé dans un espace sans principe des
tiroirs, a la force de la détermination Borélienne, alors qu’il peut être démontré dans ZC
pour les espaces avec principe des tiroirs.

La seconde direction de recherche ouverte par la preuve de la dichotomie de Gowers
est connue sous le nom de “programme de Gowers”. L’idée est de donner une clas-
sification “faible” mais la plus précise possible des espaces de Banach séparables “a
sous-espace près”. Plus précisément, on veut construire une liste de classes d’espaces de
Banach séparables (généralement appelée liste de Gowers), aussi grande que possible,
satisfaisant les critères suivants :

1. Les classes sont, dans un certain sens, héréditaires (closes par prise de sous-espaces,
ou au moins de bloc-sous-espaces, pour les classes définies par les propriétés des
bases) ;

2. Les classes sont deux à deux disjointes ;

3. Chaque espace possède au moins un sous-espace dans une des classes ;

4. Les classes sont naturelles, dans le sens ou savoir qu’un espace est dans une classe
donne de nombreuses informations sur sa structure.

La dichotomie de Gowers fournit une telle classification en deux classes, la première
étant la classe des espaces avec base inconditionnelle, et la seconde celle des espaces
héréditairement indécomposables, c’est-à dire des espaces ne contenant aucune somme
directe topologique de deux sous-espaces fermés de dimension infinie. Gowers a lui même
démontré, dans le même article [24], une seconde dichotomie, allongeant cette liste à trois
classes, et d’autres dichotomies ont par la suite été démontrées par d’autres auteurs, en
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particulier Ferenczi et Rosendal [19]. La tendance générale de ces dichotomies est de
tracer une frontière entre, d’un côté, les espaces “simples”, ayant un comportement
proche des `p et de c0, et d’un autre côté les espaces “pathologiques”.

La troisième direction de recherche, ouverte plus particulièrement par la solution
du problème de l’espace homogène, est celle de ses possibles extensions. On sait qu’un
espace de Banach séparable non-isomorphe à `2 doit avoir au moins deux sous-espaces,
à isomorphisme près, mais combien peut-il en avoir ? Cette question a été initialement
posée par Gilles Godefroy. Elle s’exprime bien dans le langage de la classification des
relations d’équivalence analytiques sur un espace Polonais : en étudiant la complexité
de la relation d’isomorphisme entre les sous-espaces d’un espace donné (qu’on peut
voir comme une relation d’équivalence analytique sur un espace Polonais), on obtiendra
strictement plus d’informations qu’en étudiant uniquement le nombre de classes. Dans
cet esprit, Ferenczi et Rosendal ont conjecturé que pour un espace de Banach séparableX
non-isomorphe à `2, la relation d’équivalence E0 devait être réductible à l’isomorphisme
entre les sous-espaces de X (un espace satisfaisant cette dernière propriété sera appelé
un espace ergodique). En particulier, le nombre de classes d’isomorphisme devrait avoir
la puissance du continu. Une conjecture plus faible, émise par Johnson, est la suivante :
il n’existe pas d’espace de Banach séparable possédant exactement deux sous-espaces, à
isomorphisme près. Ces deux problèmes sont encore largement ouverts à l’heure actuelle.

Ces deux dernières directions de recherche s’avèrent être liées, et seront étudiées
dans le dernier chapitre de ce manuscrit. On étudiera la conjecture de Ferenczi et
Rosendal, ainsi que celle de Johnson, et en particulier la question de savoir si on peut,
pour démontrer ces conjectures, se ramener au cas d’espaces ayant une base incondition-
nelle. Plus précisément, on s’intéressera aux conjectures suivantes :

(1) Tout espace de Banach séparable non-ergodique, non isomorphe à `2, possède un
sous-espace non-isomorphe à `2 ayant une base inconditionnelle.

(2) Tout espace de Banach séparable possédant exactement deux sous-espaces à isomor-
phisme près, doit posséder une base inconditionnelle.

On ne démontrera pas ces conjectures, mais on parviendra à les réduire à
des problèmes semblant plus abordables. Leur énoncé fait appel à une nouvelle
classe d’espaces introduite dans ce manuscrit, les espaces héréditairement Hilbert-
primaires (HHP), qu’on peut voir comme une généralisation des espaces héréditairement
indécomposables ou bien comme une variante des espaces primaires. Un espace X sera
dit HHP s’il ne contient aucune somme directe topologique de deux sous-espaces fermés,
de dimension infinie, et non-isomorphes à `2. Les résultats suivants seront démontrés :

• Pour montrer la conjecture (1), il suffit de montrer que tout espace HHP non-
isomorphe à `2 possède un sous-espace non-isomorphe à `2 dans lequel il ne peut
pas se plonger ;

• Pour montrer la conjecture (2), il suffit de montrer qu’un espace HHP non-
isomorphe à `2 possède au moins trois sous-espaces deux-à-deux non-isomorphes.
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Ces résultats semblent plausibles, car ils sont proches du résultat dû a Gowers et
Maurey affirmant qu’un espace héréditairement indécomposable n’est isomorphe à aucun
de ses sous-espaces propres. On donnera d’ailleurs à la fin de ce manuscrit une nouvelle
preuve du théorème de Gowers et Maurey, basée uniquement sur la théorie de Fredholm,
et qui pourrait être un point de départ pour montrer qu’un espace HHP non-isomorphe
à `2 possède suffisamment de sous-espaces deux-à-deux non-isomorphes.

Les deux résultats précédents sont conséquences de deux dichotomies d’espaces de
Banach qui seront démontrées dans le chapitre IV de cette thèse. Ces dichotomies sont
dans l’esprit du programme de Gowers, mis à part qu’elle sont Hilbert-évitantes, c’est-à-
dire qu’on assure que le sous-espace qu’elles produisent sera non-isomorphe à `2. Avoir
de telles dichotomies est très utile lorsqu’on s’attaque à la question du nombre de sous-
espaces, car lorsqu’on utilise les dichotomies traditionnelles, rien n’assure que le sous-
espace produit ne sera pas isomorphe à `2, même si l’espace de départ est très complexe.
La première dichotomie (théorème IV.12) est une variante `2-évitante de la première
dichotomie de Gowers et la seconde est une variante `2-évitante d’une dichotomie dûe
à Ferenczi et Rosendal [19]. On peut les voir comme les premières pierres d’une liste
de Gowers pour les espaces non-isomorphes à `2. Ces dichotomies sont prouvées en
utilisant les résultats de type Ramsey abstraits démontrés dans les chapitres II et III de
cette thèse, en particulier le théorème de Gowers abstrait (théorème III.17) ainsi que le
principe de Ramsey adverse (théorème II.4).
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Notations and conventions 15

I Introduction and history 17
I.1 Determinacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
I.2 Infinite-dimensional Ramsey theory . . . . . . . . . . . . . . . . . . . . . . 20
I.3 Gowers’ Ramsey-type theorem in Banach spaces and adversarial Gowers’

games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
I.4 Banach-spaces dichotomies and complexity of the

isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
I.5 Organisation of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

II Ramsey theory with and without pigeonhole principle 37
II.1 Gowers spaces and the aversarial Ramsey

property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
II.2 Strategically Ramsey sets and the pigeonhole principle . . . . . . . . . . . 47
II.3 The strength of the adversarial Ramsey principle . . . . . . . . . . . . . . 54
II.4 Closure properties and limitations for strategically Ramsey sets . . . . . . 57
II.5 The adversarial Ramsey property under large cardinal assumptions . . . . 66

IIIRamsey theory in uncountable spaces 73
III.1 A counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
III.2 Approximate Gowers spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 75
III.3 Eliminating the asymptotic game . . . . . . . . . . . . . . . . . . . . . . . 83

IV Hilbert-avoiding dichotomies and ergodicity 89
IV.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
IV.2 The first dichotomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
IV.3 The second dichotomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
IV.4 Links with ergodicity and Johnson’s problem . . . . . . . . . . . . . . . . 109
IV.5 A simple proof of Gowers–Maurey’s theorem . . . . . . . . . . . . . . . . 115

Bibliography 119

13



14



Notations and conventions

Following the tradition in set theory, the set of nonnegative integers will be denoted by ω.
An integer n P ω will usually be viewed as the set of its predecessors, n � t0, 1, . . . , n�1u.
Given two nonempty subsets A,B � ω, we will say that A   B if @i P A @j P B i   j.
Given n P ω and a nonempty A � ω, we say that n   A if @i P A n   i.

If X and Y are two sets, XY will denote the set of mappings from Y to X. In
particular, Xω is the set of infinite sequences of elements of X, and for n P ω, Xn is
the set of n-uples of elements of X. We will denote by X ω � �nPωX

n the set of finite
sequences of elements of X, and X¤ω � X ω YXω. We denote by SeqpXq � X ωzt∅u
the set of finite sequences of elements of X having at least one term. Given s, t P X¤ω,
we let s � t if s is an initial segment of t; this is, actually, the usual set-theoretical
inclusion. If s P X¤ω, we denote by |s| the length of s, i.e. the unique ordinal α (ω
or an integer) such that s P Xα. For s P X ω and t P X¤ω, we denote by s " t the
concatenation of s and t; for instance, if s � ps0, . . . , sm�1q and t � pt0, . . . , tn�1q, then
s " t � ps0, . . . , sm�1, t0, . . . , tn�1q. If f P XY and Z � Y , we will denote by fæZ P XZ

the restriction of f to Z; in particular, if s P X¤ω and n ¤ |s|, sæn will denote the
sequence of the n first terms of s (unless otherwise specified, because for convenience of
notation, we will sometimes derogate to this rule).

A tree on a set X is a set T � X ω such that for every s, t P Xω, if s � t and t P T ,
then s P T . An element of a tree is usually called a node, and a terminal node of T is an
s P T that is maximal in T for the inclusion. A pruned tree is a tree without terminal
nodes. An infinite branch of the tree T is an x P Xω such that for every n P ω, we have
xæn P T ; the set of infinite branches of T is denoted by rT s.

We will denote by c the cardinality of the continuum, 2ℵ0 .

If X is a topological space we define by induction, for n P ω, the sets Σ1
npXq and

Π1
npXq of subsets of X in the following way:

• Σ1
0pXq is the set of open subsets of X;

• Π1
npXq is the set of A � X such that Ac P Σ1

npXq;
• Σ1

n�1pXq is the set of A � X that are the first projection of a set B P Π1
npX�ωωq.

We also let ∆1
npXq � Σ1

npXqXΠ1
npXq. In particular, if X is Polish, then Σ1

npXq, Π1
npXq

and ∆1
npXq are respectively the set of analytic, coanalytic, and Borel subsets of X. As

in Polish spaces, we call
�
nPω Σ1

npXq the class of projective subsets of X.
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We say that a class Γ of subsets of Polish spaces is suitable if it contains the class of
Borel sets and is stable under finite unions, finite intersections and Borel inverse images.
For such a class, let DΓ be the class of projections of Γ-sets; in other words, for A a subset
of a Polish space X, we say that A P DΓ if and only if there exist B P X � 2ω such that
B P Γ and A is the first projection of B (we could have taken any uncountable Polish
space instead of 2ω in this definition, since Γ is closed under Borel inverse images). The
class DΓ is itself suitable.

In this thesis, we will call Banach space an infinite-dimensional complete normed
vector space. Unless otherwise specified, all Banach spaces will be over R; however, most
of the time, the results we present apply as well to complex spaces. Unless otherwise
specified, we will call a subspace of a Banach space E an infinite-dimensional, closed
vector subspace of E. The unit sphere of E will be denoted by SE . Usually, the norm
on a Banach space will be denoted by } � }. If E and F are Banach spaces, we will equip,
unless otherwise specified, the space LpE,F q of bounded operators from E to F , and
the space E� of continuous linear forms on E, with the operator norm, that will usually
be denoted by ~ � ~. When we refer to topological notions about Banach spaces without
further explanation, these notion are always considered in respect to the norm topology.

An isomorphism between two Banach spaces E and F is a bijective bounded op-
erator T : E ÝÑ F whose inverse is bounded. Such an isomrphism is said to be a
C-isomorphism, where C ¥ 1, if ~T~ � ~T�1~ ¤ C. If ~T~ � ~T�1~ � 1, we say that
T is an isometry. An embedding (resp. a C-embedding) of E into F is an isomorphism
(resp. a C-isomorphism) between E and a subspace of F . If there exists an embedding
(resp. a C-embedding) of E into F , we say that E embeds (resp. C-embeds) into F ,
and this is denoted by E � F (resp. E �C F ). Given two finite-dimensional vector
spaces E and F with the same dimension, we denote by dBM pE,F q the Banach-Mazur
distance between E and F , i.e. the infimum of the nuumbers logp~T~ � ~T�1~q, where
T : E ÝÑ F is an isomorphism. Sometimes, we will also use this notation for infinite-
dimensional spaces, and in the case where E and F are not isomorphic, we will say that
dBM pE,F q � 8. Two spaces are isometric if and only if the Banach-Mazur distance
between them is 0.

If X is a compact Hausdorff space, CpXq will denote the space of continuous functions
X ÝÑ R with the sup norm } � }8.
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Chapter I

Introduction and history

The results presented in this thesis have their roots in the work of Gowers. In the 90’s, he
proved a Banach-space dichotomy [24] which, combined with a result by Komorowski and
Tomczak-Jaegermann [34] gave a positive answer to a celebrated question by Banach.
This question, known as the homogeneous space problem, asked whether `2 was the only
Banach space, up to isomorphism, that was isomorphic to all of its subspaces.

His proof opened several new research directions. The first one is combinatorial
and set-theoretical. The methods used in the proof of Gowers’ dichotomy are much
more combinatorial than analytical. The proof indeed relies on a Ramsey-type result
in Banach spaces, inspired by Mathias’ [43] and Silver’s [58] infinite-dimensional version
of Ramsey’s theorem. However, this Ramsey-type result is slightly different from most
infinite-dimensional Ramsey results, since it has a partially game-theoretic formulation.
This led several authors, for instance Bagaria and López-Abad [7, 8] or Rosendal [56,
57] to study this result in more details, its possible extensions, and its links with the
determinacy of games.

The second research direction opened by Gower’s work is known as Gowers’ program.
The idea is to give a “loose” classification of Banach spaces “up to subspaces”, i.e. to give
a list of natural classes of Banach spaces that are pairwise disjoints and such that every
space has a subspace in one of the classes. This could be done by proving other Banach-
spaces dichotomies by the same Ramsey-theoretic methods. This work has been initiated
by Gowers in [24], and continued by several authors and in particular by Ferenczi and
Rosendal in [19].

The third research direction comes from a question by Godefroy. He asked how
many subspaces could have, up to isomorphism, a Banach space non-isomorphic to `2.
This question, that can be asked more precisely in the formalism of the classification of
analytic equivalence relations on standard Borel spaces, led to several partial results, for
example [14, 17, 4, 11].

In this manuscript, we will mostly investigate the first and the third direction, that
turn out to be widely linked. We start by introducing more precisely these results and
their history, before presenting the organisation of this manuscript.
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I.1 Determinacy

Determinacy is not the central subject of this thesis, however, since statements based on
determinacy are often taken as axioms in set theory and have consequences on several
results that will be presented in this manuscript, it is worth to start by introducing it.
Determinacy is the study of the existence of winning strategies in two-player games with
perfect information. Here, we will restrict our attention to games with length ω. Such
a game will be represented by a set X (the set of possible moves), by a nonempty tree
T � X ω without terminal nodes (the rule), and by a set X � rT s (the target set). Two
players, denoted by I and II, choose alternately an element xi P X:

I x0 x2 . . .
II x1 x3 . . .

and they have to preserve the following property: for every i P ω, px0, . . . xiq P T . Player
I wins if pxiqiPω P X , and otherwise, player II wins. This game will be denoted by
GpT,X q.

A winning strategy for a player is a strategy that enables him or her to win whatever
the other player plays. Formally, a strategy for player I is a function τ that associate to
every s P T with even length an x P X such that s"x P T . Saying that I plays according
to the strategy τ means that, if the current state of the game is the following:

I x0 . . . x2i�2

II x1 . . . x2i�1
,

then I plays x2i � τpx0, x1, . . . , x2i�2, x2i�1q. We say that this strategy is win-
ning when for every sequence pxiqiPω P rT s, if for every i P ω we have
x2i � τpx0, x1, . . . , x2i�2, x2i�1q, then pxiqiPω P X . We define in the same way the
notion of a strategy, and of a winning strategy, for player II.

It will also often be convenient to define games without specifying a target set. Such
games are defined with an outcome, which is a function of the sequence of moves of the
players during the game (most of the time, it will be a subsequence of the sequence of
moves). Formally, an outcome is a mapping F from rT s to some set Y ; if the sequence of
moves during the game is pxiqiPω P rT s, then the outcome of the game will be F ppxiqiPωq.
The game whose rule is a tree T and whose outcome is a function F will be denoted
by GpT, F q, or simply by GpT q if F is the identity. For games that are defined with an
outcome rather than a target set, we will not speak about winning strategies but rather
about strategies to reach some sets. For example, if Y � Y , we will say that player I
has a strategy in the game GpT, F q to reach Y if he has a strategy to ensures that the
outcome of the game will be in the set Y; formally, such a strategy will be a winning
strategy in the game GpT, F�1pYqq.

We say that the game GpT,X q is determined if one of the players has a winning
strategy in this game. When there is no ambiguity on the tree T , we will also say that
the set X � rT s is determined. In many cases we will study, the tree T will be the whole
X ω; when we say, without further explanation, that a set X � Xω is determined, it
will always be understood that the underlying tree is X ω. A game whose rule tree is
X ω will be called a game on X.
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Not all games are determined: we can easily build counterexamples using the axiom of
choice (see [47], exercise 6A.6 for a construction of a subset of 2ω that is not determined;
this easily implies that such sets also exist in Xω for every set X with cardinality greater
that 2). It is then natural to look for positive results under topological restrictions. Here,
we will endow X with the discrete topology, and rT s with the topology induced by the
product topology on Xω.

Gale and Stewart [21] proved that every closed game (i.e., a game with a closed
target set) is determined. It was then extended by Wolfe [62] to Σ0

2 games, by Davis [12]
to Σ0

3 games, and finally, Martin proved in 1975 that every Borel game is determined
[39] (a proof can also be found in [32], theorem 20.5). Martin’s result is optimal in ZFC:
in ZFC � V � L, it is possible to build Σ1

1 subsets of ωω that are not determined (see
[47], exercise 6A.12).

In this manuscript, for Γ a class of subsets of Polish spaces, we will denote by DetωpΓq
the assumption “every Γ-subset of ωω is determined”. This implies that every Γ-game
whose rule is an at most countable tree is determined, as soon as Γ is suitable. We
will also denote by DetRpΓq the statement “when R is endowed with its usual Polish
topology, and Rω with the product topology, every Γ-subset of Rω is determined”. Here,
we consider the Polish topology on R and not the discrete one, since it will be enough
to prove the results we want.

Determinacy has strong links with set theory. The first remark is that, while Gale
and Stewart’s, Wolfe’s and Davis’ results can be proved in second-order arithmetic (so
in particular, in the theory ZC), Martin’s proof of Borel determinacy uses a much larger
fragment of ZFC. In fact, Friedman proved [20] that any proof of Borel determinacy
should make use of the replacement scheme and of the powerset axiom. Many deter-
minacy statements have also been shown equiconsistent with large cardinal hypotheses.
Martin [38] proved in 1970 that, if there exists a measurable cardinal κ, then every ana-
lytic game on a set X with cardinality strictly lower that κ was determined. Harrigton
[26] showed then that DetωpΣ1

1q was equivalent to a slightly weaker hypothesis than
the existence of a measurable cardinal, the existence of x# for every real x. Then, the
works of Martin and Steel [41, 42] and of Woodin [63] (see also [42] and [50] for proofs
of unpublished results by Woodin) led to proofs of the statements DetωpΣ1

nq (for n ¥ 2)
and “every subset of ωω in LpRq is determined” assuming large cardinal axioms, based
on the notion of Woodin cardinals. Later works by Woodin (see [48, 33]) showed the last
statements to be equiconsistent with statements involving large cardinals. Martin, Steel
and Woodin’s work show, in particular, that assuming the consistency of some large
cardinal axioms, the following theories are consistant:

• ZFC � PD, where PD is the axiom of projective determinacy, i.e. the statement
@n P ω DetωpΣ1

nq;
• ZF �DC�AD, where AD is the axiom of determinacy, i.e. the statement “every

subset of ωω is determined”.
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The axioms PD and AD have many interesting consequences on the structure of sets
of reals, and hence they are widely studied. Of course AD is incompatible with ZFC.
Some stronger theories are often also considered, for example:

• ZFC � PDR, where PDR is the statement @n P ω DetRpΣ1
nq;

• ZF �DC�ADR, where ADR is the statement “every subset of Rω is determined”.

I.2 Infinite-dimensional Ramsey theory

The fundamental result in Ramsey theory is Ramsey’s theorem [54]:

Theorem I.1. Let d P ω. For every colouring of rωsd with a finite number of colors,
there exists an infinite M � ω such that rM sd is monochromatic.

The set M is usually said to be homogeneous for this colouring, and the integer d
is called the dimension of the Ramsey result. Ramsey initially proved his theorem as a
lemma in a logic article, however it later found applications in many other fields. Many
generalizations, or variants of this theorem in other contexts, were also proved, forming
a field that we now call Ramsey theory. An interesting way to generalize this result
is to look at what happens when the number d is infinite (this number d is called the
dimension of the Ramsey result). We call this direction of research infinite-dimensional
Ramsey theory. We restrict our attention to colourings with two colors, since it is more
convenient and since extensions to an arbitrary finite number of colors are easily deduced
by induction. A colouring with two colors, blue and red, can be viewed as a set X , the
set of blue sets for this colouring. It is thus natural to give the following definition.

Definition I.2. A set X � rωsω is Ramsey if for every infinite M � ω, there exists an
infinite N �M such that either rN sω � X , or rN sω � X c.

Basing ourselve on Ramsey’s theorem, it would be natural to conjecture that every
subset of rωsω is Ramsey. However, it is easy to build a counterexample, using the axiom
of choice (see for example [32], II.19.C., for a construction by a diagonal argument). It is
then natural to look for positive results when we put topological restrictions on the set
X . Here, we equip rωsω with the topology inherited from the Cantor space Ppωq � 2ω

with the product topology. Alternately, we can see this topology as inherited from the
product topology on ωω, when we see rωsω as a subset of ωω by identifying an infinite set
of integer with its increasing enumeration. Basing themselve on previous works by Nash-
Williams [49] and Galvin and Prikry [22], Mathias [43] and Silver [58] finally proved the
following result:

Theorem I.3 (Mathias–Silver). Every analytic subset of rωsω is Ramsey.
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Other results about Ramsey sets were proved next. Ellentuck [13] gave a topological
characterisation of subsets of rωsω that are, in some sense, Ramsey “at every scale”; this
characterisation is based on a toplogy on rωsω that is finer than the usual topology. If
V � L, it is not hard to build a Σ1

2-subset of rωsω that is not Ramsey (this is folklore;
a more general result will be proved in section II.4 of this manuscript). In particular,
Mathias–Silver’s result is optimal in ZFC. Results were also proved under stronger set-
theoretical assumptions. Mathias [43] proved, assuming the consistency of large cardinal
hypotheses, the consistency of the theory ZF �DC� “every subset of rωsω is Ramsey”.
Silver [58] proved that if there exists a measurable cardinal, then every Σ1

2-subset of
rωsω is Ramsey. Harrington and Kechris [27], and independently Woodin [64] proved
that under PD, every projective subset of rωsω is Ramsey. Martin and Steel [40] proved
a result implying that if AD holds in LpRq, then in LpRq, every subset of rωsω is Ramsey.
In particular, this implies that under a strong enough large cardinal assumption, every
subset of rωsω that is in LpRq is Ramsey. These last results are not directly obtained by
the determinacy of some game, but are proved using heavy set-theoretical machinery.

Kastanas [31] defined for the first time in 1983 a game that is directly related to the
Ramsey property. Tanaka [60] gave then an unfolded version of Kastanas’ game and
used it to give a new proof of Mathias–Silver’s theorem, based on the determinacy of
Σ0

2-sets. Since Kastanas’ game will play a central role in the proof of a result of this
thesis, we will here recall its definition. Given an infinite set of integers M , Kastanas’
game below M , denoted by KM , is defined as follows:

I M0 M1 . . .

II n0, N0 n1, N1 . . .

where the Mi’s and the Ni’s are elements of rωsω, and the ni’s are elements of ω. The
rules are the following:

• for I: M0 �M , and for all i P ω, Mi�1 � Ni;

• for II: for all i P ω, ni PMi, Ni �Mi, and ni   Ni.

The outcome of the game is the set tn0, n1, . . .u P rωsω.

Remark that this game is a game on reals: the players play elements of rωsω (or
of ω � rωsω for player II) that can be viewed as real numbers. The result proved by
Kastanas is the following:

Theorem I.4 (Kastanas). Let X � rωsω and M � ω be infinite.

1. If player I has a strategy in KM to reach X c, then there exists an infinite N �M
such that rN sω � X c.

2. If player II has a strategy in KM to reach X , then there exists an infinite N �M
such that rN sω � X .
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In particular, this theorem, combined with Borel determinacy of games on reals, show
that every Borel subset of rωsω is Ramsey. Tanaka actually proved that it was possible
to deduce the Ramsey property for analytic subsets of rωsω from the determinacy of
an unfolded version of Kastanas’ game with a Σ0

2 target set, and the Ramsey property
for Σ1

2-subsets of rωsω from the determinacy of the same game with an analytic target
set. In particular, Tanaka’s method enables to recover Mathias-Silver’s theorem, and
Silver’s result that under the existence of a measurable cardinal, every Σ1

2-subset of rωsω
is Ramsey. However, it does not enable to recover results about the Ramsey property
under PD or under AD in LpRq, since Kastanas’ game is not a game on integers. And
it is still not known today whether in ZF �DC �AD, every subset of rωsω is Ramsey.

An important remark is that in Tanaka’s proof of Mathias–Silver’s theorem, the
sets M and N are often seen as subspaces, i.e. elements of a poset (in the game KM ,
players play subsets of ω that are smaller and smaller), while an element of rN sω is
rather seen as an infinite sequence, the increasing sequence of its elements (this se-
quence being a subsequence of the sequence of moves of the players). This distinc-
tion between sets seen as subspaces and sets seen as sequences of points also appear
in more classical proofs of Mathias–Silver’s theorem and is actually central in infinite-
dimensional Ramsey theory. In the decades that followed the proof of Mathias–Silver’s
theorem, several similar results arose in different contexts (words, trees, etc.), constitu-
ing what we call now infinite-dimensional Ramsey theory. All of these have the same
form: we color infinite sequences of points satisfying some structural condition (being
increasing, being block-sequences, etc.) and the theorem ensures that we can find a
monochromatic subspace. To illustrate this, we give here another example due to Mil-
liken. Let K be a field, and E be a countably-infinite dimensional vector space over
K with a basis peiqiPω. If x � °

iPω x
iei P E, we define the support of x as the set

supppxq � ti P ω | xi � 0u. A block-sequence is an infinite sequence pxiqiPω of nonzero
vectors of E such that supppx0q   supppx1q   . . .. A block-subspace of E is a vector
subspace of E spanned by a block-sequence. Remark that, since every vector of E has
finite support, every infinite-dimensional subspace of E contains a block subspace. We
can endow E with the discrete topology and Eω with the product topology. Miliken’s
result is the following:

Theorem I.5 (Milliken). Suppose that E is a countably-infinite dimensional vector space
over K � F2, with a basis. Let X be an analytic set of block-sequences of E. Then for
every block-subspace X � E, there exists a block-subspace Y � X such that:

• either every block-sequence in Y belongs to X ;

• or every block-sequence in Y belongs to X c.

This theorem is usually formulated in terms of finite subsets of ω rather that vector
spaces over F2, however we chose here this formulation because a link with other results
presented in this manuscript will appear more clearly. For a proof, see [61], corollary
5.23.
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It turns out that the proofs of all results in infinite-dimensional Ramsey theory use
in an essential way what we call a pigeonhole principle. A pigeonhole principle is, in
general, a one-dimensional Ramsey result, ensuring that for a colouring of points of
some space with a finite number of colors (or equivalently, two colors), there exists a
monochromatic subspace. The pigeonhole principle associated to an infinite-dimensional
Ramsey theorem is the result we get if we restrict this theorem to colorations of sequences
that only depend on the first term of the sequence. For instance, the pigeonhole principle
associated to Mathias–Silver’s theorem is the trivial fact that for every infinite M � ω
and every A � ω, there exists an infinite N � M such that either N � A, or N � Ac.
The pigeonhole principle associated to Milliken’s theorem, however, is not trivial at all;
it is the following result by Hindman (see [61], theorem 2.25):

Theorem I.6 (Hindman). Suppose that E is a countably-infinite dimensional vector
space over K � F2, with a basis. Then for every colouring of the nonzero vectors of
E with a finite number of colors, and for every block-subspace X � E, there exists a
block-subspace Y � X such that Y zt0u is monochromatic.

Many examples of infinite-dimensional Ramsey theorems, and of their associated
pigeonhole principles, can be found in Todorčević book [61], where a general framework
to deduce an infinite dimensional Ramsey result from its associated pigeonhole principle
is also developped.

I.3 Gowers’ Ramsey-type theorem in Banach spaces and
adversarial Gowers’ games

The first infinite-dimensional Ramsey-type result that was not relying on a pigeonhole
principle was proved by Gowers, in the 90’s. The aim of Gowers was to solve a cele-
brated problem asked by Banach, the homogeneous space problem, asking whether `2
was the only infinite-dimensional Banach space, up to isomorphism, that was isomorphic
to all of its closed, infinite-dimensional subspaces. Gowers proved a dichotomy [24] that,
combined with a result by Komorowski and Tomczak-Jaegermann [34], provided a posi-
tive answer to Banach’s question. The proof of this dichotomy relies on a Ramsey-type
theorem in separable Banach spaces, that we will state now. We start by recalling some
basic notions about bases in Banach spaces; these notions will be central in all of this
manuscript. For proofs and more details, see [2].

Let E be a Banach space. A Schauder basis of E is a sequence peiqiPω P Eω such
that every x P E can be written in a unique way as an infinite sum

°8
i�0 x

iei, where
xi P R. In this manuscript, we will only consider normalized Schauder bases: we will
add to the definition that vectors of a Schauder basis must have norm 1 (this restriction
is not usual, but here, it will make things simpler). A Schauder basis is not a basis in the
algebraic sense, however algebraic bases (that are often called Hamel bases) do not have
much interest in the study of Banach spaces, so when speaking about a Banach space, in
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this manuscript, Schauder bases will often be simply called bases. Given a basis peiq of
a Banach space E, we can define , for every n, a projection Pn : E ÝÑ spantei | i   nu
by Pn

�°8
i�0 x

iei
� � °i n x

iei. It can be shown that all these projections are bounded
and that C :� supnPω ~Pn~   8. This constant C is called the basis constant of peiq.

A normalized sequence pxiqiPω P Eω that is a basis of the closed subspace of E it
spans is called a basic sequence. It can be shown that a normalized sequence pxiqiPω P Eω
is a basic sequence if and only if there exists a constant C such that for every integers
m ¤ n and for every paiqi n P Rn, we have }°i m aixi} ¤ }

°
i n aixi}; in this case, the

basis constant of pxiq is the least such C. A classical result asserts that every Banach
space contains a basic sequence, and that moreover, the constant of this basic sequence
can be choosen as close as 1 as we want.

If E is a Banach space with a basis peiq, we define the support of a vector
x � °8

i�0 x
iei, denoted by supppxq, as the set ti P ω | xi � 0u. A block-sequence of peiq is

an infinite normalized sequence pxnqnPω of vectors of E with supppx0q   supppx1q   . . ..
A consequence of the previous characterisation of basic sequences is that a block-sequence
of peiq is a basic sequence with constant not greather than the constant of peiq. A closed
subspace of E generated by a block-sequence is called a block-subspace.

For X a block-subspace of E, we denote by rXs the set of block-sequences all of whose
terms are in X (if pxnq is a block-sequence generating X, then these sequences are exactly
the block-sequences of pxnq). We can equip rEs with a natural topology by seeing it as a
subspace of pSEqω with the product topology (where SE is endowed with the norm topol-
ogy), which makes it a Polish space. For X � rEs and ∆ � p∆nqnPω a sequence of positive
real numbers, we let pX q∆ � tpxnqnPω P rEs | DpynqnPω P X @n P ω }xn � yn} ¤ ∆nu,
a set called the ∆-expansion of X . In order to state Gowers’ theorem, we need a last
definition.

Definition I.7. Let X be a block-subspace of E. Gowers’ game below X, denoted by
GX , is the following infinite two-players game (whose players will be denoted by I and
II):

I Y0 Y1 . . .
II y0 y1 . . .

where the Yi’s are block-subspaces of X, and the yi’s are normalized elements of
E with finite support, with the constraints for II that for all i P ω, yi P Yi and
supppyiq   supppyi�1q. The outcome of the game is the sequence pyiqiPω P rEs.

Remark that saying that player II has a strategy in GX to reach X means, in a
certain way, that “a lot” of block sequences of X belong to X . We can now state
Gowers’ theorem:

Theorem I.8 (Gowers’ Ramsey-type theorem). Let X � rEs be an analytic set, X � E
a block-subspace, and ∆ be an infinite sequence of positive real numbers. Then there
exists a block-subspace Y of X such that either rY s � X c, or player II has a strategy in
GY to reach pX q∆.
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While one of the possible conclusions of this theorem, rXs � X c, is very similar to
“For every infinite S � M , we have S P X c” in Mathias–Silver’s theorem, the other
one is much weaker, for two reasons: the use of metrical approximation and the use
of a game. As we will see later, the necessity of the approximation is due to a lack
of finiteness, while the necessity for one of the possible conclusions to involve a game
matters much more and is due to the lack of a pigeonhole principle in this context. In
some Banach spaces, a pigeonhole principle holds, and in these spaces, Gowers gave
a strengthening of his theorem, involving no game, that we will introduce now. We
start by stating the general form of the pigeonhole principle that we will use in Banach
spaces; since an exact pigeonhole principle is never satisfied in this context, and would
anyways be useless since approximation is needed for other reasons, we will only state
an approximate pigeonhole principle. For a Banach space E, a set A � SE , and δ ¡ 0,
we let pAqδ � tx P SE | Dy P A }x� y} ¤ δu.
Definition I.9. Say that a Banach space E with a Schauder basis satisfies the approx-
imate pigeonhole principle if for every A � SE , for every block-subspace X � E, and
for every δ ¡ 0, there exists a block-subspace Y � X such that either SY � Ac, or
SY � pAqδ.

Recall that an infinite-dimensional Banach space E is said to be c0-saturated if c0 can
be embedded in all of its infinite-dimensional, closed subspaces. A combination of results
of Gowers [23], Odell and Schlumprecht [51], and Milman [46] shows the following:

Theorem I.10. A space E with a Schauder basis satisfies the approximate pigeonhole
principle if an only if it is c0-saturated.

Thus, in c0-saturated spaces, we have a strengthening of Gowers’ theorem:

Theorem I.11 (Gowers’ Ramsey-type theorem for c0). Suppose that E is c0-saturated.
Let X � rEs be an analytic set, X � E be a block-subspace, and ∆ be an infinite
sequence of positive real numbers. Then there exists a block-subspace Y of X such that
either rY s � X c, or rY s � pX q∆.

For a complete survey of Gowers’ Ramsey-type theory in Banach spaces, see [6], part
B, chapter IV.

In 2010, in [56], Rosendal proves an exact version (without approximation) of Gowers’
theorem, in countable vector spaces, which easily implies Gowers’ theorem in Banach
spaces. In this theorem, to be able to remove the approximation, we have to weaken
the non-game-theoretical conclusion by introducing a new game, the asymptotic game.
We present here Rosendal’s theorem in more details. Let E be a countably infinite-
dimensional vector space over an at most countable field K and peiqiPω be a basis (in
the algebraic sense) of E. To a block-subspace X � E, we associate two games defined
as follows:
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Definition I.12.

1. Gowers’ game below X, denoted by GX , is defined in the following way:

I Y0 Y1 . . .
II y0 y1 . . .

where the Yi’s are block-subspaces of X, and the yi’s are nonzero elements of E,
with the constraint for II that for all i P ω, yi P Yi. The outcome of the game is
the sequence pyiqiPω P Eω.

2. The asymptotic game below X, denoted by FX , is defined in the same way as GX ,
except that this time, the Yi’s are moreover required to have finite codimension in
X.

We endow E with the discrete topology and Eω with the product topology; since E
is countabe, Eω is a Polish space. Rosendal’s theorem is then the following:

Theorem I.13 (Rosendal). Let X be an analytic subset of Eω. Then for every block-
subspace X � E, there exists a block-subspace Y � X such that either I has a strategy
in FY to reach X c, or II has a strategy in GY to reach X .

We say that a set X � Eω is strategically Ramsey if it satisfies the conclusion of this
theorem. Remark that if K � F2, then this theorem is implied by Milliken’s theorem
I.5. However, the immediate generalization of Milliken’s theorem is false for fields with
more than two elements, in particular (but not only) because the associated pigeonhole
principle (i.e. the immediate generalization of Hindman’s theorem I.6) is not true for
these fields. In general, for vector spaces over an at most countable field, we cannot
have a better result than theorem I.13. However, here, the use of an asymptotic game in
one side of the alternative is not much weaker than a non-game-theoretical conclusion
as in Milliken’s theorem. This will be discussed in more details in section II.2 of this
manuscript.

In the same paper as the last theorem, Rosendal, inspired by the work of Pelczar [52],
and by a common work with Ferenczi [19], introduced a new Ramsey principle which
is, unlike theorem I.13, symmetrical. His result was then refined in [57]. It involves two
games, known as the adversarial Gowers’ games, obtained by mixing the games GX and
FX .

Definition I.14.

1. For a block-subspace X � E, the game AX is defined in the following way:

I x0, Y0 x1, Y1 . . .
II X0 y0, X1 y1, X2 . . .

where the xi’s and the yi’s are nonzero vectors of X, the Xi’s are block-subspaces
of X, and the Yi’s are block-subspaces of X with finite codimension. The rules are
the following:
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• for I: for all i P ω, xi P Xi;

• for II: for all i P ω, yi P Yi;

and the outcome of the game is the sequence px0, y0, x1, y1, . . .q P Eω.

2. The game BX is defined in the same way as AX , except that this time the Xi’s
are required to have finite codimension in X, whereas the Yi’s can be arbitrary
block-subspaces of X.

The result Rosendal proves in [57] is the following:

Theorem I.15 (Rosendal). Let X � Eω be Σ0
3 or Π0

3. Then for every block-subspace
X � E, there exists a block-subspace Y � X such that either I has a strategy in AY to
reach X , or II has a strategy in BY to reach X c.

Let us say that a set X � Eω is adversarially Ramsey if it satisfies the conclusion of
this theorem. Then, a natural question to ask is for which complexity of the set X one
can ensure that it is adversarially Ramsey.

There are two things to remark. Firstly, let X � Eω and define
X 1 � tpxiqiPω P Eω | px2iqiPω P X u. Then by forgetting the contribution of player
II to the outcome of the adversarial Gowers’ games and switching the roles of players
I and II, we see that X is strategically Ramsey if and only if X 1 is adversarially Ram-
sey. So, for a class Γ of subsets of Polish spaces, closed under continuous inverse image,
saying that all Γ-subsets of Eω are adversarially Ramsey is stronger than saying that all
Γ-subsets of Eω are strategically Ramsey. The second remark is that, if the field K is
infinite, then the adversarial Ramsey property for Γ-subsets of Eω also implies that all
Γ-subsets of ωω are determined. To see this, remark that when playing vectors in AX or
BX , no matter the constraint imposed by the other player, players I and II have total
liberty for choosing the first non-zero coordinate of the vectors they play. Therefore, by
making X only depend on the first nonzero coordinate of each vector played, we recover
a classical Gale-Stewart game in pK�qω. For this reason, there is no hope, in ZFC, to
prove the adversarial Ramsey property for a class larger than Borel sets. Then, Rosendal
asks the following questions in [57]:

Question I.16 (Rosendal). Is every Borel set adversarially Ramsey?

Question I.17 (Rosendal). In the presence of large cardinals, is every analytic set
adversarially Ramsey?

A part of chapter II in this thesis will be devoted to answer these questions.
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I.4 Banach-spaces dichotomies and complexity of the
isomorphism

As we already said at the beginning of this introduction, Gowers introduced his Ramsey-
type theorem I.8 in order to prove a Banach-space dichotomy that was instrumental in
the solution of a celebrated question asked by Banach in his book Théorie des Opérations
Linéaires [9]. Say that a Banach space is homogeneous if it is isomorphic to all of its
subspaces. Obviously, `2 is homogeneous, and a homogeneous space has to be separable.
Banach’s question is the following:

Question I.18 (Banach’s homogeneous space problem). Is every homogeneous Banach
space isomorphic to `2?

This problem was solved by the positive in the 90’s by a combination of results by
Gowers and Maurey [25], Komorowski and Tomczak-Jaegeramnn [34] , and Gowers [24].
We will briefly expose the main steps of this solution, and then present the new research
directions that this problem, and its solution, have raised. For this, we need to recall
some notions in Banach-space geometry.

Let peiqiPω be a basis of a Banach space E. Remark that, if A � ω is infinite and
coinfinite, then a projection on the closed subspace generated by the ei’s, for i P A,
does not necessarily exist: actually, if x � °8

i�0 x
iei converges, the sums

°
iPA x

iei
do not need to converge unless A is finite or cofinite. We say that the basis peiq is an
unconditional basis if for every x � °8

i�0 x
iei P E and for every A � ω, the sum

°
iPA x

iei
converges. It can be shown that, in this case, for every a � paiqiPω P `8 and for every
x � °8

i�0 x
iei P E, the sum Dapxq �

°8
i�0 aix

iei converges, and that the operator
Da : E ÝÑ E it defines is bounded (such an operator is called a diagonal operator).
Moreover, there exists a constant K such that for every a P `8, ~Da~ ¤ K}a}8. In
this case, the sequence is said to be K-unconditional, and the least such K is called the
unconditional constant of the basis peiq. The unconditional constant is greater, but in
general not equal, to the basis constant.

An unconditional basic sequence (or simply an unconditional sequence) is a nor-
malized sequence pxiqiPω P Eω that is an unconditional basis of the closed subspace
of E it generates. It can be shown that a normalized sequence pxiqiPω P Eω is K-
unconditional if and only if for every n P ω, every paiqi n P Rn, and every sequence of
signs pεiqi n P t�1, 1un, we have }°i n εiaixi} ¤ K }°i n aixi} (so in particular, pxiq
is unconditional if and only if there exist a constant K satisfying this property). This
shows that a block-sequence of a (K-)unconditional sequence is itself (K-)unconditional.

The canonical bases of the spaces c0, and `p for 1 ¤ p   8, are 1-unconditional.
Spaces with an unconditional basis can be seen as quite regular spaces; in particular,
many bounded operators are definable on them (all the Da’s for a P `8) and they share
many of the good properties of the `p’s and of c0. For more details, proofs of the previous
results, and properties of spaces with an unconditional basis, see [2].

In 1995, Komorowski and Tomczak-Jaegermann [34] (with an erratum [35]) showed
the following result:
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Theorem I.19 (Komorowski–Tomczak-Jaegermann). Every separable Banach space ei-
ther has a subspace isomorphic to `2, or a subspace without unconditional basis.

An immediate consequence of this theorem is that a homogeneous space that is not
isomorphic to `2 cannot contain an unconditional sequence. The question whether a
Banach space should always contain an unconditional sequence was itself a longstanding
problem, asked by Banach in the same book [9] and called the unconditional basic se-
quence problem. This problem was solved by the negative by Gowers and Maurey [25] a
few years before the proof of Komorowski–Tomczak-Jaegermann’s theorem, in 1992. The
counterexample built by Gowers and Maurey actually had a slightly stronger property
than not containig any unconditional sequence: it was hereditarily indecomposable.

Definition I.20.

1. A Banach space E is indecomposable if there are no subspaces X,Y � E such that
E � X ` Y .

2. A Banach space E is hereditarily indecomposable (or simply HI ) if every subspace
of E is indecomposable.

(Obviously, in the definition of an indecomposable Banach space, we only quantify
on infinite-dimensional closed subspaces, since every finite-dimensional subspace has a
closed complement, and since every vector subspace is the complement of another vector
subspace.)

A space E with an unconditional basis peiqiPω is not indecomposable: indeed, for
every A � ω, we have E � spanptei | i P Auq ` spanptei | i P Acuq. In particular, an HI
space cannot contain an unconditional sequence. However, the converse is not true: for
instance, it can easily be shown that the direct sum of two HI spaces cannot contain an
unconditional sequence, however it is not HI. Surprisingly, all the natural counterexam-
ples to the unconditional basic sequence problem that Gowers and Maurey managed to
build where HI, as if HI spaces were the basic building blocks of such spaces. To explain
this phenomenon, Gowers proved a few years later his celebrated first dichotomy [24]:

Theorem I.21 (Gowers’ first dichotomy). Every Banach space either contains a un-
conditional basic sequence, or contains a HI subspace.

This is in order to prove this dichotomy that Gowers proved his Ramsey-type the-
orem I.8. A consequence of this dichotomy, combined with Komorowski–Tomczak-
Jaegermann’s theorem, is that if a homogeneous space is not isomorphic to `2, then
it has to be HI. So to solve the homogeneous space problem, it only remains to prove
that an HI space cannot be homogeneous. This is actually a consequence of general
results by Gowers and Maurey about HI spaces. In the same paper [25] where they built
the first HI space, they proved the following theorem:

Theorem I.22 (Gowers–Maurey). Let X be a complex HI space. Then every bounded
operator X ÝÑ X has the form λ IdX �S, where λ P C and S is a strictly singular
operator (that is, an operator that induces no isomorphism between two subspaces of X).
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This theorem was proved using spectral theory and is only valid for complex spaces.
Using Fredholm theory, we can easily deduce from it the following result (valid as well
for real spaces as for complex spaces):

Theorem I.23 (Gowers–Maurey). A (real or complex) HI space cannot be isomorphic
to one of its proper subspaces.

In particular, such a space is very far from being homogeneous, and this last result
ends the solution of the homogeneous space problem.

The first research direction opened by the solution of the homogeneous space problem,
and in particular by Gowers’ first dichotomy, is a project initiated by Gowers at the end
of his article [24]. He suggested that, using Ramsey-theoretic methods to prove Banach-
space dichotomies in the same vein as his first dichotomy, we could build a “loose”
classification of separable Banach spaces, up to subspaces. The idea is to build a list of
classes of separable Banach spaces (called a Gowers list), as precise as possible, satisfying
the following conditions:

(1) The classes should be hereditary, i.e. if a space E belongs to one class, then every
subspace of E must belong to the same class (or every block-subspace, if the class
is defined by a property of bases);

(2) The classes should be disjoint, for obvious reasons;

(3) Every Banach space should have at least one subspace belonging to one of the
classes;

(4) Knowing that a space belongs to a class should give much information about the
space, and in particular about the operators that can be defined on this space.

Gowers’ first dichotomy gives an example of a Gowers list with two classes, the
class of spaces with an unconditional basis, and the class of HI spaces. Properties (1)
and (2) are obvious, and property (3) is given by the dichotomy. This Gowers list
illustrates particularly well property (4), since spaces with an unconditional basis have
many operators (in particular, all the diagonal operators), whereas HI spaces have very
few of them (in paticular, all diagonal operators on a HI space with a basis are trivial).

The interest of a Gowers list is also to draw a border between “nice”, well-behaved
spaces (those sharing many good properties of the `p’s and of c0) and “pathological” one,
like HI spaces, that were mostly discovered in order to provide counterexamples. In the
same paper [24], Gowers proved a second dichotomy, enabling him to get a Gowers’ list
with three classes, and then, Ferenczi and Rosendal [19] proved three other dichotomies.
We will present one of them here, since it is an inspiration for a part of the work of this
thesis.

Definition I.24.

1. A Banach space E is said to be minimal if it can be embedded into all of its
subspaces.
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2. Let peiqiPω be a basis of some Banach space E. A Banach space X is tight in the
basis peiq if there is an infinite sequence of intervals I0   I1   . . . of integers such

that for every infinite A � ω, we have X � span
�!
ei

���i R �jPA Ij
)	

.

3. A basis peiqiPω is said to be tight if every Banach space is tight in it. A Banach
space X is tight if it has a tight basis.

The class of minimal spaces is another example of a class of “nice” spaces. For
example, the `p’s and c0 are minimal. This is obviously a hereditary class. On the other
hand, a tight space cannot be minimal, and it is not hard to see that a block-sequence
of a tight basis is itself tight. Tight spaces are more pathological spaces, an example of
them is Tsirelson’s space, the first example of a space in which none of the `p’s, neither
c0, can be embedded (see [2], section 10.3). The dichotomy is the following:

Theorem I.25 (Ferenczi–Rosendal). Every Banach space either has a minimal subspace,
or has a tight subspace.

This dichotomy does not precisely satisfy the condition (4) in the definition of a
Gowers list, since the operators on tight spaces have not been studied much. However, as
we will see, knowing that a space is tight gives much information about the isomorphism
relation between its subspaces. In particular, such spaces are highly non-homogeneous,
and this will be a useful information in the study of the number of non-isomorphic
subspaces of a separable Banach space.

This is, indeed, the second research direction raised by the solution of the homoge-
neous space problem. As soon as a separable Banach space is not isomorphic to `2, it
must have at least two non-isomorphic subspaces; but more precisely, how many sub-
spaces can such a space have, up to isomorphism? This very general question was asked
by Godefroy, and many particular cases of it were studied. This turn out to be quite
difficult questions, and most of the time, we only have partial results about it. For
example, the following question was asked by Johnson:

Question I.26. Does there exist a separable Banach space having exactly two subspaces,
up to isomorphism?

Even this question is still open, and will be studied in the present manuscript. A
separable Banach space with exactly two subspaces, up to isomorphism, will be called a
Johnson space.

It turns out that the right setting to study Godefroy’s question is the theory of the
classification of equivalence relations on Polish spaces. Let us recall the basic notions of
this theory. We will study nonempty Polish spaces equiped with an equivalence relation
(that will often be analytic). If X and Y are two nonempty Polish spaces, and if E and
F are equivalence relations respectively on X and Y , we say that E Borel-reduces to F ,
denoted by pX,Eq ¤B pY, F q (or simply E ¤B F ) if there is a Borel mapping f : X ÝÑ Y
(called a reduction) such that for every x, y P X, we have xE y ô fpxqF fpyq (if such
an f can be choosen continuous, we will say that E continuously reduces to F , denoted
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by E ¤c F ). We say that E and F are Borel-equivalent, denoted by E �B F , if E ¤B F
and F ¤B E. Saying that E reduces to F means that E is less complex than F , and
that if we know F , then we can, in some sense “compute” E. Remark that a reduction f
from pX,Eq to pY, F q induces a one-to-one mapping X{E Ñ Y {F , and in particular, if
E ¤B F , then E has less classes than F . Thus, studying the complexity of an equivalence
relation gives us at least as much information than counting it classes.

If E has at most countably-many classes, then E ¤B F ô |X{E| ¤ |Y {F |. Thus,
for equivalence relations with at most countably many classes, the number of classes
completely determines the equivalence type of the relation, and we have the following
exhaustive hierarchy:

p1,�q ¤B p2,�q ¤B p3,�q ¤B . . . ¤B pω,�q.

However, for relations with uncountably many classes, the situation is more complex.
Restricting our attention to Borel equivalence relations, we will present two dichotomies
that give the two next steps of this hierarchy. The first one is valid even for coanalytic
relations, and is due to Silver [59] (for a more modern proof, see [44]).

Theorem I.27 (Silver). Let E be a coanalytic equivalence relation on a Polish space
X. Then either E has at most countably many classes (and thus, Borel reduces to the
equality on ω), or p2ω,�q ¤c pX,Eq.

The next equivalence relation is the relation E0 on the Cantor space 2ω, defined by
xE0 y if and only if there exists n P ω such that for every m ¥ n, we have xpmq � ypmq.
Using standard category arguments (see [28]), it can be shown that E0 is generically
ergodic, that is, every E0-invariant Baire-measurable set is either meager or comeager,
and thus that it is not Borel-reducible to the equality on the Cantor space. In [28],
Harrington, Kechris and Louveau show the following dichotomy (for a more modern
proof, see [45]):

Theorem I.28. Let E be a Borel equivalence relation on a Polish space X. Then either
pX,Eq ¤B p2ω,�q, or p2ω,E0q ¤c pX,Eq.

Thus, we have the following exhaustive hierarchy for Borel equivalence relation that
reduce to E0:

p1,�q ¤B p2,�q ¤B p3,�q ¤B . . . ¤B pω,�q ¤B p2ω,�q ¤B p2ω,E0q.

The situation is more complex for analytic equivalence relations, for instance there are
such relations E that are not reducible to the equality on the Cantor space, but such
that E0 does not reduce to E.

The main application of the complexity of equivalence relations appears in the study
of the classification of mathematical objects: one can, for example, put a convenient Borel
structure on a class of mathematical objects and study the isomorphism relation between
these objects (that is, in general, analytic). Knowing the complexity of this relation
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enables to estimate how difficult it will be to classify these objects up to isomorphism.
In general, we consider that a class of objects is classifiable if the isomorphism relation
on this class is reducible to the equality on the Cantor space; indeed, this means that the
structures in this class can be described, up to isomorphism, by a real number, or by a
sequence of integers (for instance, the isomorphism between Bernoulli shifts is classified
by a real number, its entropy).

This theory can indeed be applied to the isomorphism relation between subspaces
of a Banach space. Given E a separable Banach space, denote by SubpEq the set of its
subspaces. On SubpEq, we will put the Effros Borel structure. Recall that if X is a Polish
space and FpXq the set of its open subsets, the Effros Borel structure on FpXq is the
σ-algebra generated by sets of the form tF P FpXq | F X U � ∅u, where U varies over
open subsets of X. It can be shown that this gives FpXq a structure of standard Borel
space (see [32], theorem 12.6); actually, if X̂ is a compactification of X, then this Borel
space can be seen as a subspace of the set compacts subsets of X̂ with the Hausdorff
distance, so it is quite natural. If E is a separable Banach space, it is not hard to see
that SubpEq is a Borel subset of FpEq, so SubpEq with the Effros Borel structure is itself
a standard Borel space. Moreover, the isomorphism relation � on SubpEq is analytic.
For more results about the structure of SubpEq, see [10].

The complexity of the isomorphism relation of Subp`2q is minimal among analytic
equivalence relations. On the other hand, Ferenczi, Louveau and Rosendal [16] proved
the following:

Theorem I.29 (Ferenczi–Louveau–Rosendal). The isomorphism relation on
SubpCpr0, 1sqq is analytic-complete, that is, every analytic equivalence relation on
a Polish space is Borel-reducible to it.

As, by Banach–Mazur’s theorem (theorem 1.4.3 in [2]), every separable Banach space
can be isometrically embedded in SubpCpr0, 1sqq, this result can be interpreted by saying
that the isomorphism relation between separable Banach spaces is analytic-complete and
in particular, that these spaces are not classifiable, up to isomorphism. This justifies
Gowers’ idea of rather trying to build a “loose” classification of Banach spaces.

We have, on one side, a space for whose the complexity of the isomorphism between
subspaces is minimal, and on the other side, a space for whose this complexity is maximal
among analytic equivalence relations, and we are tempted to ask what lies inbetween.
Ferenczi and Rosendal defined a new class of spaces based on their complexity:

Definition I.30. A separable Banach space E is ergodic if p2ω,E0q ¤B pSubpEq,�q.
In particular, the subspaces of these spaces are not classifiable by real numbers,

so they can be seen as rather complex spaces. In the papers [18, 17, 55], Ferenczi
and Rosendal studied the properties of non-ergodic spaces, that appeared to behave
quite well. Among others, we can cite the following nice results for spaces with an
unconditional basis:
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Theorem I.31 (Ferenczi–Rosendal). Let E be a non-ergodic separable Banach space
with an unconditional basis. Then E is isomorphic to its hyperplanes, to its square, and
to every direct sum E`X, where X is a block-subspace of E generated by a subsequence
of the basis.

All of their results led them to conjecture the following generalization to the homo-
geneous space problem:

Conjecture I.32 (Ferenczi–Rosendal). Every separable Banach space non-isomorphic
to `2 is ergodic.

This conjecture will be refered as the ergodic conjecture in the rest of this manuscript.
Much progress have been made by now on this conjecture. Rosendal proved [55] that an
HI space must be ergodic. In particular, using Gowers’ first dichotomy, we can deduce
that every non-ergodic Banach space contains a subspace with an unconditional basis.
Then, an important result was proved by Ferenczi [14]:

Theorem I.33 (Ferenczi). Every non-ergodic Banach space contains a minimal sub-
space.

The proof of this theorem was the main inspiration for Ferenczi and Rosendal’s
dichotomy I.25, that was proved a few years later. Actually, this result can be seen as a
consequence of the dichotomy: indeed, in [15], Ferenczi and Godefroy give a categorical
caracterisation of tightness which, combined with a result of Rosendal ([55], proposition
15), easily proves that a tight space must be ergodic. All of this results show that the
question of the number of non-isomorphic subspaces and this of the loose classification
of Banach spaces are closely related.

In another direction, progress have been made by Anisca [4], who proved that an
asymptotically Hilbertian separable Banach space that is not isomorphic to `2 has to be
ergodic; we will not recall here the definition of an asymptotically Hilbertian space, but
this results says in some sense that spaces that are too close to `2 have to be ergodic.
Then, Cuellar-Carrera proved [11] that a non-ergodic separable Banach space must have
type p and cotype q for every p   2   q. Without recalling the definitions, it means
that such a space still needs to be rather close to `2. In particular, a consequence of this
result is that the `p’s, for 1 ¤ p � 2   8, and c0, are ergodic.

I.5 Organisation of the results

In chapter II of this thesis, we present an abstract setting for Ramsey theory, the set-
ting of Gowers spaces. The goal of this abstract setting is to enable to prove as well
Ramsey results with a pigeonhole principle like Mathias–Silver’s theorem I.3 or Mil-
liken’s theorem I.5, and strategical Ramsey results without a pigeonhole principle like
Rosendal’s theorem I.13. An abstract Ramsey theorem, having a version without pi-
geonhole principle (theorem II.14), and a version with a pigeonhole principle (corollary
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II.21) and implying these results, will be shown. Remark that all possible conclusions of
this theorem involve games, since our setting is too weak to allow to get directly “gen-
uine” Ramsey-type conclusions as in Mathias–Silver’s or Milliken’s theorem. However,
the results we get are very close to that, and this drawback will be corrected in chapter
III by adding a feature to our setting. In chapter II, we will also give an answer to
Rosendal’s questions I.16 and I.17 by proving an abstract adversarial Ramsey principle
(theorem II.4), unifying our strategical Ramsey theory with the determinacy of games
on integers. An emphasis will be put on the strength of the latter result, that is implied
by the determinacy of games on reals but seems slightly above this of games on integers.
Finally, we will study the differences between Gowers spaces with a pigeonhole principle
and Gowers space without a pigeonhole principle, and see that they behave very differ-
ently. In particular, in spaces without a pigeonhole principle, the adversarial Ramsey
principle is much stronger than is spaces where the pigeonhole principle holds.

Gowers spaces are countable, and as we will see at the beginning of chapter III, the
result proved in chapter II are not true in the uncountable case. The goal of section
III is to adapt the formalism of Gowers spaces to the case of uncountable metric space,
in order to prove approximate results in the vein of Gowers’ theorems I.8 and I.11.
Results of chapter II will be extended to this setting, and a feature will also be added
to our formalism, enabling to deduce non-strategical Ramsey results from strategical
ones. In particular, both Mathias–Silver’s theorem and Gower’s theorems will be direct
consequences of our main result, corollary III.17. The interest of the results presented in
this chapter is more practical that theoretical: they are powerful tools to prove Banach-
space dichotomies.

In chapter IV, we work on Johnson’s problem and on Ferenczi and Rosendal’s ergodic
conjecture, and in particular on the following question: if counterexamples to these con-
jectures exist, do there necessarily exist counterexamples having an unconditional basis?
We are not able to solve this question completely, however we prove two Banach-space
dichotomies that could help a lot. The first one, theorem IV.12, is very similar to Gow-
ers’ first dichotomy between spaces with an unconditional basis and HI spaces, and the
second one, theorem IV.14, is very similar to Ferenczi and Rosendal’s dichotomy between
minimal and tight spaces; however, the difference is that the dichotomies we prove are
Hilbert-avoiding, that is, we can ensure that the subspace they provide is not isomorphic
to `2. The proofs of these dichotomies makes an essential use of the Ramsey-type results
proved in chapters II and III. These dichotomies enable to reduce the question of the
existence of counterexamples to the ergodic conjecture with an unconditional basis to
a conjecture having many similarities with Gowers–Maurey’s result that HI spaces are
not isomorphic to their proper subspaces. We were not able to solve this conjecture,
however, at the end of the chapter, we give a new and simpler proof of Gowers–Maurey’s
theorem, only based on Fredholm theory, that could be a good starting point to solve it.
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Chapter II

Ramsey theory with and without
pigeonhole principle

In this chapter, we present an abstract setting for Ramsey theory with and without
pigeonhole principle: the setting of Gowers spaces. Inspired by the examples given in
the introduction, we define a formalism with two notions, a notion of subspaces and a
notion of points. The idea is that we will color infinite sequences of points and try to
find subspaces such that many sequences of points in this subspace share the same color.
This “many” will be expressed, as in Rosendal’s results and conjectures, in terms of
games; in particular, in Gowers spaces, we will be able to define the asymptotic game,
Gowers’ game, and the adversarial Gowers’ games. These games will enable us to define
strategically Ramsey sets and adversarially Ramsey sets in such spaces.

In section II.1, we define the formalism of Gowers spaces and the notion of strategi-
cally Ramsey sets in these spaces; then, we prove that every Borel sets is strategically
Ramsey (theorem II.4), thus giving a positive answer to Rosendal’s question I.16. The
proof of this theorem is based on the determinacy of a game on real numbers, thus, it
will also enable to prove that, assuming enough determinacy for such games, we can get
the adversarial Ramsey property for more than Borel sets (see theorems II.8 and II.10).

In section II.2, we define the asymptotic game, Gowers’ game, and the notion of a
strategically Ramsey set in a Gowers space. We prove an abstract version of Rosendal’s
theorem I.13 from the adversarial Ramsey principle proved in the previous section; this
enables as well to get the strategical Ramsey property for more complex sets if we assume
more determinacy. Then, we introduce the pigeonhole principle in a Gowers space, and
we show that the strategical Ramsey property can be strengthened to a symmetrical
result, very close to Mathias–Silver’s and Milliken’s theorem, in spaces that satisfy it
(corollary II.21).

The two next sections are devoted to the study of the differences of behavior between
spaces satisfying the pigeonhole principle, and spaces that don’t. Such a study is done
in what concerns the adversarial Ramsey property in section II.3, where we show that
in spaces with a pigeonhole principle, this property is not stronger than the strategical
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Ramsey property, whereas in spaces without it, it has the strength of determinacy of
games on integers (see proposition II.24 and theorem II.25). In section II.4, we carry
out the same kind of study for strategically Ramsey sets, studying in particular the
limitations on the complexities for which we can ensure this property in ZFC; this
turns out to depend on the truth of the pigeonhole principle.

Since the adversarial Ramsey property is a consequence of the determinacy of games
on reals, and implies the determinacy of games on integers, a natural question to ask is
where lies the strength of the adversarial Ramsey property between the two others. In
section II.5, we discuss some consequences of large cardinal assumptions on strategically
Ramsey sets, allowing us to better see what could be the strength of this property.

II.1 Gowers spaces and the aversarial Ramsey
property

In this section, we will introduce the notion of a Gowers space, which will be our ab-
stract setting for infinite-dimensional Ramsey theory; then, we will prove in this setting
the adversarial Ramsey principle, our most general Ramsey result without pigeonhole
principle, which will give a positive answer to question I.16.

Definition II.1. A Gowers space is a quintuple G � pP,X,¤,¤�,�q, where P is a
nonempty set (the set of subspaces), X is an at most countable nonempty set (the set
of points), ¤ and ¤� are two quasiorders on P (i.e. reflexive and transitive binary
relations), and � � SeqpXq � P is a binary relation, satisfying the following properties:

1. for every p, q P P , if p ¤ q, then p ¤� q;
2. for every p, q P P , if p ¤� q, then there exists r P P such that r ¤ p, r ¤ q and
p ¤� r;

3. for every ¤-decreasing sequence ppiqiPω of elements of P , there exists p� P P such
that for all i P ω, we have p� ¤� pi;

4. for every p P P and s P X ω, there exists x P X such that s " x � p;

5. for every s P SeqpXq and every p, q P P , if s � p and p ¤ q, then s � q.

We say that p, q P P are compatible if there exists r P P such that r ¤ p and r ¤ q.
To save writing, we will often write p Æ q when p ¤ q and q ¤� p. Remark that by 2.,
the p� in 3. can be chosen in such a way that p� ¤ p0; this will be useful in many proofs.

In most usual cases, the fact that s � p will only depend on p and on the last term
of s; the spaces satisfying this property will be called forgetful Gowers spaces. In these
spaces, we will allow us to view � as a binary relation on X � P . However, for some
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applications (see, for example, the proof of theorem III.6), it is sometimes useful to make
the fact that s � p also depend on the the length of the sequence s; we do not know if
there are any interesting applications where it would be useful to make it depend on all
the terms of the sequence, however we would like to present results that are as general
as possible.

When thinking about a Gowers space, we should have the two following examples in
mind:

• The Mathias–Silver space N � prωsω, ω,�,��,�q, where rωsω is the set of all
infinite sets of integers, M �� N iff MzN is finite and px0, . . . , xnq � M iff
xn PM . Here, we have that M Æ N iff M is a cofinite subset of N , and M and N
are compatible iff M XN in infinite.

• The Rosendal space over an at most countable field K, RK � pP,Ezt0u,�,��,�q,
where E is a countably infinite-dimensional K-vector space with a basis peiqiPω, P
is the set of all block subspaces of E relative to this basis, X �� Y iff Y contains
some finite-codimensional block subspace of X, and px0, . . . , xnq � X iff xn P X.
Here, we have that X Æ Y iff X is a finite-codimensional subspace of Y , and X
and Y are compatible iff X X Y is infinite-dimensional.

Remark that both of these spaces are forgetful, so we could have defined � as a
relation between points and subspaces (and that is what we will do, in such cases, in the
rest of this paper); in this way, in both cases, � is the membership relation. It is easy
to verify that, for these examples, the axioms 1., 2., 4., and 5. are satisfied; we briefly
explain how to prove 3.. For the Mathias–Silver space, if pMiqiPω is a �-decreasing
sequence of infinite subsets of ω, then we can, for each i P ω, choose ni P Mi in such a
way that the sequence pniqiPω is increasing, and let M� � tni | i P ωu. Then the set M�

is as wanted. For the Rosendal space, the idea is the same: given pFiqiPω a decreasing
sequence of block subspaces of E, we can pick, for each i, a nonzero vector xi P Fi, in
such a way that for i ¥ 1, we have supppxi�1q   supppxiq. In this way, pxiqiPω is a block
sequence, and the block subspace F � spanned by this sequence is as wanted.

Also remark that in the definition of the Rosendal space, choosing Ezt0u and not E
for the set of points is totally arbitrary, and here, we only made this choice in order to
use the same convention as Rosendal in his papers [56, 57]; but the results we will show
apply as well when the set of points is E. Also, we could have taken for P the set of all
infinite-dimensional subspaces of E (where, here, the relation �� is defined by X �� Y
iff X X Y has finite codimension in X) instead of only block subspaces. However, the
abstract results we will prove are slightly stronger in the case when we consider only
block subspaces; this is due to the fact that, while every infinite-dimensional subspace
of E contains a block subspace, there are finite-codimensional subspaces that do not
contain any finite-codimensional block subspace.

In the rest of this section, we fix a Gowers space G � pP,X,¤,¤�,�q. For p P P , we
define the adversarial Gowers’ Games below p as follows:

39



Definition II.2.

1. The game Ap is defined in the following way:

I x0, q0 x1, q1 . . .
II p0 y0, p1 y1, p2 . . .

where the xi’s and the yi’s are elements of X, and the pi’s and the qi’s are elements
of P . The rules are the following:

• for I: for all i P ω, px0, y0, . . . , xi�1, yi�1, xiq � pi and qi Æ p;

• for II: for all i P ω, px0, y0 . . . , xi, yiq � qi and pi ¤ p.

The outcome of the game is the sequence px0, y0, x1, y1, . . .q P Xω.

2. The game Bp is defined in the same way as Ap, except that this time the we require
pi Æ p, whereas we only require qi ¤ p.

As in the particular case of vector spaces, we can define the adversarial Ramsey
property for subsets of Xω:

Definition II.3. A set X � Xω is said to be adversarially Ramsey if for every p P P ,
there exists q ¤ p such that either player I has a strategy to reach X in Aq, or player II
has a strategy to reach X c in Bq.

Informally, the adversarial Ramsey property for X means that up to taking a sub-
space, one of the players has a winning strategy in the game that is the most difficult for
him. Remark that the property that I has a strategy in Ap to reach some set X (resp.
the property that II has a strategy in Bp to reach X c) is strongly hereditary in the sense
that if I has a strategy to reach X in Ap, then he also has one in Ap1 for every p1 ¤� p
(and the same holds for II in Bp). Indeed, we can simulate a play of Ap1 with a play
of Ap: when, in Ap, player I’s strategy tells him to play xi and qi, then in Ap1 he can
play the same xi and a q1i such that q1i Æ p1 and q1i ¤ qi, in such a way that the next yi
played by II in Ap1 will be also playable in Ap (the existence of such a q1i is guaranteed
by condition 2. in the definition of a Gowers space). And when, in Ap1 , player II plays
yi and p1i�1, then in Ap, I can make her play the same yi and a pi�1 such that pi�1 ¤ p
and pi�1 ¤ p1i�1, in such a way that the next xi�1 played by I in Ap according to his
strategy will also be playable in Ap1 . In this way, the outcomes of both games are the
same, and since I reaches X in Ap, then he also does in Ap1 .

On the other hand, it is clear that if I has a strategy to reach some set X in Ap,
then he also has one in Bp, so II cannot have a strategy to reach X c in Bp. Thus, the
fact that X has the adversarial Ramsey property gives a genuine dichotomy between two
disjoint and strongly hereditary classes of subspaces.

We endow the set X with the discrete topology and the set Xω with the product
topology. The main result of this section is the following:
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Theorem II.4 (Adversarial Ramsey principle, abstract version). Every Borel subset of
Xω is adversarially Ramsey.

In the case of the Rosendal Space, the adversarial Gowers games defined here are
exactly the same as those defined in the introduction. Thus, theorem II.4 applied to this
space provides a positive answer to question I.16.

Also remark that if P � t1u and if we have s � 1 for every s P SeqpXq, then
both A1 and B1 are the classical Gale-Stewart game in X, so the adversarially Ramsey
subsets of Xω are exactly the determined ones. So in this space, theorem II.4 is nothing
more than Borel determinacy for games on integers; hence, we get that theorem II.4
has at least the metamathematical strength of Borel determinacy for games on integers.
Therefore, by the work of Friedman [20], any proof of theorem II.4 should make use of
the powerset axiom and of the replacement scheme. We also get that it is not provable
in ZFC that every analytic (or coanalytic) set in every Gowers space is adversarially
Ramsey. Actually, it turns out that there is a large class of Gowers spaces for which
Borel determinacy can be recovered from the version of theorem II.4 in these spaces;
this will be shown in section II.3.

We will deduce theorem II.4 from Borel determinacy for games on real numbers.
For this purpose, we follow an approach firstly used by Kastanas in [31]: in this paper
Kastanas deduced the Ramsey property for subsets of rωsω from the determinacy of a
game. In what follows, we adapt Kastanas’ game in order to get the adversarial Ramsey
property.

Definition II.5. For p P P , Kastanas’ game Kp below p is defined as follows:

I x0, q0 x1, q1 . . .
II p0 y0, p1 y1, p2 . . .

where the xi’s and the yi’s are elements of X, and the pi’s and the qi’s are elements of
P . The rules are the following:

• for I: for all i P ω, px0, y0, . . . , xi�1, yi�1, xiq � pi and qi ¤ pi;

• for II: p0 ¤ p, and for all i P ω, px0, y0 . . . , xi, yiq � qi and pi�1 ¤ qi.

The outcome of the game is the sequence px0, y0, x1, y1, . . .q P Xω.

The exact result we will show is the following:

Proposition II.6. Let p P P and X � Xω.

1. If I has a strategy to reach X in Kp, then there exists q ¤ p such that I has a
strategy to reach X in Aq;

2. If II has a strategy to reach X c in Kp, then there exists q ¤ p such that II has a
strategy to reach X c in Bq.
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Once this proposition is proved, theorem II.4 will immediately follow from the Borel
determinacy of Kastanas’ game.

Since the proof of 1. and 2. of proposition II.6 are exactly the same, we only prove
2.. In order to do this, let us introduce some notation. During the whole proof, we fix a
strategy τ for II in Kp to reach X c. A partial play of Kp ending with a move of II and
during which II always plays according to her strategy will be called a state. We say
that a state s realises a finite sequence px0, y0, x1, y1, . . . , xn�1, yn�1q if s has the form
pp0, x0, ..., qn�1, yn�1, pnq; we say that a state realising a sequence of length 2n has rank
n. We define in the same way the notions of a total state (which is a total play of Kp)
and of realisation for a total state; the restriction of a total state s � pp0, x0, q0, y0, p1, ...q
to a state of rank n, denoted by s æn, is the state pp0, x0, ..., qn�1, yn�1, pnq. If an infinite
sequence px0, y0, x1, y1, . . .q is realised by a total state, then this sequence belongs to X c.

We will use the following lemma:

Lemma II.7. Let S be an at most countable set of states, and r P P . Then there exists
r� ¤ r satisfying the following property: for all s P S and x, y P X if there exists u, v P P
such that:

1. I can legally continue the play s by the move px, uq;
2. τps " px, uqq � py, vq;
3. v and r� are compatible;

then there exists u1, v1 P P satisfying 1., 2., and 3. and such that, moreover, we have
r� ¤� v1.
Proof. Let ps n, xn, ynqnPω be a (non-necessarily injective) enumeration of S�X2. Define
prnqnPω a decreasing sequence of elements of P in the following way. Let r0 � r. For
n P ω, suppose rn defined. If there exists a pair pu, vq P P 2 such that:

• I can legally continue the play s n by the move pxn, uq;
• τps n " pxn, uqq � pyn, vq;
• v and rn are compatible;

then choose pun, vnq such a pair and let rn�1 be a common lower bound to rn and vn.
Otherwise, let rn�1 � rn. This achieves the construction.

By the definition of a Gowers space, there exists r� P P such that r� ¤ r and for all
n P ω, r� ¤� rn. We show that r� is as required. Let n P ω, and suppose that there exists
pu, vq P P 2 satisfying properties 1., 2., and 3. as in the statement of the lemma for the
triple ps n, xn, ynq. Since r� ¤� rn and since v and r� are compatible, then v and rn are
also compatible. This show that the pair pun, vnq has been defined; by construction, this
pair satisfies properties 1. and 2. for ps n, xn, ynq, and we have rn�1 ¤ vn, so r� ¤� vn,
which shows that pu1, v1q � pun, vnq is as required.
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Proof of proposition II.6. Define pqnqnPω a decreasing sequence of elements of P and
pSnqnPω a sequence where, for every n P ω, Sn is an at most countable set of states of
rank n, in the following way. Let q0 � τp∅q and S0 � tpτp∅qqu. For n P ω, suppose qn
and Sn being defined. Let qn�1 be the result of the application of lemma II.7 to qn and
the set of states Sn. For s P Sn, let As be the set of all pairs px, yq such that there exists
pu, vq P P 2 satisfying:

1. I can legally continue the play s by the move px, uq;
2. τps " px, uqq � py, vq;
3. v and qn�1 are compatible.

Then by construction of qn�1, for all px, yq P As , there exists a pair pu, vq P P 2 satis-
fying 1., 2., and 3., and such that moreover qn�1 ¤� v. For each px, yq P As , choose
pus ,x,y, vs ,x,yq such a pair. Let Sn�1 � ts " px, us ,x,y, y, vs ,x,yq | s P Sn, px, yq P As u; this
is clearly a countable set of states of rank n� 1. This achieves the construction.

Now let q P P be such that q ¤ q0 and for all n P ω, we have q ¤� qn. Remark that
since q0 ¤ p, we have q ¤ p. We show that q is as required, by describing a strategy for
II in Bq to reach X c. In order to do this, we simulate the play s � pv0, x0, u0, y0, v1, ...q
of Bq that I and II are playing by a play s

1 � pv10, x0, u
1
0, y0, v

1
1, ...q of Kp having the same

outcome and during which II always plays according to her strategy τ . This will ensure
that the outcome px0, y0, x1, y1, . . .q of both games lies in X c and so that the strategy
for II in Bq that we described enables her to reach her goal. We do this construction in
such a way that at each turn n, the following conditions are kept satisfied:

(a) s
1
æn P Sn;

(b) vn ¤ v1n.

The moves of the players at the pn � 1qth turn in both games that are described in
the following proof are represented in the diagrams below. The third diagram, called
“Fictive Kp”, represents a fictive situation that will be studied for technical reasons in
the proof, and in which the moves of both players are the same as in Kp until the nth

turn but differ from the pn� 1qth turn.
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I . . . xn, un
Bq

II . . . , vn yn, vn�1

I . . . xn, u
1
n

Kp

II . . . , v1n yn, v
1
n�1

I . . . xn, u
2
n

Fictive Kp

II . . . , v1n yn, v
2
n�1

Let us describe the strategy of II in Bq. At the first turn, this strategy will consist
in playing v0 � q; and, according to her strategy τ , II will play v10 � τp∅q in Kp.
Now, suppose that both games have been played until the nth turn, that is, the last
moves of player II in the games Bq and Kp are respectively vn and v1n. Player I plays
pxn, unq in Bq. By the rules of the game Bq and the induction hypothesis, we have that
un ¤ q ¤� vn ¤ v1n; so there exists u2n P P such that u2n Æ un and u2n ¤ v1n. We also have
that px0, y0, . . . , xnq � vn ¤ v1n, so it is legal for I to pursue the game Kp by playing
pxn, u2nq; this fictive situation is represented in the third diagram above, called “Fictive
Kp”. In this fictive situation, the strategy τ of II would lead her to answer with a move
pyn, v2n�1q satisfying px0, y0, . . . , xn, ynq � u2n and v2n�1 ¤ u2n. We have, by construction
of q, that v2n�1 ¤ u2n ¤ un ¤ q ¤� qn�1; so in particular, v2n�1 and qn�1 are compatible.
Recalling that s æn P Sn, we see that the pair pu2n, v2nq witnesses that pxn, ynq P As æn

.

Now let us leave the fictive situation and come back to the “real” Kp. Since
pxn, ynq P As æn

, we know that the pair pus æn,xn,yn , vs æn,xn,ynq has been defined; we de-
note this pair by pu1n, v1n�1q. In the “real” Kp, we make I play pxn, u1nq. By definition
of pu1n, v1n�1q, this move is legal, and II will answer, according to her strategy, with
pyn, v1n�1q. Remark that the required condition (a) in the induction hypothesis is satisfied
by these moves since, by the definition of Sn�1, we have s æn " pxn, u1n, yn, v1n�1q P Sn�1.
We also have that q ¤� qn�1 ¤� v1n�1, so there exists vn�1 P P such that vn�1 ¤ v1n�1

and vn�1 Æ q. For this reason, and since we also have (as we already saw)
px0, y0, . . . , xn, ynq � u2n ¤ un, we get that pyn, vn�1q is a legal move for II in Bq,
that satisfies the condition (b) in the induction hypothesis. So we just have to define
her strategy as leading her to play this move, and this achieves the proof.

We actually proved a little more than theorem II.4. Say that the Gowers space G
is analytic if P is an analytic subset of a Polish space and if the relations ¤ and �
are Borel subsets of P 2 and of SeqpXq � P respectively. For most of the spaces we
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actually use, P can be indentified to an analytic subset of PpXq, the relation ¤ to
the inclusion, and the relation px0, . . . , xnq � p to the membership relation xn P p;
thus, these spaces are analytic. This is, for instance, the case for the Mathias–Silver
space and the Rosendal space introduced at the beginning of this section. Then an easy
consequence of proposition II.6 is the following:

Corollary II.8. Let Γ be a suitable class of subsets of Polish spaces. If every Γ-subset
of Rω is determined, then for an analytic Gowers space G � pP,X,¤,¤�,�q, every
Γ-subset of Xω is adversarially Ramsey.

Proof. Fix X � Xω a Γ-subset, and p P P . By proposition II.6, it is enough to show that
in the game Kp, either player I has a strategy to reach X , or player II has a strategy
to reach X c. Let ϕ : R ÝÑ P be a surjective Borel mapping, and consider the following
game K 1

p:

I x0, rq0 x1, rq1 . . .
II rp0 y0, rp1 y1, rp2 . . .

where the xi’s and the yi’s are elements of X and the rpi’s and the rqi’s are real num-
bers, with the constraint that ϕp rp0q ¤ p, for all i P ω, ϕprqiq ¤ ϕprpiq, ϕp�pi�1q ¤ ϕprqiq,
px0, y0, . . . , xiq � ϕprpiq, and px0, y0, . . . , xi, yiq � ϕprqiq, and whose outcome is the se-
quence px0, y0, x1, y1, . . .q P Xω. This game is clearly equivalent to Kp: I has a strategy
to reach X in Kp if and only if he has one in K 1

p, and II has a strategy to reach X c in
Kp if and only if she has one in K 1

p. Since K 1
p is a game on real numbers with Borel

rules and since X is in Γ, we deduce that in this game, either I has a strategy to reach
X , or II has a strategy to reach X c, what concludes the proof.

Corollary II.8 shows in particular that, in an analytic Gowers space, under PDR,
every projective set is adversarially Ramsey. Recall that Harrington and Kechris [27],
and independently Woodin [64] proved that under PD, every projective subset of rωsω
is Ramsey. Using ideas from Woodin’s proof, Bagaria and López-Abad [8] showed that
under PD, every projective set of block sequences of a basis of a Banach space is strate-
gically Ramsey (i.e. satisfies the conclusion of Gowers’ theorem I.8). Basing ourselve on
these facts, we can formulate the following conjecture:

Conjecture II.9. Under PD, if the Gowers space G � pP,X,¤,¤�,�q is analytic, then
every projective subset of Xω is adversarially Ramsey.

Clearly, the method presented in the present paper does not enable to prove this.

Also remark that the proof of proposition II.6 can almost entierly be done in
ZF � DC; the only use of the full axiom of choice is made to choose u2n P P such
that u2n Æ un and u2n ¤ v1n, and vn�1 P P such that vn�1 ¤ v1n�1 and vn�1 Æ q, so
actually to apply axiom 2. in the definition of a Gowers space. For this reason, say that
the Gowers space G is effective if in this axiom 2., the subspace r can be chosen in an
effective way, that is, if there exist a function f : P 2 ÝÑ P such that for every p, q P P ,
if p ¤� q, then we have fpp, qq Æ p and fpp, qq ¤ q. For instance:
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• The Mathias–Silver space is effective: indeed, if M �� N , then we can take
fpM,Nq �M XN .

• The Rosendal space is effective. Indeed, if X and Y are block subspaces such that
X �� Y , let pxnqnPω be a block sequence spanning X. Then we can let fpX,Y q be
the subspace spanned by the largest final segment of pxnq all of whose terms are
in Y (this subspace does not depend on the choice of pxnq).

To prove proposition II.6 for an effective Gowers space, we only need dependant
choices. Thus, we have the following result:

Corollary II.10 (ZF �DC � ADR). Let G � pP,X,¤,¤�,�q be an effective Gowers
space such that P is a subset of a Polish space. Then every subset of Xω is adversarially
Ramsey.

Proof. Recall that in ZF �DC � AD, every subset of a Polish space is either at most
countable, or contains a Cantor set, and is thus in bijection with R (this is a consequence
of theorem 21.1 in [32], that can be proved in ZF � DC). So if P is countable, then
Kastanas’ game can be viewed as a game on integers and is thus determined, and if P
is uncountable, then Kastanas’ game can be viewed as a game on real numbers, that is
also determined. The conclusion follows from proposition II.6.

As above, we cannot prove in this way that the same result holds under AD instead
of ADR, but we conjecture that it does so. As we will see in the next section, if this
is true, this would imply that under AD, every subset of rωsω is Ramsey, which is still
conjectural today.

Since for sufficiently regular Gowers spaces (analytic ones, or effective ones with P
being subset of a Polish space, depending on the case), we only need the determinacy of
Γ-subsets of Rω to prove the adversarial Ramsey property for Γ-sets, and since from this
property in every sufficiently regular space, we can deduce the determinacy of Γ-subsets
of ωω, another interesting question is the following:

Question II.11. Where does the adversarial Ramsey property for Γ-sets in sufficiently
regular Gowers spaces lie between the determinacy of Γ-subsets of ωω and the determi-
nacy of Γ-subsets of Rω?

This question can be asked both in terms of implication and of consistency strength.
In particular, we don’t know whether there exists an analytic Gowers space G and a
suitable class Γ of subsets of Polish spaces such that ZFC doesn’t prove that the de-
terminacy of Γ-subsets of ωω implies the adversarial Ramsey property for Γ-sets in G,
neither if there exists some such that the consistency strength of ZFC�“Every Γ-set in
G is adversarially Ramsey” is strictly above the consistency strength of ZFC�“Every
Γ-subset of ωω is determined”.
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II.2 Strategically Ramsey sets and the pigeonhole princi-
ple

The aim of this section is to prove a version of Rosendal’s theorem I.13 in the general
setting of Gowers spaces. We also introduce the notion of the pigeonhole principle for
a Gowers space and see that the last result can be strengthened in the case where
this principle holds. This will enable us to see the fundamental difference between the
Mathias–Silver space and the Rosendal space over a field with at least three elements. We
start by introducing Gowers’ game and the asymptotic game in the setting of Gowers
spaces, and the notion of a strategically Ramsey set. In this whole section, we fix a
Gowers space G � pP,X,¤,¤�,�q.
Definition II.12. Let p P P .

1. Gowers’ game below p, denoted by Gp, is defined in the following way:

I p0 p1 . . .
II x0 x1 . . .

where the xi’s are elements of X, and the pi’s are elements of P . The rules are the
following:

• for I: for all i P ω, pi ¤ p;

• for II: for all i P ω, px0, . . . , xiq � pi.

The outcome of the game is the sequence pxiqiPω P Xω.

2. The asymptotic game below p, denoted by Fp, is defined in the same way as Gp,
except that this time the we moreover require that pi Æ p.

Definition II.13. A set X � Xω is said to be strategically Ramsey if for every p P P ,
there exists q ¤ p such that either player I has a strategy to reach X c in Fq, or player
II has a strategy to reach X in Gq.

The general version of Rosendal’s theorem I.13 is then the following:

Theorem II.14 (Abstract Rosendal’s theorem). Every analytic subset of Xω is strate-
gically Ramsey.

Remark that theorem I.13 is exactly the result of the application of theorem II.14 to
the Rosendal space.

Proof. We firstly prove the result for Borel sets. In order to do this, consider another
space rG � pP,X,¤,¤�, r�q, where P , X, ¤, and ¤� are the same as in G, but we replace
� by the relation r� defined by px0, y0, x1, y1, . . . , xn, ynq r� p iff py0, y1, . . . , ynq � p, and
px0, y0, x1, y1, . . . , xnq r� p iff px0, x1, . . . , xnq � p. Now, to each set X � Xω, associate a
set rX � Xω defined by px0, y0, x1, y1, . . .q P rX ô py0, y1, . . .q P X . Then, when players
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try to reach rX or rX c in the games Ap and Bp of rG, the pi’s played by II and the xi’s

played by I don’t matter at all; so a strategy for I in the game Ap of rG to reach rX c
becomes a strategy for I in the game Fp of G to reach X c, and a strategy for II in

the game Bp of rG to reach rX becomes a strategy for II in the game Gp of G to reach
X . Thus, the strategical Ramsey property for X in G is equivalent to the adversarial
Ramsey property for rX c in rG, so the strategical Ramsey property for Borel sets in G
follows from theorem II.4.

From the result for Borel sets, we now deduce the result for arbitrary analytic
sets using an unfolding argument. Let X � Xω be analytic, and p P P . Let
X 1 � X � t0, 1u, whose elements will be denoted by the letters px, εq. Define the binary
relation �1� SeqpX 1q�P by px0, ε0, . . . , xn, εnq �1 p if px0, . . . , xnq � p, and consider the
Gowers space G1 � pP,X 1,¤,¤�,�1q. In this proof, we will use the notations Fq and Gq
to denote respectively the asymptotic game and Gowers’ game in the space G, whereas
the notations F 1q and G1q will be used for these games in the space G1. We denote by
π the projection X 1ω ÝÑ Xω. Let X 1 � X 1ω be a Gδ set such that X � πpX 1q. Since
X 1 is Gδ, it is strategically Ramsey; let q ¤ p witnessing so. If player II has a strategy
in G1q to reach X 1, then a run of the game Gq where II uses this strategy but omits to
display the εi’s produces an outcome lying in X ; hence, II has a strategy to reach X in
Gq. Then, our result will follow from the following fact:

Fact II.15. If I has a strategy to reach X 1c in F 1q, then he has a strategy to reach X c in
Fq.

Proof. Let τ 1 be a strategy enabling I to reach X 1c in F 1q. In order to save notation,
in this proof, we consider that in the games F 1q and Fq, player II is allowed not to
respect the rules (i.e. to play xi’s such that px0, . . . , xiq � pi), but loses the game if
she does. Then, the strategy τ 1 can be viewed as a mapping X 1 ω ÝÑ P such that for
every px0, ε0, . . . , xn�1, εn�1q P X 1 ω, we have τ 1px0, ε0, . . . , xn�1, εn�1q Æ q. Remark
that if ppjqjPJ is a finite family of elements of P such that @j P J, pj Æ q, then by
applying iteratively the property 2. in the definition of a Gowers space, we can get
p� P P such that p� Æ q and @j P J p� ¤ pj . Thus, for every px0, . . . , xn�1q P X ω, we
can choose τpx0, . . . , xn�1q P P such that τpx0, . . . , xn�1q Æ q and such that for every
pε0, . . . , εn�1q P t0, 1un, we have τpx0, . . . , xn�1q ¤ τ 1px0, ε0 . . . , xn�1, εn�1q. We have
hence defined a mapping τ : X ω ÝÑ P ; we show that this is a strategy for I in Fq
enabling him to reach X c.

Consider a run of the game Fq during which II respects the rules and I plays according
to his strategy τ :

I p0 p1 . . .
II x0 x1 . . .

We have to show that pxiqiPω R X , that is, for every pεiqiPω P t0, 1uω, pxi, εiqiPω R X 1.
Let pεiqiPω P t0, 1uω; it is enough to show that pxi, εiqiPω is the outcome of a run of the
game F 1q during which I always follows his strategy τ 1 and II always respects the rules.

48



Letting p1i = τ 1px0, ε0, . . . , xn�1, εn�1q, this means that during the following run of the
game F 1q, player II always respects the rules:

I p10 p11 . . .
II x0, ε0 x1, ε1 . . .

But for every i P ω, we have that pi � τpx0, . . . , xn�1q and p1i � τ 1px0, ε0, . . . , xn�1, εn�1q,
so by definition of τ , we have pi ¤ p1i. Since player II respects the rules in Fq, we have
that px0, . . . , xiq � pi, so px0, ε0, . . . , xi, εiq � p1i, and II also respects the rules in F 1q.
This concludes the proof.

Remark that in the proof of theorem II.14, we only need theorem II.4 for Gδ sets,
and hence determinacy for Gδ games. Hence, unlike theorem II.4 in its generality, the
last result is provable in ZC. Actually, as previously, for effective Gowers spaces, it is
even provable in Z �DC.

Again, we actually proved a little more. Indeed, the proof of theorem II.14, combined
with corollaries II.8 and II.10, actually shows the following:

Corollary II.16.

1. Let Γ be a suitable class of subsets of Polish spaces. If every Γ-subset of Rω is
determined, then for an analytic Gowers space G � pP,X,¤,¤�,�q, every DΓ-
subset of Xω is strategically Ramsey.

2. pZF �DC�ADRq Let G � pP,X,¤,¤�,�q be an effective Gowers space such that
P is a subset of a Polish space. Then every subset of Xω is strategically Ramsey.

The rest of this section aims at explaining how we can, in certain cases, get symmetri-
cal Ramsey results like Mathias–Silver’s theorem from theorem II.14, which is asymmet-
rical. By asymmetrical, we mean here that unlike Mathias–Silver’s theorem, in theorem
II.14, both possible conclusion don’t have the same form. Actually, one of these con-
clusions is stronger than the other (and, as it will turn out later, strictly stronger in
general), as it is shown by the following lemma.

Lemma II.17. Let X � Xω and p P P . Suppose that I has a strategy in Fp to reach
X . Then II has a strategy in Gp to reach X .

Proof. Fix τ a strategy enabling I to reach X in Fp. We describe a strategy for II in Gp
by simulating a play pq0, x0, q1, x1, . . .q of Gp by a play pp0, x0, p1, x1, . . .q of Fp having
the same outcome and during which I always plays according to τ ; this will ensure that
px0, x1, . . .q P X and that this play of Gp will be winning for II.

Suppose that the first n turns of both games have been played, which means that the
pi’s, the qi’s and the xi’s have been choosen for every i   n. For the next turn, in Gp,
player I plays qn ¤ p, and in Fp, the strategy τ tells I to play pn Æ p. Then qn ¤� pn, so
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by axiom 2. in the definition of a Gowers space, there exists rn P P such that rn ¤ pn
and rn ¤ qn. Let xn P X such that px0, . . . , xnq � rn (existing by axiom 4.). Then xn
can be legally played by II in both Fp and Gp, what concludes the proof.

Actually, the fact that I has a strategy in Fp to reach some set X is in general much
stronger than the fact, for II, to have a strategy in Gp to reach the same set, and the first
statement is in fact very close to a “genuine” Ramsey statement. By a “genuine” Ram-
sey statement, we mean a non-game-theoretical statement of the form “every sequence
pxnqnPω such that @n P ω px0, . . . , xnq � p, and moreover satisfiying some structural
condition, belongs to X”; this is, for example, the form of both possible conclusions of
Mathias–Silver’s theorem (that have the form “every infinite subset of N belongs to X”;
here, we identify infinite sets of integers with strictly increasing sequences of integers,
the fact of being “strictly increasing” being in this case the structural condition men-
tionned above). In the case of the Mathias–Silver space, the link between the existence
of a strategy for I in the asymptotic game and a genuine Ramsey statement is given by
the following lemma:

Lemma II.18. Work in the Mathias–Silver space, and let X � ωω. Suppose that, for
some M P rωsω, player I has a strategy in FM to reach X . Then there exists an infinite
N � M such that every infinite S � N belongs to X (here, we identify infinite subsets
of ω with increasing sequences of integers).

Obviously, a weak converse of this lemma holds: if every infinite S � M belongs
to X , then I has a strategy in FM to reach X . Indeed, he can always ensure that the
outcome of this game is an increasing sequence.

Proof of lemma II.18. Without loss of generality, assume M � ω. As in the proof of fact
II.15, consider that in Fω, player II is allowed to play against the rules, but loses if she
does. Let τ be a strategy for player I in Fω, enabling him to reach X ; in this context,
this strategy can be viewed as a mapping associating to each finite sequence of integers a
cofinite subset of ω. Without loss of generality, we can assume that these cofinite subsets
are final segments of ω; for s P ω ω, let τ0psq � min τpsq. Now define, by induction, a
strictly increasing sequence pniqiPω of integers in the following way: let n0 � τ0p∅q, and
for i P ω, let ni�1 be the maximum of ni� 1 and of the τ0pni0 , . . . , nik�1

q’s for k P ω and
0 ¤ i0   . . .   ik�1 � i. Let N � tni | i P ωu; then N is as required. Indeed, an infinite
subset of N has the form tnik | k P ωu for a strictly increasing sequence of integers
pikqkPω. To prove that pnikqkPω P X , it is enough to prove this sequence is the outcome
of some legal run of the game Fω during which player I always plays according to the
strategy τ . In other words, letting, for all k P ω, Pk � τpni0 , . . . , nik�1

q, we have to show
that during the following run of the game Fω, player II always respects the rules:

I P0 P1 . . .
II ni0 ni1 . . .

But by construction, we have that ni0 ¥ n0 � τ0p∅q � minP0, and for k ¥ 1,
nik ¥ nik�1�1 ¥ τ0pni0 , . . . , nik�1

q � minPk, which concludes the proof.
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The setting of Gowers spaces does not give enough structure to get such a result in
general. A general version of this result will be given in section III.3, in the setting of
approximate asymptotic spaces with some additional structure; and, in a very different
way, the setting of Ramsey spaces presented in [61] is also convenient to get non game-
theoretical infinite-dimensional Ramsey results.

In the setting of Gowers spaces, however, the best kinds of conclusions we can get
in general are those involving strategies for I in the asymptotic game. As, in the case
of the Mathias–Silver space, we are able to get an alternative both side of whose are
“genuine” Ramsey statements, it would be tempting to wonder whether, for Gowers
spaces satisfying some additional property, it would be possible to get an alternative
involving a strategy for player I in the asymptotic game in both sides. It turns out that
such a property exists, called the pigeonhole principle.

In the rest of this paper, we denote by q �s A, for q P P , s P X ω and A � X, the
fact that for every x P X such that s"x � q, we have x P A. This notation could sound
strange, however, in spaces where P � PpXq and px0, . . . , xnq � q ô xn P q, we have
that q �s A iff q � A. Let us introduce the pigeonhole principle.

Definition II.19. The Gowers space G is said to satisfy the pigeonhole principle if for
every p P P , s P X ω and A � X, there exists q ¤ p such that either q �s A, or q �s Ac.

The pigeonhole principle holds in the Mathias–Silver space: there, it is the trivial
fact that every subset of an infinite set is either infinite, or has infinite complement.
It also holds in the Rosendal space over the field F2: this is Hindman’s theorem I.6.
However, it does not hold in the Rosendal space over K, for K � F2: to see this, take for
example for A the set of all vectors whose first nonzero coordinate is 1. Note that apart
from this trivial obstruction, the pigeonhole principle does not hold in the Rosendal
space for much more intrinsic reasons. Indeed, consider the projective Rosendal space,
i.e. the forgetful Gowers space PRK � pP,PpEq,�,��,�q, where PpEq is a countably
infinite-dimensional projective space over the field K (that is, the set of vector lines of
some countably infinite-dimensional K-vector space E), P is the set of block subspaces
of E relative to a fixed basis peiqiPω of E, �� is the inclusion up to finite codimension
as in the definition of the Rosendal space, and where since the space is forgetful, the
relation usually denoted by � is viewed as a relation between points and subspaces, here
the inclusion. The definition of this space is made to avoid the previous obstruction to
the pigeonhole principle and other possible ones of the same kind. However, for K � F2,
the pigeonhole principle still does not hold in PRK : take for example for A the set of
all vector lines Kx, where the first and the last non-zero coordinates of x are equal.

Under the pigeonhole principle, we will show a weak converse to lemma II.17:

Proposition II.20. Suppose that the Gowers space G satisfies the pigeonhole principle.
Let X � Xω and p P P . If player II has a strategy in Gp to reach X , then there exists
q ¤ p such that I has a strategy in Fq to reach X .
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Before proving this proposition, let us make some remarks. Firstly, proposition II.20
immediately implies the following corollary:

Corollary II.21. Suppose that the Gowers space G satisfies the pigeonhole principle.
Let X � Xω be a strategically Ramsey set. Then for all p P P , there exists q ¤ p such
that in Fq, player I has a strategy either to reach X , or to reach X c.

This corollary has some kind of converse. Indeed, for every s P X ω, consider the
Gowers space Gs � pP,X,¤,¤�,�sq, where P , X, ¤ and ¤� are the same as in G and
where t �s p ô s " t � p. Then if G satisfies the pigeonhole principle, all of the Gs’s
do so, so strategically Ramsey sets in these spaces satisfy the conclusion of the last
corollary. Remark that conversely, if the conclusion of this corollary holds for sets of the
form tpxnqnPω | x0 P Au (where A � X), in the space Gs for every s, then G satisfies
the pigeonhole principle. Indeed, let p P P , s P X ω, and A � X. Consider the set
X � tpxnqnPω P Xω | x0 P Au. By assumption, there exists q ¤ p such that in the space
Gs, either I has a strategy in Fq to reach X , or he has one to reach X c. In the first case,
his strategy tells him, at the first turn of Fq, to play some q0 Æ q; then, whatever the
answer x0 �s q0 of player II is, if player I continues to play according to his strategy,
the outcome of the game will be some sequence px0, x1, . . .q belonging to X , what means
that x0 P A; so q0 �s A. In the second case, we show in the same way that there exists
q0 Æ q such that q0 �s A, what concludes. Thus, the satisfaction of the conclusion of
corollary II.21 for clopen sets in Gs for every s P X ω is equivalent to the pigeonhole
principle in G. Remark that if G is a forgetful space, then for every s P X ω, we have
Gs � G; so for such a space, the pigeonhle principle is actually equivalent to the fact
that the conclusion of corollary II.21 holds for sets of the form tpxnqnPω | x0 P Au.

Also remark that corollary II.21 applied to the Mathias–Silver space, combined with
lemma II.18, gives that a set X � rωsω is Ramsey (in the sense of Mathias–Silver’s
theorem) if and only if it is strategically Ramsey in the Mathias–Silver space (when
seen as a subset of ωω). In particular, Mathias–Silver’s theorem is a consequence of the
abstract Rosendal’s theorem II.14.

We now prove proposition II.20.

Proof of proposition II.20. Fix τ a strategy for II in Gp to reach X . We call a state a
partial play of Gp either empty or ending with a move of II, during which II always plays
according to her strategy. We say that a state realises a sequence px0, . . . , xn�1q P X ω

if it has the form pp0, x0, . . . , pn�1, xn�1q. We define in the same way the notion of a
total state (which is a total play of Gp) and of realisation for a total state; if an infinite
sequence is realised by some total state, then it belongs to X . We say that a point x P X
is reachable from a state s if there exists r ¤ p such that τps " rq � x. Denote by As

the set of all points that are reachable from the state s . We will use the following fact.

Fact II.22. For every state s realising a finite sequence s, and for every q ¤ p, there
exists r ¤ q such that r �s As .
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Proof. Otherwise, by the pigeonhole principle, there would exist r ¤ q such that
r �s pAs qc. But then I could play r after the partial play s , and II would answer,
according to her strategy, by x � τps "rq that should satisfy s"x � r. Since r �s pAs qc,
this would imply that x P pAs qc. But we also have, by definition of As , that x P As , a
contradiction.

Now let psnqnPω be an enumeration of X ω such that if sm � sn, then m ¤ n. We
define, for some n P ω, a state s n realising sn, by induction in the following way: s 0 � ∅
and for n ¥ 1, letting sn � sm

" x for some m   n and some x P X,

• if sm has been defined and if x is reachable from sm, then choose a r ¤ p such
that x � τpsm " rq and put s n � sm

" pr, xq,
• otherwise, s n is not defined.

Remark that if s n is defined and if sm � sn, then sm is defined and sm � s n.

We now define a ¤-decreasing sequence pqnqnPω of elements of P in the following
way: q0 � p and

• if s n is defined, then qn�1 is the result of the application of fact II.22 to s n and qn;

• qn�1 � qn otherwise.

Finally, let q ¤ p be such that for every n P ω, q ¤� qn. We will show that I has a
strategy in Fq to reach X . We describe this strategy on the following play of Fq:

I u0 u1 . . .
II x0 x1 . . .

We actually show that I can always play preserving the fact that, if ni P ω is such
that sni � px0, . . . , xi�1q, then s ni is defined. This will be enough to conclude: indeed,�
iPω s ni will be a total state realising the sequence pxiqiPω, showing that this sequence

belongs to X .

Suppose that the ith turn of the play has just been played, so the sequence
sni � px0, . . . , xi�1q has been defined, in such a way that s ni is defined. Then by
construction of qni�1, we have that qni�1 �sni As ni

. We let I play some ui such that
ui Æ q and ui ¤ qni�1. Then ui �sni As ni

, so whatever is the xi that II answers with,
this xi is reachable from s ni . So if sni�1 � sni

"xi, then s ni�1 has been defined, and the
wanted property is preserved.

Remark that this proof can be done in ZF �DC, even if the space G is not supposed
effective.
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II.3 The strength of the adversarial Ramsey principle

In section II.1, we proved the adversarial Ramsey property for Borel sets using Borel
determinacy, and we saw on the trivial example of the space with only one subspace that,
given Γ a suitable class of subsets of Polish spaces, the adversarial Ramsey property for
Γ-sets implied the determinacy for Γ-games on integers. This had two consequences:
on one hand, the use of a sufficiently large fragment of ZFC is necessary to prove the
adversarial Ramsey property for Borel sets, and on the other hand, it is not possible to
prove it for analytic or coanalytic sets in ZFC. However, the space we used to make this
remark is quite artificial. Of course, we made the same remark in the introduction of this
thesis using the Rosendal space, however we did it by making players play according to
the norms of the vectors, which is quite artificial too (we would not do that, for example,
in the applications to Banach-space geometry, where we usually restrict our attention to
normalized vectors). Therefore, is it natural to ask in which cases using a large fragment
of ZFC is necessary to prove the adversarial Ramsey property for Borel sets, or in which
cases this property could be provable in ZFC for analytic and coanalytic sets; the aim of
this section is to give an answer to this question. We will see, in particular, that Gowers
spaces where the pigeonhole principle holds, and those where it does not hold, behave
very differently.

In this section and the next one, we fix Γ a suitable class of subsets of Polish spaces.
Given a Gowers space G � pP,X,¤,¤�,�q, we denote by AdvGpΓq the statement “every
Γ-subset ofXω is adversarially Ramsey”, and by StratGpΓq the statement “every Γ-subset
of Xω is strategically Ramsey”. We let AdvpΓq be the statement “for every analytic
Gowers space G, AdvGpΓq holds”, and StratpΓq be the statement “for every analytic
Gowers space G, StratGpΓq holds”. We proved in the two previous sections the following
implications:

DetRpΓq ���ñ AdvpΓq ���ñ DetωpΓq

StratpDΓq
�www

In the rest of this section, we fix a Gowers space G � pP,X,¤,¤�,�q. We begin
our analysis with making some remarks about games. In the games Ap, Bp, Fp and Gp,
say that the turn n is the sequence of two moves, consisting in one move of each player,
where one player plays a subspace and just after, the other player plays the element
of index n in the outcome. For instance, in a run pp0, x0, p1, x1, . . .q of the game Fp or
Gp, the turn n is ppn, xnq; and in a run pp0, x0, q0, y0, p1, x1, . . .q of the game Ap, or Bp,
the turn 2n is ppn, xnq and the turn 2n � 1 is pqn, ynq. We say that a turn of a game
played under the subspace p is an asymptotic turn if it has the form ppn, xnq where
pn Æ p, player I plays pn and player II plays xn, an anti-asymptotic turn if it has the
form ppn, xnq where pn Æ p, player II plays pn and player I plays xn, a Gowers turn
if it has the form ppn, xnq where pn ¤ p, player I plays pn and player II plays xn, and
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an anti-Gowers turn if it has the form ppn, xnq where pn ¤ p, player II plays pn and
player I plays xn. In this way, Fp is a sequence of asymptotic turns, Gp is a sequence of
Gowers turn, Ap alternates between one anti-Gowers turn and one asymptotic turn, and
Bp alternates between one anti-asymptotic turn and one Gowers turn. Given a game
H, we will denote by H� the same game, but where the roles of players I and II are
reversed.

Recall lemma II.17, where we proved that if player I had a strategy in Fp to reach
some set X , then II had a strategy in Gp to reach X . This lemma can be rephrased in
the following way: if player I has a strategy in Fp to reach X , then he has a strategy in
G�p to reach X . And the proof of this lemma actually show the following stronger result:
if, in a game H, player I has a strategy to reach some set X , then, in a game obtained
from H by replacing some asymptotic turns by anti-Gowers turns, player I still have a
strategy to reach X . Now remark that if we replace turns with even index (resp. odd
index) in Fp with anti-Gowers turns, we get Ap (resp. B�

p ) and that if we replace turns
with odd index in Ap (resp. turns with even index in B�

p ), that are asymptotic turns,
with anti-Gowers turns, then we get G�p . Thus, we have the following lemma:

Lemma II.23. Let X � Xω. Consider the following four assertions:

(A) Player I has a strategy to reach X in Fp;

(B) Player I has a strategy to reach X in Ap;

(C) Player II has a strategy to reach X in Bp;

(D) Player II has a strategy to reach X in Gp;

Then we have the following implications:

(B)

(A) (D)

(C)

An interesting consequence is the following result:

Proposition II.24. Suppose that the Gowers space G satisfies the pigeonhole principle.
Then a set X � Xω is strategically Ramsey if and only if it is adversarially Ramsey.

Proof. Suppose that X is strategically Ramsey, and let p P P . By corollary II.21, there
exists q ¤ p such that either player I has a strategy in Fq to reach X , or he has one to
reach X c. By lemma II.23, we deduce that either I has a strategy in Aq to reach X , or
II has a strategy in Bq to reach X c. So X is adversarially Ramsey.
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Now suppose that X is adversarially Ramsey, and let p P P . Then there exists q ¤ p
such that either I has a strategy in Aq to reach X , or II has a strategy in Bq to reach
X c; so by lemma II.23, either II has a strategy in Gq to reach X , II has a strategy in Gq
to reach X c. In the second case, using proposition II.20, we get the existence of r ¤ q
such that I has a strategy in Fr to reach X c. So X is strategically Ramsey.

In particular, the proof of the adversarial Ramsey property for Borel sets in spaces
where the pigeonhole principle holds can be carried out in ZC, and the adversarial
Ramsey property is provable, in ZC, for analytic and coanalytic sets. In these spaces,
this property is actually useless. We will now see that in spaces where the pigeonhole
principle does not hold, the situation is the opposite. We will need, here, to restrict our
attention to forgetful Gowers spaces.

Proposition II.25. Suppose that the Gowers space G is forgetful and does not satisfies
the pigeonhole principle. Then AdvGpΓq ñ DetωpΓq.
Proof. Suppose AdvGpΓq. We show that every Γ-subset of 2ω is determined. This implies
that every Γ-subset of ωω is determined; see for example [47], exercise 6A.8. So we let
Y P 2ω be a Γ-set. Recall that the Gale-Stewart game over 2, that is, the game where
I and II alternate playing elements of 2 and whose outcome is the sequence of these
elements, is denoted by Gp2 ωq. We have to prove that either I has a strategy to reach
Y in this game, or that II has a strategy to reach Yc in it.

Since G is forgetful, we will consider � as a binary relation between elements of X
and elements of P . Since G does not satisfy the pigeonhole principle, there exists p P P
and A � X such that for every q ¤ p, there exists x, y � q with x P A and y P Ac. We
let f : Xω ÝÑ 2ω be the function mapping a sequence pxnqnPω to the sequence pαnqnPω
defined by @n P ω pαn � 1 ô xn P Aq; and we let X � f�1pYq. Then X is in Γ, so it is
adversarially Ramsey; let q ¤ p such that either I has a strategy in Aq to reach X , or
II has a strategy in Bq to reach X c.

Suppose that I has a strategy τ to reach X in Aq. We show that I has a strategy to
reach Y in the Gale-Stewart game Gp2 ωq by simulating a play pα0, α1, α2, . . .q of this
game by a play pq0, x0, q1, x1, q2, x2, . . .q of Aq during which I always plays according to
τ (here, we use a slightly different notation than usual: the subspaces played by I are
the qi’s, for i odd, and the points played by I are the xi’s, for i even). Suppose that
the xi’s, the qi’s and the αi’s have been played for every i   2n. In the game Aq, we
make II play q2n � q. According to the strategy τ , I answers with x2n and q2n�1. If
x2n P A, then we make I play α2n � 1 in Gp2 ωq; otherwise, we make him play α2n � 0.
In this game, player II answers with α2n�1. If α2n�1 � 1, then, in Aq, we make II
play x2n�1 P A such that x2n�1 � q2n�1; otherwise, we make her play x2n�1 P Ac such
that x2n�1 � q2n�1. Remark that this is always possible by the definition of A, since
q2n�1 ¤ q ¤ p. And the plays can continue.

At the end of the plays, the outcome of Gp2 ωq is pαnqnPω � fppxnqnPωq. Due to the
use of the strategy τ by I, we have that pxnq P X , so pαnq P Y as wanted.
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In the same way, if II has a strategy in Bq to reach X , then we can deduce that II
has a strategy in Gp2 ωq to reach Yc; this concludes the proof.

This proof does not work in spaces that are not forgetful. In these spaces, we need
a slight strengthening of the negation of the pigeonhole principle, for example the fact
that there exists p P P such that for every s P X ω, there exists As � X such that for
every q ¤ p, we do not have q �s As nor q �s Acs. In this case, we can define the function
f in the following way: f maps a sequence pxnqnPω to the unique sequence pαnqnPω such
that for every n, αn � 1 iff xn P Apx0,...,xn�1q, and carry out the proof in the same way.

A consequence of proposition II.25 is that if G is a forgetful Gowers space where
the pigeonhole principle does not hold, then you cannot prove AdvGp∆1

1q in ZC: you
need to use the powerset axiom and the replacement scheme to prove it. This holds,
for instance, in the projective Rosendal space over a field with at least three elements,
showing that “playing on the norm” is not the only way to get back determinacy from
the adversarial Ramsey property. Also, in these spaces, AdvGpΣ1

1q and AdvGpΠ1
1q are

not provable in ZFC and even, are false in ZFC�V � L. This is a first major difference
between spaces with and without a pigeonhole principle; we will see another one in the
next section.

II.4 Closure properties and limitations for strategically
Ramsey sets

In this section, we show the same kind of difference of behavior between spaces with and
without a pigeonhole principle as in the previous section, but this kind for strategically
Ramsey sets. We fix, in the whole section, a Gowers space G � pP,X,¤,¤�,�q and a
suitable class Γ of subsets of Polish spaces. The first thing to remark is that if G satisfies
the pigeonhole principle, then by corollary II.21, the class of strategically Ramsey sets
is closed under taking complements: X � Xω is strategically Ramsey if and only if X c
is so. In particular, in ZFC, every Π1

1 subset of Xω is strategically Ramsey. In spaces
where the pigeonhole principle does not hold, the situation is very different; we firstly
state the two main results of this section and present their consequences, before proving
them.

The first result is a generalisation of a theorem proved by López-Abad [37] in the
context of strategically Ramsey sets in Banach spaces. This result only holds for for-
getful Gowers spaces, and to prove it, we need the negation of a slight weakening of the
pigeonhole principle. We will say that the forgetful space G satisfies the weak pigeonhole
principle if for every A � X, there exists p P P such that either p � A, or p � Ac

(where p � A abusively denotes the fact that for every x P X, if x � p, then x P A).
Of course, in most of the concrete spaces we consider, P has a maximum 1 that is iso-
morphic to every subspace (meaning, here, that for every p0 P P , there are bijections
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Φ : P ÝÑ tp P P | p ¤ p0u and ϕ : X Ñ tx P X | x � p0u that preserve the relations ¤,
¤� and �); this is, for example, the case of the Mathias–Silver space or of the Rosendal
space. In these spaces, the weak pigeonhole principle is equivalent to the pigeonhole
principle. Our result is the following:

Proposition II.26. Suppose that G is forgetful and does not satisfy the weak pigeonhole
principle. Then StratGpΓq ñ StratGpDΓq.

For the second result we need to ensure the fact that the space G is non-trivial
enough. We say that the space G is standard if |P | ¤ c and if G satisfies the following
property: for every s P X ω and for every p P P , there exists q, r ¤ p such that no
x P X satisfies at the same time s " x � q and s " x � r. This property is for instance
satisfied by the Mathias–Silver space and by the Rosendal space. Our second result is
the following:

Proposition II.27. Suppose that the Gowers space G is standard. Then there exists
X P Xω satisfying the following property: for every p P P , player II has no strategy in
Gp to reach X , and no strategy in Gp to reach X c. In particular, X is not strategically
Ramsey. Moreover, if V � L, then such a set X can be choosen Σ1

2.

Let us discuss the consequences of these two propositions. Firstly, we deduce immedi-
ately that if G is forgetful, standard, and does not satisfy the weak pigeonhole principle,
then if V � L, there exist Π1

1-sets that are not strategically Ramsey in this space. In
particular, in this space, the class of strategically Ramsey sets is not closed under com-
plements in general. On the other hand, if G is standard and satisfies the pigeonhole
principle, then StratGpΓq does not imply StratGpDΓq in general, since ZFC proves that
every Π1

1-set in G is strategically Ramsey, but does not prove it for Σ1
2-sets. So, roughly

speaking, we have a dichotomy between, on one side, spaces with a pigeonhole principle
where the class of strategically Ramsey sets is closed under complements but not projec-
tions, and spaces without a pigeonhole principle where the class of strategically Ramsey
sets is closed under projections but not complements.

We finish this section by giving the proof of propositions II.26 and II.27.

Proof of proposition II.26. As usual, since G is forgetful, we will consider � as a relation
between points and subspaces. As in the proof of theorem II.14, we let X 1 � X � t0, 1u
and we define a relation �1� X 1�P by px, εq � pô x � p. Then G1 � pP,X 1,¤,¤�,�1q
is a forgetful Gowers space. To avoid confusion, the asymptotic game and Gowers’ game
will be respectively denoted by Fp and Gp is the space G, an by F 1p and G1p in the space
G1. The proof of theorem II.14 actually show that StratG1pΓq ñ StratGpDΓq, so it remains
to prove that StratGpΓq ñ StratG1pΓq.

So suppose StratGpΓq. Since G does not satisfy the weak pigeonhole principle, there
exists A � X such that for every p P P , there exists x, y � p such that x P A and
y P Ac. We define a mapping f : X Ñ t0, 1u by fpxq � 1 ô x P A, and a mapping
F : Xω Ñ X 1ω by F ppxnqnPωq � px0, fpx1q, x2, fpx3q, x4, fpx5q, . . .q. We show that, for
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X 1 � X 1ω, if F�1pX 1q is strategically Ramsey in G, then X 1 is strategically Ramsey in
G1. Since the mapping F is continuous, it will be enough to conclude.

So we let X 1 � X 1ω, and we suppose that X � F�1pX 1q is strategically Ramsey. Let
p P P . There exists q ¤ P such that either I has a strategy in Fq to reach X c, or II has
a strategy in Gq to reach X .

First case: I has a strategy in Fq to reach X c. We show that I has a strategy in F 1q to
reach X 1c by simulating a play of this game by a play of Fq where I uses a strategy to
reach X c. Suppose that the first n turns of F 1q and the first 2n turns of Fq have been

played. What happens during the pn � 1qth turn of F 1q and during the p2n � 1qth and

the p2n� 2qth turns of Fq is represented in the diagrams below:

I . . . qn rn . . .
Fq

II . . . xn yn . . .

I . . . qn . . .
F 1q

II . . . xn, εn . . .

According to his strategy in Fq, I plays qn Æ q. His strategy in F 1q will consist in copying
this move. In F 1q, II answers with pxn, εnq �1 qn. Since we have that xn � qn, we can
make II play xn in Fq. According to his strategy, I will answer with rn Æ q. Then, by
definition of A, there exists yn � rn such that fpynq � εn. We make II play yn in Fq,
and the games can continue.

At the end of the games, the outcome px0, ε0, x1, ε1, . . .q of the game F 1q will be the
image by F of the outcome px0, y0, x1, y1, . . .q of Fq. By the choice of the strategy of I
in Fq, the outcome of this game is in X c, so the outcome of F 1q is in X 1c as wanted.

Second case: II has a strategy in Gq to reach X . We show that II has a strategy in G1q
to reach X 1 by simulating a play of this game by a play of Gq where II uses a strategy
to reach X . Suppose that the first n turns of G1q and the first 2n turns of Gq have been

played. What happens during the pn � 1qth turn of G1q and during the p2n � 1qth and

the p2n� 2qth turns of Gq is represented in the diagrams below:

I . . . qn qn . . .
Gq

II . . . xn yn . . .

I . . . qn . . .
G1q

II . . . xn, fpynq . . .

In G1q, I plays qn ¤ q. We make him repeat this moves two times in Gq and we denote
by xn and yn the two successive answers of II in this game, according to her strategy. In
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G1q, the strategy of II will consist in playing pxn, fpynqq P X 1. In this way, the outcome
of the game G1q will be the image by F of the outcome of Gq, which is in X ; so the
outcome of G1q is in X 1.

In order to prove proposition II.27, we will need to perform a diagonal argument for
which we need to have at most continuum-many strategies in Gowers’ game. For this
reason, we will need to give a countable version of this game. Exceptionnaly, for technical
reasons, we will define this game with a winning condition rather than an outcome.

Definition II.28. Let p P P and X � Xω. The countable Gowers’ game under p with
target set X , denoted by CGppX q, is the following two-players game:

I x0
0, x

1
0, . . . , x

n0
0 x0

1, x
1
1, . . . , x

n1
1 . . .

II y0 y1 . . .

It is played in the following way. I begins with playing a sequence px0
0, x

1
0, . . .q of elements

of X. At some point, II can choose to interrupt him at some point xn0
0 and to choose

y0 P tx0
0, x

1
0, . . . , x

n0
0 u. In this case, I begins back to choose points x0

1, x
1
1, . . ., and again,

II can choose to interrupt him at some point xn1
1 by choosing y1 P tx0

1, x
1
1, . . . , x

n1
1 u, etc.

Two cases can occur:

• If II always chooses to interrupt I after some time, then at the end of the game,
II will have produced an infinite sequence pyiqiPω. In this case, II wins if and only
if this sequence belongs to X .

• If, at some point, II chooses not to interrupt I, then I will continue to play points
indefinitely and the game will stop after ω points have been played. In this case,
II will have produced a finite sequence s � py0, . . . , yi�1q, and after that, I will
have produced an infinite sequence pxni qnPω; we can let A � txni | n P ωu. Then II
wins if and only if for no q ¤ p, we have that A � tx P X | s " x � qu.

In some situations, specifying the target set, or even the subspace under which the
game is played, will be useless (as only the winning condition depend on this infor-
mation); in this case, the countable Gowers’ game will be denoted by CGp, or simply
CG.

The interest of this game is that it is in fact equivalent to Gowers’ game. More
precisely, we have:

Lemma II.29. Let p P P and X � X. Then:

1. player I has a strategy in Gp to reach X c if and only if he has a winning strategy
in CGppX q;

2. player II has a strategy in Gp to reach X if and only if she has a winning strategy
in CGppX q.
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Proof. 1. pñq Suppose that I has a strategy to reach X c in Gp. Then he can use
the same strategy to win CGppX q, but, instead of playing the subspace
pi, he plays a (non-necessarily injective) enumeration x0

i , x
1
i , . . . of the set

tx P X | si " x � piu, where si � py0, . . . , yi�1q is the sequence of points
already played by II. If II never interrupts him, then according to the rules
of CGppX q, I will win this game. So we can suppose that II interrputs him
to play a yi such that py0, . . . , yiq � pi, and the play can continue exactly as
in Gp.

pðq We simulate a play pp0, y0, p1, y1, . . .q of Gp with a play
px0

0, . . . , x
n0
0 , y0, x

0
1, . . . , x

n1
1 , y1, . . .q where I plays using a winning strat-

egy. Suppose that, for j   i, all the pj and the yj have been played in Gp,
and that the last move in CGppX q is II playing yi�1. In CGppX q, we let I
play x0

i , x
1
i , . . ., according to his strategy. If II never interrupts it, he will

have produced an infinite sequence pxni qnPω, and with A � txni | n P ωu and
s � py0, . . . , yi�1q, knowing that I is winning, we will get that there exists
pi ¤ p such that A � tx P X | s " x � piu. Then we make I play pi in Gp; II
will answer by yi such that s " yi P A, so by construction, we will have that
yi � xnii for some ni P ω, and in CGppX q, II could have interrupted I after
he played xnii to play yi. We will suppose that II did that, and the games
can continue. At the end, the outcome of Gp is an infinite sequence of points
played by II in CGppX q while I was using his winning strategy, so it belongs
to X c as wanted.

2. pñq We simulate a play px0
0, . . . , x

n0
0 , y0, x

0
1, . . . , x

n1
1 , y1, . . .q of CGppX q with a play

pp0, y0, p1, y1, . . .q of Gp where II uses a strategy to reach X . Suppose that the
last move in both games is yi�1, played by II. We say that y P X is reachable
if there exists pi ¤ p such that, if I plays pi in Gp, then the strategy of II tells
him to answer with y. The strategy of II in CGppX q will be the following: she
watches I playing a sequence of points px0

i , x
1
i , . . .q, until he plays a reachable

point. If, for some ni P ω, xnii is reachable, then II interrupts him and plays
yi � xnii . Then, in Gp, by assumption there exists a pi that I can play and
such that II will answer, according to her strategy, with yi, and both games
can continue. In the opposite case, if none of the points xni ’s played by I in
CGppX q is reachable, then II never interrupts him. In this way, I will produce
a sequence pxni qnPω, and we will see that he loses the game CGppX q. Suppose
not. Then, denoting by s � py0, . . . , yi�1q the sequence of points already
played by II in CGppX q, there exists pi ¤ p such that the set txni | n P ωu is
equal to the set tx P X | s"x � piu. Then, I can play pi in the game Gp, and
II will answer, according to her strategy, with a yi belonging to these sets.
This yi is reachable, so this contradict the fact that no term of the sequence
pxni qnPω was reachable.

In the case were II plays only finitely many points in CGppX q, we just saw
that she wins this game. If she produces an infinite sequence pyiqiPω, then
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this sequence is exactly the outcome of the auxiliary game Gp, so it belongs
to X and II wins.

pðq The proof is the same as for the direction pðq of 1.. If II has a strategy to
win CGppX q, then she can use this strategy in Gp by believing that player I
plays, instead of the pi’s, the points of the sets ty P X | py0, . . . , yi�1, yq � piu
successively. Her strategy will always make her interrupt I, because if it did
not, then I could enumerate a set of this form and would win immediately.

Now let τ be a strategy for II in the countable Gowers’ game CG (we do not need
to specify the subspace under which the game is played, nor the target set to define
the notion of a strategy in this game). Such a strategy can be seen as a function
τ : SeqpXq ÝÑ XYt�u: after I has played z0, . . . , zk�1 in CG, if τpz0, . . . , zk�1q � y P X,
this means that II has to interrupt I and to play y, and if τpz0, . . . , zk�1q � �, then II
has to wait and to let I play another point. (In particular, there are at most continuum-
many such strategies.) If τ is such a strategy, we let rτ s be the set of sequences pyiqiPω
that can be produced by II in plays of CG where she interrupts I infinitely many times
and always plays according to her strategy τ . We say that the strategy τ is good if
|rτ s| � c. Given a subspace p P P , we say that a strategy τ is p-correct if whenever,
during a play of CGp, II always plays according to τ and only interrupt I finitely many
times, then I loses this play. (In this context, saying that I loses the play has a sense
even without specifying the target set, since the winning condition for II when II only
interrupts I finitely many times only depends on p.) Remark that a strategy τ is winning
for II in the game CGppX q if and only if it is p-correct and rτ s � X .

Lemma II.30. Suppose that the Gowers space G is standard. Let τ be a strategy for II
in CG. If there exists p P P such that τ is p-correct, then τ is good.

Proof. Suppose that there exists p P P such that τ is p-correct and fix such a p. Let
X � rτ s. Then by the previous remark, II has a strategy winning strategy in CGppX q,
so by lemma II.29, she has a strategy σ in Gp to reach X . As usual, we define a state as a
partial play of Gp ending with a move of II and during which II always plays according to
σ; this play realises a sequence px0, . . . , xn�1q if it has the form pp0, x0, . . . , pn�1, xn�1q.
We build inductively, for α P 2 ω, a state s α realising a sequence sα of length |α|, in
such a way that for α, β P 2 ω, we have α � β ñ s α � s β, and if |α| � |β|, then
α � β ñ sα � sβ. This will be enough to conclude: letting fpxq � �n ω sxæn will define
a one-to-one mapping f : 2ω Ñ X .

We let s∅ � s∅ � ∅. Let α P 2ω and suppose that s α and sα have been built. Then,
since G is standard, then there exists q, r ¤ p such that no x P X satisfies simultaneously
sα

" x � q and sα
" x � r. In particular, x � σps α " qq and y � σps α " rq are distinct

so we can let s α
"

0 � s α
" pq, xq, sα"0 � sα

" x, s α
"

1 � s α
" pr, yq, and sα"1 � sα

" y,
and this achieves the construction.
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Lemma II.31. Let X � Xω. If, for some p P P , II has a strategy in Gp to reach X ,
then there is a good strategy τ for II in CG such that rτ s � X .

Proof. By lemma II.29, if II has a strategy in Gp to reach τ , then she has a winning
strategy τ in the game CGppX q. In particular, this strategy has to be satisfy rτ s � X .
Moreover, it has to be p-correct, so by lemma II.30, it is good.

We can now prove the “ZFC” part of proposition II.27. For the “V � L” part, we
will need some more lemmas and we will do that later. In the rest of this section, we
will use the letters u, v, and w to denote elements of Polish spaces (as ωω or Xω).

Proof of proposition II.27, first part. Suppose that the space G is standard; we build a
set X � X such that for every p P P , II has no strategy in Gp to reach X , and she has
no strategy in Gp to reach X c. By lemma II.31, we only have to ensure that for every
good strategy τ for II in CG, we have rτ s X X � ∅ and rτ s X X c � ∅. Let pταqα c be
a (non-necessarily injective) enumeration of good strategies for II in CG. We can build
inductively two sequences puαqα c and pvαqα c of elements of Xω such that for every α,
uα � vα and uα, vα P rτ sztuξ, vξ | ξ   αu. Then the set X � tuα | α   cu is as wanted.

Of course, the X we built cannot be strategically Ramsey: indeed, by lemma II.17,
we get that for no p P P , I can have a strategy in Fp to reach X c.

For the “V � L” part of proposition II.27, we will use a well-known result by Gödel.
We begin with a definition.

Definition II.32. A well-ordering   of a Polish space U is said to be Σ1
2-good if it has

order-type ω1, if it is a Σ1
2-subset of U2, and if the relation R  � Uω � U defined by

punqnPω R  v Ø tun | n P ωu � tw P ωω | w   vu is Σ1
2.

Gödel’s result is the following (for a proof, see for example [29], lemma 25.27):

Theorem II.33 (Gödel). Suppose V � L. Then there exists a Σ1
2-good well-ordering

on ωω.

Obviously, it follows that if V � L, such an ordering exists on every Polish space.
Remark that if   is a Σ1

2-good well-ordering on a Polish space U , then it is actually
a ∆1

2-subset of U2: indeed, u   v can be written  pu � v _ v   uq, which is a Π1
2

definition. In the same way, the relation R  is in fact ∆1
2, since punqnPω R  v can be

written @u P U pu   v ô Dn P ω u � unq, which is a Π1
2 definition.

Also remark that if U and V are Polish spaces, if   is a Σ1
2-good well order-

ing on V , and if A is a ∆1
2-subset of U � V , then the set B � U � V defined

by pu, vq P B if and only if the set tw P ωω | pu,wq P Au is nonempty and
v is its  -least element, is ∆1

2. Indeed, the fact that pu, vq P B can be written
pu, vq P A ^ @w P ωω pw   v ñ pu,wq R Aq, which is a Π1

2-definition; and it can also
be written pu, vq P A ^ pv � v0 _ DpwnqnPω P V ω ppwnqnPω R  v ^ @n P ω pu,wnq R Aqq,
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which is a Σ1
2-definition (here, v0 denotes the  -least element of V ). We will refer to

this fact later by saying that minimisation preserves ∆1
2-sets.

Our proof of the “V � L” part of proposition II.27 will be the same as this of the
“ZFC” part, but we will replace the use of the axiom of choice by a careful use of a
Σ1

2-good well ordering, enabling us to ensure that the set X we build is definable enough.
The only difficulty here is to compute complexities.

We denote by Strat the sets of strategies for II in the game CG.

Lemma II.34.

1. Strat is a closed subset of the set of mappings SeqpXq ÝÑ X Yt�u. In particular,
it is a Polish space.

2. The set tpτ, uq P Strat�Xω | u P rτ su is an analytic subset of Strat�Xω.

3. The set of good strategies is a ∆1
2-subset of Strat.

Proof. 1. Let τ : SeqpXq ÝÑ XYt�u such that τ R Strat. Then there exist a finite se-
quence px0

0, . . . , x
n0
0 , x0

1, . . . x
n1
1 , . . . , x0

i , . . . , x
ni
i q P SeqpXq such that for every j ¤ i

and for every n   nj , we have τpx0
0, . . . , x

n0
0 , . . . , x0

j�1, . . . x
nj�1

j�1 , x
0
j , . . . , x

n
j q � �,

for every j   i we have τpx0
0, . . . , x

n0
0 , . . . , x0

j , . . . , x
nj
j q P tx0

j , . . . , x
nj
j u, and

τpx0
0, . . . , x

n0
0 , . . . , x0

i , . . . , x
ni
i q R tx0

i , . . . , x
ni
i u. Any τ 1 : SeqpXq ÝÑ X Y t�u satis-

fying the same conditions is not in Strat, showing that the complement of Strat is
open.

2. For τ P Strat, and for v P Xω, let τ � v P X¤ω be the sequence of the points
played by II in a play of CG where he always plays according to τ , and where
I plays the sequence v. Denote by Inf the set of pairs pτ, vq P Strat � Xω

such that τ � v is an infinite sequence. The fact that pτ, pxnqnPωq R Inf can be
written “eventually, τpx0, . . . , xkq � �”, so Inf is a Gσ-subset of Strat � Xω, so
a Polish space. Moreover, the mapping pτ, vq ÞÑ τ � v from Inf to Xω is clearly
continuous. The property u P rτ s, for τ P Strat and u P Xω, can be written as
Dv P Inf pτ � v � uq, so this property in analytic, as wanted.

3. For τ P Strat, we have that τ is good if and only if for every punqnPω P pXωqω,
there exists v P X ω such that pτ, vq P Inf and @n P ω pτ � v � unq; this is a
Π1

2-definition. We now have to find a Σ1
2-definition. For τ P Strat, we denote by

Finτ the set of v P Xω such that pτ, vq P Fin. We define the equivalence relation
Eτ on Finτ by v Eτ w iff τ �v � τ �w, in such a way that τ is good if and only if Eτ
has uncountably many classes. The relation Eτ is Borel, so by Silver’s dichotomy
theorem I.27, we get that τ is good if and only if there exists a continuous mapping
f : 2ω ÝÑ Finτ such that for every w,w1 P 2ω, w � w1 ñ pfpwq, fpw1qq R Eτ .
Knowing that the set of continuous mappings 2ω ÝÑ Xω, with the uniform metric,
is Polish (see [32], theorem 4.19), we see that this characterisation of goodness is
Σ1

2.
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We are now ready to prove the “V � L” part of proposition II.27.

Proof of proposition II.27, second part. We suppose V � L. We fix a Σ1
2-good well

ordering  S on Strat and another one  X on pXωq2. We define two sequences puτ qτPStrat
and pvτ qτPStrat, simultaneously by induction on the relation  S in the following way.
Suppose that the uσ and vσ have been defined for all σ  S τ . Then, if τ is good, we
let puτ , vτ q be the  X -least pair pu, vq P pXωq2 such that u, v P rτ sztuσ, vσ | σ  S τu,
and u � v. Otherwise, we let puτ , vτ q be the  X -least pair pu, vq P pXωq2 such that
u � v and u, v R tuσ, vσ | σ  S τu. By construction, we have that all the uτ ’s and the
vτ ’s, for τ P Strat, are pairwise distinct, and that for every good τ P Strat, we have
uτ , vτ P rτ s. So if we let X � tuτ | τ P Stratu, then by lemma II.31, for every p P P , II
has no strategy in Gp to reach X , nor to reach X c, as wanted. It remains to compute
the complexity of X .

We say that a sequence pτn, u1n, v1nqnPω P pStrat � Xω � Xωqω is nice is it satisfies
the following properties:

(1) The set tτn | n P ωu is an initial segment of Strat for the ordering  S ;

(2) For every n P ω, we have u1n � uτn and v1n � vτn .

Then for u P Xω, the fact that u P X can be written “there exists a nice sequence
pτn, u1n, v1nqnPω P pStrat�Xω �Xωqω and n P ω such that u � u1n”. So to prove that X
is Σ1

2, it is enough to prove that the set of nice sequences is Σ1
2.

Property (1) in the definition of a nice sequence can be written
Dτ P Strat ppτnqnPω R S τq, so it is Σ1

2.

If we know that property (1) is satisfied, then property (2) can be written in the
following way: “for every n P ω, pun, vnq is the  X -least pair pu, vq P Xω�Xω satisfying
the following properties:

(a) u � v, and for every m P ω, if τm  S τn, then u � um, u � vm, v � um and
v � vm;

(b) if τn is good, then u, v P rτns”.

Property (a) is ∆2
1, and by lemma II.34, property (b) is also ∆1

2. Since minimisation
preserves ∆1

2 set, we deduce that this writing of property (2) is ∆1
2. So the set of nice

sequences is Σ1
2, as wanted.
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II.5 The adversarial Ramsey property under large cardinal
assumptions

As we already saw, if Γ is a class of subsets of Polish spaces, then AdvpΓq is implied
by DetRpΓq and implies DetωpΓq, and an interesting question is to know where AdvpΓq
lies between these two determinacy statements, both in terms of implication and of
consistency strength. We do not know much about this question; in this section, we
discuss the consequences of some usual large cardinal assumptions on the adversarial
Ramsey property in order to have a better idea of its strength. In particular, we will
give an answer to Rosendal’s question I.17. As usual, we fix G � pP,X,¤,¤�,�q a
Gowers space.

Recall that, for κ an uncountable cardinal, an ultrafilter on a set X is κ-complete if
it is closed under intersections of size   κ (if κ � ℵ1, such an ultrafilter will also be said
σ-complete). A measurable cardinal is an uncountable cardinal κ on which there exists
a non-principal, κ-complete ultrafilter. Such cardinals are inaccessible, and it can be
shown that the existence of a measurable cardinal is equivalent to the existence of a set
X with a non-principal, σ-complete ultrafilter on X (see [29], lemmas 10.2 and 10.4).

The first determinacy result under large cardinal assumptions was proved by Martin
[38]. We recall that, unless otherwise specified, if X is a set and T � X ω a tree, we put
the discrete topology on X, and the topology induced by the product topology on rT s.
Theorem II.35 (Martin). Suppose that there exists a measurable cardinal κ. Let X be
a set with |X|   κ and T � X ω be a tree. Then every Σ1

1-subset of rT s is determined.

In particular, if there exists a measurable cardinal above |P | and if X P Σ1
1pXωq then

in Kastanas’ game, either player I has a strategy to reach X , or II has one to reach X c.
So proposition II.6, and the proof of theorem II.14, give:

Theorem II.36. If there exists a measurable cardinal above |P |, then every analytic
subset of Xω is adversarially Ramsey, and every Σ1

2-subset of Xω is strategically Ramsey.

In particular, this gives an answer to Rosendal’s question I.17.

Determinacy results for higher levels of the projective hierarchy were then proved,
based on the notion of Woodin cardinals. We will not give the definition of a Woodin
cardinal, since it is quite sophisticated and would have no interest here. Woodin cardinals
are inaccessible, they are not necessarily measurable but contain a stationary set of
measurable cardinals. For more details, see [29], section 34. The first determinacy
results assuming the existence of Woodin cardinals were proved by Martin and Steel
[41, 42]:

Theorem II.37 (Martin–Steel). Suppose that there exist n Woodin cardinals, and a
measurable cardinal above them. Let X be a set with cardinality strictly less than the
Woodins, and T � X ω be a tree. Then every Σ1

n�1-subset of rT s is determined.

(The proof given by Martin and Steel is for X � ω, but a proof of the general case
can be found in [50]). Then, Woodin proves the following result (see [42]):

66



Theorem II.38 (Woodin). Suppose that there exist ω Woodin cardinals and a measur-
able above them. Then every subset of ωω that belongs to LpRq is determined.

LpRq is the class of sets constructible from reals, see [29], section 13. An interesting
consequence of the last theorem is that, under the same hypotheses, AD holds in LpRq.
Indeed strategies for games on ω can be coded by reals, so are in LpRq; moreover, the
sentence, for instance, “τ is a strategy for I in Gpω ωq to reach A”, only quantifies over
sequences of integers, so is absolute for LpRq. This shows that “being determined”, for
a game on integers, is absolute for  LpRq. Since ZF �DC also holds in LpRq, this give
the consistency of the theory ZF �DC �AD relatively to large cardinal axioms.

Given Y an uncountable Polish space, we will denote by �LpRqpY q the set of A � Y
such that there exist a Borel mapping ϕ : Y Ñ ωω and B P Ppωωq X LpRq such that
A � ϕ�1pBq. Since Borel subsets of ωω and Borel mappings from ωω to itself can be

coded by real numbers, these sets and mappings are in LpRq. So we deduce that �LpRq
is a suitable class of subsets of Polish spaces. Neeman confirmed to the author that
theorem II.38 was also true for games on real numbers. From this result, and from
theorem II.37, we can deduce the following results:

Theorem II.39.

1. If there are n Woodin cardinals above |P | and a measurable cardinal above them,
then every Σ1

n�1-subset of Xω is adversarially Ramsey, and every Σ1
n�2-subset of

Xω is strategically Ramsey.

2. Suppose that there are ω Woodin cardinals, and a measurable cardinal above them.

Suppose that the space G is analytic. Then every �LpRq-subset of Xω is adversarially
Ramsey and strategically Ramsey.

Proof. The proof of 1. is exactly the same as the proof of theorem II.36, using Martin
and Steel’s result. For 2., we use Woodin’s result for games on reals with outcome in

LpRq, corollary II.8 and the fact that every �LpRq-subset of Rω (with its Polish topology)
is in LpRq (this is due to the fact that Borel mappings Rω ÝÑ ωω can be coded by real
numbers).

Corollary II.40. If the theory ZFC� “there exist ω Woodin cardinals and a measurable
above them” is consistent, then the following theory is also consistent: ZF �DC� “in
every analytic Gowers spaces, every set is adversarially and strategically Ramsey”.

Proof. We suppose the existence of ω Woodin cardinals and a measurable above them,
and we show that the sentence “in every analytic Gowers spaces, every set is adver-
sarially Ramsey” is satisfied in LpRq. The case of strategically Ramsey sets will follow
since if every set is adversarially Ramsey, then every set is strategically Ramsey. Let
G � pP,X,¤,¤�,�q P LpRq such that LpRq satisfies “G is an analytic Gowers space”.
Then in V , G is an analytic Gowers space, and subsets of Xω that are in LpRq are in
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�LpRqpXωq, so by theorem II.39, they are adversarially Ramsey in V . It remains to prove
that the property of being adversarially Ramsey relativizes to LpRq. For this, we have
to prove that given p P P and X P PpXωq X LpRq, the two notions “I has a strategy in
Ap to reach X” and “II has a strategy in Bp to reach X” relativize to LpRq. Since both
proofs are the same, we show it for Ap.

As well as we did for Gowers games in the the last section (see definition II.28), we
will here define a countable version of the game Ap. For p P P , and for X � Xω, we
define the game CAppX q in the following way:

I y0, z
0
0 , z

1
0 , . . . , z

n0
0 . . .

II x0
0, x

1
0, . . . , x

m0
0 t0, x

0
1, x

1
1, . . . , x

m1
1 . . .

It is played in the following way. II begins with playing a sequence px0
0, x

1
0, . . .q of

elements of X. At some point, I can choose to interrupt her at some point xm0
0 and

to choose y0 P tx0
0, x

1
0, . . . , x

m0
0 u. If he does, then after playing y0, I plays a sequence

pz0
0 , z

1
0 , . . .q of elements f X, and II can choose to interrupt him at some point zn0

0 by
choosing t0 P tz0

0 , z
1
0 , . . . , z

n0
0 u. If she does, then II begins back playing a sequence

px0
1, x

1
1, . . .q, etc.. Three cases can occur:

• First case: both of the player never let the other one play infinitely many consecu-
tive times without interrupting him. Then at the end of the game, the players will
have produced an infinite sequence py0, t0, y1, t1, . . .q P Xω. In this case, I wins if
and only if this sequence belongs to X .

• Second case: at some point, I chooses not to interrupt II and to let her play
infinitely many successive times. Then II will continue to play points indefinitely
and the game will stop after ω points have been played. In this case, the players will
have produced a finite sequence s � py0, t0, y1, t1, . . . , yi�1, ti�1q, and after that, II
will have produced an infinite sequence pxni qnPω; we can let A � txni | n P ωu.
Then I wins if and only if for no q ¤ p, we have that A � tx P X | s " x � qu.
• Third case: at some point, II chooses not to interrupt I and to let him play

infinitely many successive times. Then I will continue to play points indefinitely
and the game will stop after ω points have been played. In this case, the players
will have produced a finite sequence s � py0, t0, y1, t1, . . . , ti�1, yiq, and after that,
I will have produced an infinite sequence pzni qnPω; we can let A � tzni | n P ωu.
Then I wins if and only if for some q Æ p, we have that A � tx P X | s " x � qu.

Using exactly the same proof as in lemma II.29, we can show the following:

• player I has a strategy in Ap to reach X if and only if he has a winning strategy
in CAppX q;
• player II has a strategy in Ap to reach X c if and only if she has a winning strategy

in CAppX q.
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In particular, it is sufficient to show that for p P P and X P PpXωq X LpRq, the
notion “I has a winning strategy in CAppX q” relativizes to LpRq. But this is true,
since strategies in this game are points of a Polish space and thus can be coded by real
numbers.

Our results theorem II.36, theorem II.39 and corollary II.40 are certainly not optimal,
since the statements on the adversarial Ramsey property they give are not enough to
recover the large cardinal assumptions used to deduce them, even in terms of consistency.
And they are not enough to compare the stength of AdvpΓq with this of DetωpΓq (for
the classes Γ that are studied here), because the statements DetωpΓq have already been
shown to be equiconsistent to large cardinal assumptions that are strictly weaker as those
used in our results. For instance, Harrington showed [26] that DetωpΣ1

1q is equivalent to
the existence of a sharp for every real number, an hypothesis that is weaker in consistency
than the existence of a measurable cardinal and that is not enough to deduce DetRpΣ1

1q
(and thus, to deduce AdvpΣ1

1q using our methods). This particular case will be discussed
at the end of this section. Then, Woodin showed that the determinacy of games on ω
with payoff in LpRq had the same consistency strength as the existence of ω Woodin
cardinals (see [33] for a proof of the direction from determinacy to large cardinals,
and [50] for the other direction). However, it seems that ω Woodin cardinals are not
enough to get the determinacy of games on real numbers with payoff in LpRq, so to

get Advp�LpRqq using our methods. The same occur for the case of Σ1
n-sets for n ¥ 2,

for which DetωpΣ1
nq has been shown to be equivalent in consistency strength to large

cardinal assumptions by Woodin (see [48]). So the question of the comparison between
AdvpΓq and DetωpΓq remains widely open. However, AdvpΓq seem, in general, to be
quite close to DetωpΓq, and to illustrate this, in the rest of this section, we will study the
link between the adversarial Ramsey property and the property of being homogeneously
Souslin, a property of sets of sequences closely linked to determinacy.

In what follows, if X and K are sets, and we consider a tree T on X � K as a
subset of X ω �K ω, whose elements are pairs of finite sequences of the same length.
Given s P X ω, we will let Ts � tt P K |s| | ps, tq P T u. We will often identify the
sets pX � Kqω and Xω � Kω, and thus consider rT s as a subset of Xω � Kω. We
denote by p : Xω � Kω Ñ Xω the first projection. If m ¤ n are integers, and if
U is an ultrafilter on Kn, we will denote by πnmpUq the ultrafilter on Km defined by
A P πnmpUq ô tpk0, . . . , kn�1q P Kn | pk0, . . . , km�1q P Au P U .

Definition II.41.

1. Let X,K be sets and T be a tree on X � K. We say that T is homogeneous if
there exists a family pUsqsPX ω , where Us is a maxp|X|�,ℵ1q-complete ultrafilter
on K |s|, satisfying the following properties:

(a) for every s P X ω, Ts P Us;
(b) for every s, t P X ω with s � t, we have Us � π

|t|
|s|pUtq;
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(c) for every x P pprT sq, and for every sequence of sets pAnqnPω P
±
nPω Uxæn,

there exists k P Kω such that for every n P ω, kæn P An.

2. Let X be a set and X � Xω. We say that X is homogeneously Souslin if there
exists a set K and an homogeneous tree T on X �K such that X � pprT sq.

This is a classical fact that homogeneously Souslin sets are determined (see [50],
section 4). This fact is often used in proofs of determinacy from large cardinals; for
example, the results of Martin from a measurable cardinal, or of Martin and Steel, and
of Woodin, supposing the existence of Woodin cardinals with a measurable above them,
actually show the fact that the studied sets are homogeneously Souslin. Our result will
be the following:

Theorem II.42. Let G � pP,X,¤,¤�,�q be a Gowers space and suppose that there
is no measurable cardinal ¤ |P |. Then every homogeneously Souslin subset of Xω is
determined.

This result is interesting because unlike previous results, it does not deduce the
adversarial Ramsey property for a set X from an assumption on a set of real numbers,
but from an assumption on the set X himself. Before proving it, we recall an usual fact
about measurable cardinals: if U is a σ-complete, nonprincipal ultrafilter on a set K,
then there exists a measurable cardinal κ such that U is actually κ-complete (this is a
conseqence of the proof of lemma 10.2 in [29]).

Proof of theorem II.42. Let X � Xω be a homogeneously Souslin set, K a set, T a
homogeneous tree on X�K such that X � pprT sq, and pUsqsPX ω a family of ultrafilters
witnessing that T is a homogeneous tree. Given s P X ω, if Us is nonprincipal, then by
the previous remark, it is κ-complete for a measurable cardinal κ, so in particular it is
|P |�-complete; and this is obviously also true if Us is principal.

Let p P P ; we show that either I has a strategy in Kastanas’ game Kp to reach X ,
or II has one to reach X c. For this, we consider the following game K�

p :

I x0, q0, k0 l0, x1, q1, k1 . . .
II p0 y0, p1 y1, p2 . . .

where the xi’s and the yi’s are elements of X, the pi’s and the qi’s are elements of P ,
and the ki’s and the li’s are elements of K. The rules are the following:

• for I: for all i P ω, px0, y0, . . . , xi�1, yi�1, xiq � pi and qi ¤ pi;

• for II: p0 ¤ p, and for all i P ω, px0, y0 . . . , xi, yiq � qi and pi�1 ¤ qi.

The outcome of the game is the pair of sequences
ppx0, y0, x1, y1, . . .q, pk0, l0, k1, l1, . . .qq P Xω �Kω.

Since rT s is a closed subset of Xω �Kω, then either I has a strategy to reach rT s in
K�
p , or II has one to reach rT sc. So the conclusion will follow from the following fact:
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Fact II.43.

1. If I has a strategy in K�
p to reach rT s, then he has a strategy in Kp to reach X .

2. If II has a strategy in K�
p to reach rT sc, then she has a strategy in Kp to reach X c.

Proof. 1. If I has a strategy in K�
p to reach rT s, then the same strategy used in Kp,

but omitting to display the ki’s and the li’s, will enable him to reach X .

2. Let τ� be a strategy for II in K�
p to reach rT sc. Let e � pp0, x0, q0, y0, . . . , pn, xn, qnq

be a partial play of Kp ending with a move of I, and let s � px0, y0, . . . , xnq.
Since Us is |P |�-complete, there exist an unique pair pyn, pn�1q P X � P such
that tpk0, l0, . . . , knq P K2n�1 | τ�pp0, x0, q0, k0, y0, p1, l0, . . . , pn, ln�1, xn, qn, knq
� pyn, pn�1qu P Us; let call this pair τpeq. This defines a strategy τ for II in
Kp; we will show that this strategy enables her to reach X c.

Suppose not. Then there exists a play pp0, x0, q0, y0, p1, . . .q
of Kp during which II always plays according to τ and
such that px0, y0, x1, y1, . . .q P X . For every n ¥ 1, let
A2n�1 � tpk0, l0, . . . , knq P K2n�1 | τ�pp0, x0, q0, k0, y0, p1, l0 . . . , pn, ln�1, xn, qn, knq
� pyn, pn�1qu. This is an element of Upx0,y0,...,xnq, so B2n�1 � A2n�1 X Tpx0,y0,...,xnq
is also in Upx0,y0,...,xnq. Since px0, y0, x1, y1, . . .q P pprT sq, then by the definition of
a homogeneous tree, we get that there exists a sequence pk0, l0, k1, l1, . . .q P Kω

such that for every n P ω, pk0, l0, . . . , knq P B2n�1. This shows that
pp0, x0, q0, k0, y0, p1, l0, x1, q1, k1, . . .q is a play of K�

p during which II always
plays according to τ�, so ppx0, y0, . . .q, pk0, l0, . . .qq P rT sc. But on the other
hand, we have for every n P ω, pk0, l0, . . . , knq P B2n�1 � Tpx0,y0,...,xnq, so
ppk0, l0, . . . , knq, px0, y0, . . . , xnqq P T , and thus ppx0, y0, . . .q, pk0, l0, . . .qq P rT s, a
contradiction.

Though being determined is not so far from being homogeneously Souslin, theorem
II.42 still does not enable us to compare DetωpΓq and AdvpΓq, since the minimal hy-
potheses to get consistantly DetωpΓq do not enable to prove that, consistently, every
Γ-subset of ωω is homogeneously Souslin. We can illustrate this on the case Γ � Σ1

1. As
we already mentioned, DetωpΣq11 is equivalent to the existence of a sharp for every real
(for a definition of the sharps, see [30], section 9). The proof of DetωpΣq11 assuming the
existence of sharps is very similar to the proof of theorem II.42 (see [30], theorem 31.2),
however everything is done in Lrxs, for some real number x. This does not enable to
generalize to the determinacy of Kastanas’ game: indeed, in this game, players play ele-
ments of P , that are in general reals, and for this reason they do not necessarily belong
to Lrxs. In general, it seems that the main obstacle to prove the equivalence between
AdvpΓq and DetωpΓq is the fact that the parameters played by players in Kastanas’ game
do not belong to the inner models with large cardinals given by DetωpΓq. This should
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be taken into account when trying to prove, either that DetωpΓq and AdvpΓq have the
same consistency strenght, or that they do not.
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Chapter III

Ramsey theory in uncountable
spaces

In the setting of Gowers spaces defined in the last chapter, the set of points is always
countable: this is necessary to perform the diagonal arguments in the proof of our
dichotomies. As it will be shown in the first section of this chapter, this hypothesis
is necessary: when X in uncountable, we can find very simple sets that are neither
adversarially Ramsey nor strategically Ramsey (see proposition III.1). Thus this chapter
is devoted to present weak versions of the results of the last chapter in the case where
X is uncountable.

The results we will present are inspired by Gowers’ theorems I.8 and I.11: they
are based on metrical approximation. In section III.2, we will define the setting of
approximate Gowers spaces, where the set of points is a Polish space. In such a space,
analogs of theorem II.4, theorem II.14 and corollary II.21 involving approximation, will
be shown (these are theorem III.6 and corollary III.11). The proof of the first one is
based on the corresponding result without approximation.

In section III.3, we present a general method to get, from statements involving a
strategy for I in the asymptotic game, non-strategical Ramsey conclusions as in Mathias–
Silver’s theorem, Milliken’s theorem, or one of the conclusions of Gowers’ theorem I.8.
Our method enables as well to get such results in Gowers spaces, without approximation,
and in approximate Gowers spaces, with approximation (actually, our results are stated
for structures more general than approximate Gowers spaces, that are called approximate
asymptotic spaces). Our central result, theorem III.16, can be seen as a generalization of
lemma II.18. From this and from the results of section III.2, we can deduce an abstract
version of Gowers’ theorem (corollary III.17) that immediately implies as well Gowers’
theorems I.8 and I.11 and Mathias–Silver’s theorem.
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III.1 A counterexample

In this section, we present a counterexample showing the necessity of the hypothesis
that the set of points is countable in the definition of a Gowers space: without this
hypothesis, theorems II.4 and II.14 are not true in general.

Let X be the R-vector space Rω, endowed with the product topology. This makes it
a Polish vector space. For x � pxiqiPω P X, we let supppxq � ti P ω | xi � 0u, and we
let Npxq � xmin supppxq if x � 0, and Np0q � 0. A block sequence is an infinite sequence
pxnqnPω of nonzero vectors of X such that supppx0q   supppx1q   supppx2q   . . .. The
closed linear span of a block sequence is called block subspace. Remark that if Y is a
block subspace generated by a block sequence pynqnPω, then for panqnPω P Rω, the sum°8
n�0 a

nyn is always convergent, and the elements of Y are exactly the vectors of X
that can be expressed as such a sum. We denote by P the set of all block sequences.
For pxnq, pynq P P , we say that pxnq ¤ pynq if for every n P ω, xn is a (finite) linear
combination of the ym’s; and we say that pxnq ¤� pynq if there exists n0 P ω such that
pxn�n0qnPω ¤ pynqnPω. Finally, for x P X and pxnq P P , we say that x � pxnq if x belongs
to the block subspace generated by pxnq.

It is easy to verify that the space G � pP,X,¤,¤�,�q satisfies all the axioms defining
a forgetful Gowers space, apart from the fact that X is not countable (here, we defined
� as a subset of X � P ); to verify the diagonalisation axiom, use a similar method as
for the Rosendal space. Remark that, for pxnq, pynq P P with pxnq ¤ pynq, we have
pxnq Æ pynq if and only of there exists n0 P ω such that for every n large enough, xn and
yn�n0 are colinear. We can define, for G, the notions of strategically Ramsey sets and of
adversarially Ramsey sets exactly in the same way as for a genuine Gowers space. We
equip Xω with the product topology. We will show the following:

Proposition III.1. There exist a Borel set X � Xω that is not strategically Ramsey.

Remark that the set X we will build has the form tpxnqnPω P Xω | px0, x1q P Yu for
some set Y � X2; so if we endow X with the discrete topology and Xω with the product
topology, then X is actually clopen.

Also recall that X is strategically Ramsey if and only if
tpxnqnPω P Xω | px0, x2, . . .q P X u is adversarially Ramsey. So we deduce the
following corollary:

Corollary III.2. Not all Borel subsets Xω are adversarially Ramsey.

Proof of proposition III.1. The set P can be seen as a subset of Xω with the product
topology; it is a Gδ-subset, so a Polish space. Therefore, there is a Borel isomorphism
ϕ : R ÝÑ P . We define the set Y � X2 in the following way: px, yq P Y if y is
equal to a term of the block sequence ϕpNpxqq. This is a Borel subset of X2. Let
X � tpxnqnPω P Xω | px0, x1q P Yu. We show that X is not strategically Ramsey.

Firstly suppose that there exists p P P such that player II has a strategy in Gp to
reach X and consider the following play of Gp, where II uses her strategy:
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I p q
II x y

Player I starts the game by playing p (his move actually does not matter). Accord-
ing to her strategy, II answers by some vector x. Let pxnqnPω � ϕpNpxqq. Let
A � tn P ω | xn � pu. There are two cases.

First case: A is finite. Then let q � pynqnPω be a final segment of the sequence p such
that @n P A supppxnq   supppy0q. We make I play q. Then, whatever is the answer
y � q of II, we have supppxnq   supppyq for every n P A, so y is different from all the
xn’s, n P ω. So px, yq R Y and II loses the game, a contradiction.

Second case: A is infinite. Then let pniqiPω be an increasing enumeration of A and let
q � pxn0 � xn1 , xn2 � xn3 , xn4 � xn5 , . . .q. We make I play q. Then, whatever is the
answer y � q of II, y is different from all the xn’s, n P ω, so px, yq R Y and II loses the
game, a contradiction.

Now suppose that there exists p � pxnqnPω P P such that player I has a strategy in
Fp to reach X c and consider the following play of Fp, where I uses his strategy:

I q r
II x xk

Player I starts by playing some q Æ p according to his strategy. Now consider a real
number u such that ϕpuq � p. II can always answer by an x � q such that Npxq � u.
Then, according to his strategy, I answers by r � pynqnPω. Since pynq Æ pxnq, there
exists k, l P ω such that xk and yl are colinear, so xk � r. We make II play xk, which is
a term of the block sequence pxnqnPω � ϕpNpxqq, so px, xkq P Y and I loses the game, a
contradiction.

III.2 Approximate Gowers spaces

The counterexample given in the last section shows that the formalism of Gowers spaces
is not sufficient if we want to work with uncountable spaces, like Banach spaces. In
this section, following an idea introduced by Gowers for his Ramsey-type theorem I.8,
we introduce an approximate version of Gowers spaces, allowing us to get approximate
Ramsey-type results in situations where the set of points is uncountable. The results
of this section, along with these of the next section, will allow us to directly recover
results like Gowers’ theorems I.8 and I.11. The interest of the spaces we introduce here
is more practical that theoretical: their main aim is to allow applications, for instance
in Banach-space geometry.

Definition III.3. An approximate Gowers space is a sextuple G � pP,X, d,¤,¤�,�q,
where P is a nonempty set, X is a nonempty Polish space, d is a compatible distance on
X, ¤ and ¤� are two quasiorders on P , and � � X � P is a binary relation, satisfying
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the same axioms 1. – 3. as in the definition of a Gowers’ space and satisfying moreover
the two following axioms:

4. for every p P P , there exists x P X such that x � p;

5. for every x P X and every p, q P P , if x � p and p ¤ q, then x � q.

The relation Æ and the compatibility relation on P are defined in the same way as for
a Gowers space.

For p P P , we define the games Ap, Bp, Fp, and Gp exactly in the same way as for
Gowers spaces (see definitions II.2 and II.12), except that we naturally replace the rules
px0, y0, . . . , xi�1, yi�1, xiq � pi and px0, y0, . . . , xi, yiq � qi in the definition of Ap and Bp
and the rule px0, . . . , xiq � pi in the definition of Fp and Gp, respectively by xi � pi,
yi � qi and xi � pi. The outcome is, there, an element of Xω.

Remark that, with this definition, approximate Gowers spaces are always forgetful,
that is, we define the relation � as a subset of X�P and not as a subset of SeqpXq�P .
Indeed, for technical reasons, to be able to get the results we want (in particular theorem
III.6), we can only make depend the range of possible choices of points of a player in the
games on the subspace played just before by the other player (for example, the range of
possible choices of xi in Gp can only depend on pi). That is not a real problem since all
interesting examples we currently know satisfy this requirement.

In the rest of this section, we fix an approximate Gowers space
G � pP,X, d,¤,¤�,�q. An important notion in the setting of approximate Gow-
ers spaces is that of expansion.

Definition III.4.

1. Let A � X and δ ¡ 0. The δ-expansion of A is the set
pAqδ � tx P X | Dy P A dpx, yq ¤ δu;

2. Let X � Xω and ∆ � p∆nqnPω be a sequence of pos-
itive real numbers. The ∆-expansion of X is the set
pX q∆ � tpxnqnPω P Xω | DpynqnPω P X @n P ω dpxn, ynq ¤ ∆nu.

We can now define the notions of adversarially Ramsey sets and of strategically
Ramsey sets in an approximate Gowers space:

Definition III.5. Let X � Xω.

1. We say that X is adversarially Ramsey if for every sequence ∆ of positive real
numbers and for every p P P , there exists q ¤ p such that either player I has a
strategy in Aq to reach pX q∆, or player II has a strategy in Bq to reach pX cq∆.

2. We say that X is strategically Ramsey if for every sequence ∆ of positive real
numbers and for every p P P , there exists q ¤ p such that either player I has a
strategy in Fq to reach X c, or player II has a strategy in Gq to reach pX q∆.
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Remark that if G0 � pP,X,¤,¤�,�q is a forgetful Gowers space (where we con-
sider � as a subset of X � P ), then we can turn it into an approximate Gowers space
G10 � pP,X, d,¤,¤�,�q by taking for d the discrete distance on X (dpx, yq � 1 for
x � y). In this way, for 0   δ   1 and A � X we have pAqδ � A, and for ∆ a sequence
of positive real numbers strictly lower than 1 and for X � Xω, we have pX q∆ � X . So
for a set X � Xω, the definition of being adversarially or strategically Ramsey in G0 and
in G10 coincide. Therefore, we will consider forgetful Gowers spaces as particular cases of
approximate Gowers spaces.

Another interesting family of examples of approximate Gowers spaces is the following.
Given a Banach space E with a Schauder basis peiqiPω, we can consider the canonical
approximate Gowers space over E, GE � pP, SE , d,�,��, Pq, where P is the set of all
block subspaces of E, SE is the unit sphere of E, d the distance given by the norm, and
X �� Y if and only if Y contains some finite-codimensional block subspace of X. We
will see in the next section how to get Gowers’ theorems I.8 and I.11 from the study of
this space.

The results that generalize theorems II.4 and II.14 to adversarial Gowers spaces are
the following:

Theorem III.6.

1. Every Borel subset of Xω is adversarially Ramsey;

2. Every analytic subset of Xω is strategically Ramsey.

Proof. Remark that to prove 2., it is actually sufficient to prove the following apparently
weaker result: for every X � Xω analytic, for every sequence ∆ of positive real numbers
and for every p P P , there exists q ¤ p such that either player I has a strategy in Fq to
reach pX cq∆, or player II has a strategy in Gq to reach pX q∆. Indeed, if X is analytic,
then pX q∆

2
is analytic too; so applying the last result to pX q∆

2
and to the sequence ∆

2 ,

and using the fact that
��
pX q∆

2

	c	
∆
2

� X c and
�
pX q∆

2

	
∆
2

� pX q∆, we get that X is

strategically Ramsey.

Now let D � X be a countable dense subset, and ∆ be a sequence of positive real
numbers. Consider the Gowers space G∆ � pP,D,¤,¤�,�∆q, where �∆ is defined by
py0, . . . , ynq �∆ p if there exists xn P X with xn � p and dpxn, ynq   ∆n. To avoid
confusion, we denote by Ap, Bp, Fp and Gp the games in the space G, and by A∆

p , B∆
p ,

F∆
p and G∆

p the games in the space G∆.

If X is Borel (resp. analytic) then the set X X Dω is Borel (resp. analytic) too
(when D is endowed by the discrete topology), so it is adversarially (resp. strategically)
Ramsey in G∆. So to prove the theorem, it is enough to show that for every p P P , we
have that:

(i) if player I has a strategy in F∆
p to reach X c, then he has a strategy in Fp to reach

pX cq∆;
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(ii) if player II has a strategy in G∆
p to reach X , then she has a strategy in Gp to reach

pX q∆;

(iii) if player I has a strategy in A∆
p to reach X , then he has a strategy in Ap to reach

pX q∆;

(iv) if player II has a strategy in B∆
p to reach X c, then she has a strategy in Bp to

reach pX cq∆.

We only prove (i) and (ii); the proofs of (iii) and (iv) are naturally obtained by combining
the proofs of (i) and (ii).

(i) As usual, we fix a strategy for I in F∆
p , enabling him to reach X c, and we describe

a strategy for I in Fp to reach pX cq∆ by simulating a play pp0, x0, p1, x1, . . .q of Fp
by a play pp0, y0, p1, y1, . . .q of F∆

p in which I always plays using his strategy; we
suppose moreover that the same subspaces are played by I in both games.

Suppose that in both games, the first n turns have been played, so the pi’s, the
xi’s and the yi’s are defined for i   n. According to his strategy, in F∆

p , I plays
some pn Æ p. Then we let I play the same pn in Fp, and in this game, II answers
with xn P X such that xn � pn. Then we choose yn P D such that dpxn, ynq   ∆n;
by the definition of �∆, we have that py0, . . . , ynq �∆ pn, so we can let II play yn
in F∆

p , and the games can continue!

Due to the choice of the strategy of I in F∆
p , we get that pynqnPω P X c, so

pxnqnPω P pX cq∆ as wanted.

(ii) We simulate a play pp0, x0, p1, x1, . . .q of Gp by a play pp0, y0, p1, y1, . . .q of G∆
p

where II uses a strategy to reach X , and we suppose moreover that I plays the
same subspaces in both games. Suppose that the first n turns of boths games have
been played. In Gp, I plays pn. We make I copy this move in G∆

p , and according
to her strategy, II answers, in this game, by a yn P D such that py0, . . . , ynq �∆ pn.
We can find xn P X such that xn � pn and dpxn, ynq   ∆n; we let II play this
xn in Gp and the games continue. At the end, we have that pynqnPω P X , so
pxnqnPω P pX q∆ as wanted.

Say that the approximate Gowers space G is analytic if P is an analytic subset of a
Polish space, if the relation ¤ is a Borel subset of P 2, and if for every open set U � X,
the set tp P P | Dx P U x � pu is a Borel subset of P . Also recall that if Y is a Polish
space, and if FpY q is the set of all closed subsets of Y , the Effros Borel structure on
FpY q is the σ-algebra generated by the sets tF P FpY q | F X U � ∅u where U varies
over open subsets of Y . If P is an analytic subset of FpXq endowed with the Effros Borel
structure, and if � and � are respectively the inclusion and the membership relation,
then G is an analytic approximate Gowers space. This is, for instance, the case of the
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canonical approximate Gowers space GE over a Banach space E with a basis: indeed,
the fact that F P FpSEq is the unit sphere of a block subspace of E can be written
“there exists a block sequence pxiqiPω such that for every U in a countable basis of open
subsets of SE , F X U � ∅ if and only if there exists n P ω and paiqi n P Qnzt0u with°

i n aixi

}°i n aixi} P U”.

Remark that if G is an analytic approximate Gowers space and ∆ a sequence of
positive real numbers, then the Gowers space G∆ defined in the proof of theorem III.6 is
analytic. So this proof, combined with corollaries II.8 and II.16, gives us the following:

Corollary III.7. Let Γ be a suitable class of subsets of Polish spaces. Suppose that
every Γ-subset of Rω is determined. Then for every analytic approximate Gowers space
G � pP,X, d,¤,¤�,�q, we have that:

1. every Γ-subset of Xω is adversarially Ramsey;

2. every DΓ-subset of Xω is strategically Ramsey.

However, it is not straightforward, in the setting of approximate Gowers spaces, to
get results in ZF �DC �ADR, because the proof of III.6 uses the full axiom of choice.
Indeed, since there is, in general, an uncountable number of subspaces, in the proof of
(ii) (and the same will happen in the proofs of (iii) and (iv)), player II needs AC to
choose xn such that dpxn, ynq   ∆n and xn � pn. However, under a slight restriction,
we can get a positive result. Define the notion of an effective approximate Gowers space
exactly in the same way as for effective Gowers spaces. Effective forgetful Gowers spaces
are obviously effective when seen as approximate Gowers spaces, but also, the canonical
approximate Gowers space GE is effective (this can be shown in the same way as for the
Rosendal space). If G is an effective approximate Gowers space and ∆ a sequence of
positive real numbers, then the Gowers space G∆ defined in the proof of theorem III.6
is also effective. And we have:

Corollary III.8 (ZF �DC�ADR). Let G � pP,X, d,¤,¤�,�q be an effective approx-
imate Gowers space such that P is a subset of a Polish space, and such that for every
p P P , the set tx P X | x � pu is closed in X. Then every subset of Xω is adversarially
Ramsey and strategically Ramsey.

Proof. We follow the proof of theorem III.6, using corollaries II.10 and II.16 to get that
the set X XDω is adversarially Ramsey and strategically Ramsey in G∆. The only thing
to do is to verify that the proofs of (i)–(iv) can be carried out with only DC instead of
AC; as previously, we only do it for (i) and (ii). In the proof of (i), we have to be able
to choose yn P D such that dpxn, ynq   ∆n; this can be done by fixing, at the beginning
of the proof, a well-ordering of D, and by choosing, each time, the least such yn. In the
proof of (ii), the difficulty is to choose xn; so we have to prove that given p P P , n P ω,
and y P D, if there exists x P X with x � p and dpx, yq   ∆n, then we are able to choose
such an x without using AC.
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Using countable choices, for every y P D and n P ω, we choose fy,n : ωω ÝÑ Bpy,∆nq
a continuous surjection. Given p, n and y as in the previous paragraph, we can let
F � tu P ωω | fy,npuq � pu, a closed subset of ωω. Consider T � ω ω the unique
pruned tree such that F � rT s. Then we can let u be the leftmost branch of T and let
x � fy,npuq.

Remark that in the proof of theorem III.6, the most important hypothesis on X is
its separableness, and the only interest of its Polishness is the fact that if X is analytic,
then pX q∆

2
is analytic too. Thus, if we only suppose X separable, then the 1. of this

theorem remains true, and the 2. can be replaced with “for every Σ1
1-subset X of Xω,

for every sequence ∆ of positive real numbers and for every p P P , there exists q ¤ p
such that either player I has a strategy in Fq to reach pX cq∆, or player II has a strategy
in Gq to reach pX q∆”. In the same way, given a suitable class Γ of subsets of Polish
spaces, say that a subset Y of a topological space Y is potentially Γ if for every Polish
space Z and every continuous mapping f : Z ÝÑ Y , f�1pYq is a Γ-subset of Z. Then
corollary III.7 remains true for X only assumed separable, if we modify the conclusion
of 2. in the same way as for theorem III.6, and if in 1. and 2., we replace Γ-subsets and
DΓ-subsets respectively by potentially Γ-subsets and potentially DΓ-subsets. However,
the proof of corollary III.8 does not adapt to arbitrary separable metric spaces; but it
remains true if we only suppose that X is an analytic subset of a Polish space. All of
these extensions can be combined to the other results of this section and of the next
section, since their proof will only use the separableness of X (or the fact that X is an
analytic subset of a Polish space, if we work in ZF �DC).

We now introduce the pigeonhole principle in an approximate Gowers space and its
consequences. We actually only need an approximate pigeonhole principle in this setting.
For q P P and A � X, we write abusively q � A to say that @x P X px � q ñ x P Aq.
Definition III.9. The approximate Gowers space G is said to satisfy the pigeonhole
principle if for every p P P , A � X, and δ ¡ 0 there exists q ¤ p such that either q � Ac,
or q � pAqδ.

For example, by theorem I.10, the canonical approximate Gowers space GE satisfies
the pigeonhole principle if and only if E is c0-saturated.

As for Gowers spaces, we have the following proposition:

Proposition III.10. Suppose that the approximate Gowers space G satisfies the pigeon-
hole principle. Let X � Xω, p P P and ∆ be a sequence of positive real numbers. If
player II has a strategy in Gp to reach X , then there exists q ¤ p such that player I has
a strategy in Fq to reach pX q∆.

Before proving this proposition, let us make some remarks. Using again the fact that�
pX q∆

2

	
∆
2

� pX q∆, we deduce from proposition III.10 the following corollary:
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Corollary III.11. Suppose that the approximate Gowers space G satisfies the pigeonhole
principle. Let X � Xω be a strategically Ramsey set. Then for every p P P and every
sequence ∆ of positive real numbers, there exists q ¤ p such that in Fq, player I either
has a strategy to reach X c, or has a strategy to reach pX q∆.

Conversely, if the conclusion of corollary III.11 holds for sets of the form
tpxnqnPω P Xω | x0 P F u, where F � X is closed, then the space G satisfies the pigeonhole
principle. Indeed, let p P P , A � X and δ ¡ 0. Let F � tx P X | @y P A dpx, yq ¥ δu,
and X � tpxnqnPω P Xω | x0 P F u. Then by assumption, there exists q ¤ p such
that I either has a strategy to reach X c, or has a strategy to reach pX q∆, in Fq, where
∆ � p δ2 , δ2 , . . .q. As in the case of Gowers spaces, in the first case we find q0 Æ q with
q0 � F c � pAqδ, and in the second case we get q0 Æ q with q0 � pF q δ

2
� Ac.

Also remark that if G0 is a forgetful Gowers space, and if G10 is the associated approx-
imate Gowers space, then the pigeonhole principle in G0 is equivalent to the pigeonhole
principle in G10, and proposition III.10 and corollary III.11 are respectively the same as
proposition II.20 and corollary II.21.

We now prove proposition III.10.

Proof of proposition III.10. Unlike the previous results about approximate Gowers
spaces, here we cannot deduce this result from its exact version; thus, we adapt the
proof of proposition II.20. To save notation, we show that there exists q ¤ p such that
I has a strategy in Fq to reach pX q3∆.

We fix τ a strategy for II in Gp to reach X . We call a state a partial play of Gp
either empty or ending with a move of II, during which II always plays according to
her strategy. We say that a state realises a sequence px0, . . . , xn�1q P X ω if it has the
form pp0, x0, . . . , pn�1, xn�1q. The length of the state s , denoted by |s |, is the length of
the sequence it realises. We define in the same way the notion of a total state (which is
a total play of Gp) and of realisation for a total state; if an infinite sequence is realised
by a total state, then it belongs to X . We say that a point x P X is reachable from a
state s if there exists r ¤ p such that τps " rq � x. Denote by As the set of all points
that are reachable from the state s . We will use the following fact.

Fact III.12. For every state s and for every q ¤ p, there exists r ¤ q such that
r � pAs q∆|s |

.

Proof. Otherwise, by the pigeonhole principle, there would exist r ¤ q such that
r � pAs qc. But then I could play r after the partial play s , and II would answer,
according to her strategy, by x � τps " rq that should satisfy x � r. Since r � pAs qc,
this would imply that x P pAs qc. But we also have, by the definition of As , that x P As ,
a contradiction.

For two sequences s, t P X¤ω of the same length, we denote by dps, tq ¤ ∆ the fact
that for every i   |s|, we have dpsi, tiq ¤ ∆i. Let D � X be a countable dense set and
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let psnqnPω be an enumeration of D ω such that if sm � sn, then m ¤ n. We define, for
some n P ω, a state s n realising a sequence tn satisfying dpsn, tnq ¤ 2∆, by induction in
the following way: s 0 � ∅ and for n ¥ 1, letting sn � sm

" y for some m   n and some
y P X,

• if sm has been defined and if there exists z P X reachable from sm such that
dpy, zq ¤ 2∆|sm|, then choose a r ¤ p such that z � τpsm " rq and put tn � tm

" z
and s n � sm

" pr, zq,
• otherwise, s n is not defined.

Remark that if s n is defined and if sm � sn, then sm is defined, and we have sm � s n

and tm � tn.

We now define a ¤-decreasing sequence pqnqnPω of elements of P in the following
way: q0 � p and

• if s n is defined, then qn�1 is the result of the application of fact III.12 to s n and
qn;

• qn�1 � qn otherwise.

Finally, let q ¤ p be such that for every n P ω, q ¤� qn. We will show that I has a
strategy in Fq to reach pX q3∆. We describe this strategy on the following play of Fq:

I u0 u1 . . .
II x0 x1 . . .

We moreover suppose that at the same time as this game is played, we build a se-
quence pniqiPω of integers, with n0 � 0 and ni being defined during the ith turn,
such that psniqiPω is increasing and for every i P ω, |sni | � i, s ni is defined, and
dpsni , px0, . . . , xi�1qq ¤ ∆. This will be enough to conclude: indeed,

�
iPω s ni will be

a total state realising the sequence
�
iPω tni , showing that this sequence belongs to X ;

and since d p�iPω tni , pxiqiPωq ¤ d p�iPω tni ,
�
iPω sniq�d p

�
iPω sni , pxiqiPωq ¤ 3∆, we will

have that pxiqiPω P pX q3∆.

Suppose that the ith turn of the game has just been played, so the sequence
px0, . . . , xi�1q and the integers n0, . . . , ni has been defined. Then by construction of
qni�1, we have that qni�1 � pAs ni

q∆|sni |
. We let I play some ui such that ui Æ q and

ui ¤ qni�1. Then ui � pAs ni
q∆|sni |

. Now, suppose that II answers by xi. Then we choose

a yi P D such that dpxi, yiq ¤ ∆i and we choose ni�1 in such a way that sni�1 � sni
" yi.

So we have that yi P pAs ni
q2∆|sni |

; this shows that s ni�1 has been defined. Moreover we

have dpsni�1 , px0, . . . , xiqq ¤ ∆ as wanted, what ends the proof.

Again, this proof can be done in ZF � DC, even if the space G is not supposed
effective.
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III.3 Eliminating the asymptotic game

Unlike Mathias–Silver’s theorem which ensures that in some subspace, all of the increas-
ing sequences have the same color, and unlike Gowers’ theorem, one of whose possible
conclusions says that all block sequences in some subspace have the same color, all the
results we proved by now only have game-theoretical conclusions. The aim of this section
is to provide a tool to deduce, from a statement of the form “player I has a strategy in
Fp to reach X”, a conclusion of the form “in some subspace, every sequence satisfying
some structural condition is in X”. This tool can be seen as a generalization of lemma
II.18. It will allow us to get, from Ramsey results with game-theoretical conclusions,
stronger results having the same form as Mathias–Silver’s theorem or Gowers’ theorem.

We will actually not add any structure on the set of points, but rather provide a
tool enabling, in each concrete situation, to build this structure in the way we want.
Our result could be stated in the setting of approximate Gowers spaces, but we prefer
to state it in the more general setting of approximate asymptotic spaces, since it could
be useful in itself in situations where we have no natural Gowers space structure.

Definition III.13. An approximate asymptotic space is a quintuple A � tP,X, d,Æ,�u,
where P is a nonempty set, pX, dq is a nonempty separable metric space, Æ is a quasiorder
on P , and � � X � P is a binary relation, satisfying the following properties:

1. for every p, q, r P P , if q Æ p and r Æ p, then there exists u P P such that u Æ q
and u Æ r;

2. for every p P P , there exists x P X such that x � p;

3. for every every x P X and every p, q P P , if x � p and p Æ q, then x � q.

Every approximate Gowers space has a natural structure of approximate asymptotic
space. In an approximate asymptotic space, we can define the notion of expansion, and
the asymptotic game, in the same way as in an approximate Gowers space.

In the rest of this section, we fix A � tP,X, d,Æ,�u an approximate asymptotic
space. To be able to get the result we want, we need some more structure. Recall that
a subset of X is said to be precompact if its closure in X is compact. In what follows,
for K � X and p P P , we abusively write K � p to say that the set tx P K | x � pu is
dense in K.

Definition III.14. A system of precompact sets for A is a set K of precompact subsets
of X, equipped with an associative binary operation `, satisfying the following property:
for every p P P , and for every K,L P K, if K � p and L � p, then K ` L � p.

If pK,`q is a system of precompact sets for A and if pKnqnPω is a sequence of elements
of K, then:

• for A � ω finite, we denote by
À

nPAKn the sum Kn1` . . .`Knk , where n1, . . . , nk
are the elements of A taken in increasing order;
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• a block sequence of pKnq is, by definition, a sequence pxiqiPω P Xω for which there
exists an increasing sequence of nonempty sets of integers A0   A1   A2   . . .
such that for every i P ω, we have xi P

À
nPAi Kn.

We denote by bsppKnqnPωq the set of all block sequences of pKnq.
We can already give some examples. For the Mathias–Silver space N , let KN be

the set of all singletons, and define the operation `N by tmu `N tnu � tmaxpm,nqu.
Then pKN ,`N q is a system of precompact sets. If pmiqiPω is an increasing sequence of
integers, then the block sequences of ptmiuqiPω are exactly the subsequences of pmiq.

Now, for a Banach space E with a basis, consider the canonical approximate Gowers
space GE . Let KE be the set of all unit spheres of finite-dimensional subspaces of E.
We define the operation `E on KE by SF `E SG � SF�G. Then pKE ,`Eq is a system
of precompact sets for GE . If pxnqnPω is a (normalized) block sequence of E, then for
every n, SRxn � txn,�xnu is in KE , and the block sequences of pSRxnqnPω in the sense of
K are exactly the (normalized) block sequences of pxnq in the Banach-theoretical sense.
More generally, it is often useful to study the block sequences of sequences of the form
pSFnqnPω, where pFnqnPω is a FDD of a closed, infinite-dimensional subspace F of E
(that is, a sequence such that every x P F can be written in a unique way as a sum°8
n�0 xn, where for every n, xn P Fn).

In general, in an asymptotic space, a sequence pKnqnPω of elements of a system of
precompact sets can be seen as another kind of subspace. Sometimes, some subspaces of
the type pKnqnPω can be represented as elements of P ; that is, for example, the case in
the Mathias–Silver space and in the canonical approximate Gowers space over a Banach
space with a basis, as we just saw. We now introduce a theorem enabling us to build
sequences pKnqnPω such that bsppKnqnPωq � X , knowing that player I has a strategy in
an asymptotic game to reach X . Firstly, we have to define a new game.

Definition III.15. Let pK,`q be a system of precompact sets for the space A, and
p P P . The strong asymptotic game below p, denoted by SFp, is defined as follows:

I p0 p1 . . .
II K0 K1 . . .

where the Kn’s are elements of K, and the pn’s are elements of P . The rules are the
following:

• for I: for all n P ω, pn Æ p;

• for II: for all n P ω, Kn � pn.

The outcome of the game is the sequence pKnqnPω P Kω.

Theorem III.16. Let pK,`q be a system of precompact sets on the space A, p P P ,
X � Xω, and ∆ be a sequence of positive real numbers. Suppose that player I has a
strategy in Fp to reach X . Then he has a strategy in SFp to build a sequence pKnqnPω
such that bsppKnqnPωq � pX q∆.
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Proof. For each K P K, each q P P such that K � q, and each i P ω, let Ni,qpKq be
a ∆i-net in K (that is, a finite subset of K such that K � pNi,qpKqq∆i), such that for
every x P Ni,qpKq, we have x � q. We fix τ a strategy for I in Fp, enabling him to reach
X . As in the proofs of fact II.15 and lemma II.18, we consider that in Fp, II is allowed
to play against the rules, but that she immedately loses if she does; so we will view τ as
a mapping from X ω to P , such that for every s P X ω, we have τpsq Æ p.

Let us describe a strategy for I in SFp on a play pp0,K0, p1,K1, . . .q of this
game. Suppose that the first n turns have been played, so the pj ’s and the Kj ’s, for
j   n, are defined. Moreover suppose that the sequence ppjqj n is Æ-decreasing. Let
SpK0,...,Kn�1q � X ω be the set of all finite sequences py0, . . . , yk�1q satisfying the follow-
ing property: there exists an increasing sequence A0   . . .   Ak�1 of nonempty subsets
of n such that for every i   k, we have yi P Ni,pminpAiq

p`jPAiKjq. Then SpK0,...,Kn�1q
is finite and for every s P SpK0,...,Kn�1q, we have τpsq Æ p, so by iterating the axiom 1.
in the definition of an approximate asymptotic space, we can find pn Æ p such that for
every s P SpK0,...,Kn�1q, we have pn Æ τpsq. Moreover, if n ¥ 1, we can choose pn such
that pn Æ pn�1. The strategy of I will consist in playing this pn.

Now suppose that this play has been played completely; we show that
bsppKnqnPωq � pX q∆. Let pxiqiPω be a block sequence of pKnq and A0   A1   . . .
be a sequence of nonempty subsets of ω such that for every i, we have xi P

À
nPAi Kn.

For every i P ω, we have
�À

nPAi Kn

� � pminpAiq, so Ni,pminpAiq

�À
nPAi Kn

�
has been

defined and we can choose a yi in it such that dpxi, yiq ¤ ∆i. We have to show that
pxiqiPω P pX q∆, so it is enough to show that pyiqiPω P X . Knowing that τ is a strategy
for I in Fp to reach X , it is enough to show that, letting qi � τpy0, . . . , yi�1q for all i, in
the following play of Fp, II always respects the rules:

I q0 q1 . . .
II y0 y1 . . .

In other words, we have to show that for all k P ω, we have yk � qk.

So let k P ω. We let n0 � minAk. Since the sets A0, . . . , Ak�1 are subsets of n0, we
have that py0, . . . , yk�1q P SpK0,...,Kn0�1q, and therefore pn0 Æ τpy0, . . . , yk�1q � qk. But

yk P Nk,pn0

�À
nPAk Kn

	
, so yk � pn0 , so yk � qk, as wanted.

Again, under slight restrictions, we can prove theorem III.16 without using the full
axiom of choice. Say that the approximate asymptotic space A is effective if there exist
a function f : P 2 ÝÑ P such that for every q, r P P , if there exist p P P such that q Æ p
and r Æ p, then we have fpq, rq Æ q and fpq, rq Æ r. Effective approximate Gowers
spaces, when seen as approximate asymptotic spaces, are effective. We will show that
if A is an effective approximate asymptotic space, if X is an analytic subset of a Polish
space, if for every p P P , the set tx P X | x � pu is closed in X, and if every element of
K is compact, then theorem III.16 for A and K can be shown in ZF �DC. In the proof
of theorem III.16, AC is only used:

• to choose pn such that for every s P SpK0,...,Kn�1q, we have pn Æ τpsq, and such
that pn Æ pn�1 if n ¥ 1;
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• to choose the nets Ni,qpKq;
• and to choose yi P Ni,pminpAiq

�À
nPAi Kn

�
such that dpxi, yiq ¤ ∆i.

The choice of the pn’s can be done without AC as soon as the space A is effective. For
the choice of the nets and of the yi’s, firstly remark that, given K P K and q P P , since
tx P X | x � qu is closed in X, we have that K � q if and only if K � tx P X | x � qu;
so Ni,qpKq can actually be an arbitrary ∆i-net in K, and does not need to depend on
q. Thus, to be able to chose these nets and the yi’s without AC, it is enough to show
that we can choose, without AC, a ∆i-net NipKq in K and a wellordering  i,K on it, for
every K P K and every i P ω. This can be done in the following way. Let ϕ : ωω Ñ X
be a continuous surjection. If K P K, then ϕ�1pKq has the form rTKs, where TK is a
pruned tree on ω. We can easily build, without choice, a countable dense subset of rTKs,
for example the set of all the us’s where for every s P TK , us is the leftmost branch of
TK satisfying s � us. Since TK can naturally be wellordered, then this dense subset can
also be wellordered. Pushing forward by ϕ, this enables us to get, for every K P K, a
countable dense subset DK � K with a wellordering  K . From this we can naturally
wellorder the set of all finite subsets of DK , take for NipKq the least finite subset of DK

that is a ∆i-net in K and take for  i,K the restriction of  K to NipKq.
Theorem III.16, combined with the results of the last section and with the last

remark, gives us the following corollary:

Corollary III.17 (Abstract Gowers’ theorem). Let G � pP,X, d,¤,¤�,�q be an ap-
proximate Gowers space, equipped with a system of precompact sets pK,`q. Let X � Xω,
and suppose that one of the following conditions holds:

• X is analytic;

• G is analytic and X is DΓ, for some suitable class Γ of subsets of Polish spaces
such that every Γ-subset of Rω is determined;

• ADR holds, the space G is effective, P is a subset of Polish space, for every p P P ,
the set tx P X | x � pu is closed in X, and every element of K is compact.

Let p P P and ∆ be a sequence of positive real numbers. Then there exists q ¤ p such
that:

• either player I has a strategy in SFq to build a sequence pKnqnPω such that
bsppKnqnPωq � X c;
• or player II has a strategy in Gq to reach pX q∆.

Moreover, if G satisfies the pigeonhole principle, then the second conclusion can be re-
placed with the following stronger one: player I has a strategy in SFq to build a sequence
pKnqnPω such that bsppKnqnPωq � pX q∆.
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Now see how to deduce Mathias–Silver’s theorem, Gowers’ theorem I.8, and Gowers’
theorem for c0 (theorem I.11) from corollary III.17.

• For Mathias–Silver’s theorem, work in the Mathias–Silver space N with the sys-
tem pKN ,`N q of precompact sets introduced before. Let M be an infinite set of
integers, and X � rωsω be analytic, that we will consider as a subset of ωω by
identifying infinite subsets of ω with increasing sequences of integers. Applying
corollary III.17 to X , to M , and to the constant sequence equal to 1

2 , we get an
infinite N � M such that either I has a strategy in SFN to build ptniuqiPω with
bspptniuqiPωq � X , or he has one to build ptniuqiPω with bspptniuqiPωq � X c. Re-
mark that in SFN , II can always play in such a way that the sequence pniqiPω is
increasing. So in the first case, we get an increasing sequence pniqiPω of elements
of N such that every block sequence of ptniuqiPω belongs to X , or in other words,
such that every infinite subset of tni | i P ωu belongs to X ; and in the second
case, in the same way, we get an infinite subset of N every infinite subset of whose
belongs to X c.

• For Gowers’ theorem, let E be a Banach space with a Schauder basis and work in
the canonical approximate Gowers space GE with the system pKE ,`Eq of precom-
pact sets introduced before. Given Y P P , in SFY , whatever I plays, II can always
ensure that the outcome will have the form pSRynqnPω, where pynqnPω is a block
sequence. So given X � rEs analytic, X � E a block subspace, and ∆ a sequence
of positive real numbers, corollary III.17 gives us either a block sequence pynqnPω
in X such that bsppSRynqnPωq � X c, or a block subspace Y � X such that II has a
strategy in GY to reach pX q∆

2
. In the first case, denoting by Y the block subspace

generated by the sequence pynq, this precisely means that rY s � X c. In the second
case, we have to be careful because the Gowers’ game of the space GE is not exactly
the same as this defined in the introduction: in the one of the introduction, player
II is required to play vectors with finite support forming a block sequence, while
in the one of GE , she she can play any vector in the unit sphere of the subspace
played by I. This is not a real problem as, by perturbating a little bit the vectors
given by her strategy, player II can reach X∆ playing vectors with finite support;
and without loss of generality, we can assume that the subspace Yn played by I
at the pn � 1qth turn is choosen small enough to force II to play a yn such that
supppyn�1q   supppynq.
• To deduce Gowers’ theorem for c0, the method is the same except that this time,
GE satisfies the pigeonhole principle so corollary III.17 will give us a conclusion
with a strong asymptotic game in both sides.

To finish this section, let us show on an example that the hypothesis “I has a strategy
in Fp to reach X” does not always imply that for some subspace q, every sequence below
q satisfying some natural structural condition (for instance, being block) is in X∆. To
see this, consider the Rosendal space RK � pP,Ezt0u,�,��, Pq over a field K. We have
the following fact:
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Fact III.18. Suppose that K is a finite field. Let X � pEzt0uqω and X P P , and suppose
that I has a strategy in FX to reach X . Then there exists a block subspace Y � X such
that every block sequence of Y is in X .

Proof. Let K be the set of all sets of the form F zt0u, where F is a finite-dimensional
subspace of E. Since the field K is finite, the elements of K are finite too. For F,G � E
finite-dimensional, we let pF zt0uq ` pGzt0uq � pF � Gqzt0u. Then pK,`q is a system
of precompact sets. The conclusion follows from theorem III.16 applied to this system,
using the same method as previously.

Remark that this proof does not work when K is infinite, and actually, this
result is false. Let us give a counterexample. Let peiqi ω be the basis of
E with respect to whose block subspaces are taken, and let ϕ : K� Ñ ω
be a bijection. For x P Ezt0u, let Npxq be the first nonzero coordinate
of x. We let Y � tpx, yq P pEzt0uq2 | ϕpNpxqq   min supppyqu and
X � tpxnqnPω P pEzt0uqω | px0, x1q P Yu. Then player I has a strategy in FE to
reach X ; this strategy is illustrated on the following diagram:

I E spanptei | i ¡ ϕpNpxqquq
II x y

But there is no block subspace Y of E such that every block sequence in Y belongs to
X . Indeed, given Y � E a block subspace generated by a block sequence pynqnPω, we
can take λ P K such that ϕpNpλy0qq � min supppy1q, and we have pλy0, y1, y2, . . .q R X .

Just like the counterexample to the pigeonhole principle presented in section II.2,
this counterexample could be avoided by working in the projective Rosendal space
PRK � pP,PpEq,�,��,�q (where we recall that PpEq is the set of all vector lines
in E). However, even in this space, counterexamples to the natural analogue of fact
III.18 can be found. For example, for Kx P PpEq, denote by N 1pKxq the quotient of the
last nonzero coordinate of x by its first nonzero coordinate (which does not depend of the
choice of the representative x); and let X � tpliqiPω P PpEqω | ϕpN 1pl0qq   min supppl1qu.
Then X is a counterexample as well.

Therefore, many cases, the “subspaces” of the form pKnqnPω, where the Kn’s are
elements of a system of precompact sets, cannot always be identified with “genuine”
subspaces (i.e. elements of P ): we always need a form of compactness for that.
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Chapter IV

Hilbert-avoiding dichotomies and
ergodicity

Recall that Johnson’s problem ask whether there exists a separable Banach space with
exactly two subspaces, up to isomorphism (a Johnosn space), and that Ferenczi and
Rosendal’s ergodic conjecture ask whether there exists a non-ergodic separable Banach
space non-isomorphic to `2, where a space is ergodic if E0 reduces to the isomorphism
relation between its subspaces. In this chapter, we try to answer the following question:
if counterexamples to these conjectures exist, do there necessarily exist such counterex-
amples having an unconditional basis? More precisely, we will work on the following
conjectures:

Conjecture IV.1. Let E be a separable Banach space, non-ergodic and non-isomorphic
to `2. Then E has a subspace with an unconditional basis that is non-isomorphic to `2.

Conjecture IV.2. Every Johnson space has an unconditional basis.

Remark that conjecture IV.2 is a consequence of conjecture IV.1: indeed, a result by
Anisca [3] implies that a Johnson space necessarily has a subspace isomorphic to `2.

We do not manage to solve these conjecture, but we prove results that should help
for them. The basic idea is the following. Recall that Rosendal [55] proved that HI
spaces cannot be ergodic; so if a space E is non-ergodic, then by Gowers’ first dichotomy
(theorem I.21), it must have a subspace with an unconditional basis. However, this does
not give us anything interesting, since this space could be isomorphic to `2. So what
we will do is to prove Hilbert-avoiding dichotomies, i.e. dichotomies ensuring that the
subspace obtained is non-isomorphic to `2.

The basic ideas to prove such dichotomies was given to the author by Ferenczi.
The fact that a Banach space is isomorphic to `2 can be verified only on its finite-
dimensional subspaces, and this implies that we can diagonalize among subspaces that
are not isomorphic to `2. Thus, a Banach space E non-isomorphic to `2 can be made
an approximate Gowers space by taking for subspaces only subspaces of E that are not
isomorphic to `2. In this manner, we will be able to prove Hilbert-avoiding versions of

89



Gowers’ first dichotomy, and of Ferenczi–Rosendal’s dichotomy between minimal spaces
and tight spaces (theorem I.25). Obviously, Gowers’ game and the adversarial Gowers’
games change in our new approximate Gowers space, and the consequence of this is that
the possible conclusions in our Hilbert-avoiding dichotomies will be weaker than in their
“original versions”.

Using these dichotomies, we get interesting consequences about conjectures IV.1 and
IV.2. In particular, we define the class of hereditarily Hilbert-primary (HHP) spaces as
follows: a Banach space E is HHP if there is no topological direct sum of subspaces
of E that are both non-isomorphic to `2. Then we get that, to prove conjecture IV.1,
it would be enough to prove that an HHP space cannot be embedded in any subspace
of itself that is not isomorphic to `2, and to prove conjecture IV.2, it would be enough
to prove that an HHP space must at least have two non-isomorphic subspaces that are
non-isomorphic to `2. The two last statements are quite similar to Gowers–Maurey’s
result IV.33 that an HI space cannot be isomorphic to a proper subspace of itself; thus,
it is tempting to try to prove them using the same methods.

This chapter is organized as follows. In section IV.1, we recall some facts and prove
some preliminary results about finite-dimensional decompositions. In section IV.2, we
introduce our Hilbert-avoiding approximate Gowers space and we use it to prove a
Hilbert-avoiding version of Gowers Ramsey-type theorem, theorem IV.9. Then, we use
this theorem to prove our first dichotomy, the Hilbert-avoiding version of Gowers’ first
dichotomy (theorem IV.12). In section IV.3, we prove our Hilbert-avoiding version of
Ferenczi–Rosendal’s minimal-tight dichotomy (theorem IV.14). Note that here, since
the argument is quite technical, we will not use approximate Gowers spaces, but rather
a Gowers space and apply the results of chapter II. In section IV.4, using, among others,
recent unpublished results by Ferenczi, we set the consequences of our two dichotomies
for non-ergodic spaces and Johnson spaces; in particular, we get the results stated in
the last paragraph. Finally, in section IV.5, we give a new and simple proof of Gowers–
Maurey’s result that HI spaces are isomorphic to no proper subspaces. This proof is
only based on Fredholm theory and works as well in the real and the complex case. We
hope that the method used here could help to finish to solve conjectures IV.1 and IV.2,
combined with our dichotomies.

IV.1 Preliminaries

In this section, we recall some preliminary results that will be useful in the next sections.

A finite-dimensional decomposition (FDD) of a Banach space E is a sequence pEnqnPω
of nonzero finite-dimensional subspaces of E such that every x P E can be decom-
posed in a unique way as a convergent sum x � °8

n�0 xn, where for every n P ω,
xn P En. With these notation, we let Pnpxq �

°
i n xi; this defines a linear projection

Pn : E ÝÑÀ
i nEi. As for Schauder bases, we can show that the Pn’s are uniformily

bounded; the number C � supnPω ~Pn~ is called the constant of the FDD. FDDs are
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a generalisation of Schauder bases: given pxnqnPω a normalized sequence in E, we have
that pxnqnPω is a basis of E if and only if pRxnqnPω is an FDD of E, and in this case,
the constants are the same.

If a sequence pFnqnPω of finite-dimensional subspaces of E is a FDD of
À

nPω Fn,
then pFnqnPω will simply be called a FDD. We have the same characterisation for
FDDs as for basic sequences: if pFnqn ω is a sequence of nonzero finite-dimensional
subspaces of E and if there exists a constant C such that, for every m ¤ n and for every
pxiqi n P

±
i n Fi, we have }°i m xi} ¤ C }°i n xi}, then pFnqnPω is a FDD. Moreover,

the constant of this FDD is the least C satisfying this property.

A block-FDD of an FDD pFnqnPω is a sequence pGiqiPω of nonzero finite-dimensional
subspaces of E such that there exists a sequence A0   A1   . . . of finite subsets of ω
such that for every i P ω, Gi � `nPAiFn. By the previous characterisation, a block-FDD
of pFnqnPω is an FDD and its constant is less or equal to than the constant of pFnqnPω.
For x � °8

n�0 xn, where @n P ω xn P Fn, the support of x on the FDD pFnqnPω is
supppxq � tn P ω | xn � 0u. A block-sequence of pFnqnPω is a sequence pxnqnPω of
normalized vectors of `nPωFn such that supppx0q   supppx1q   . . .. Remark that a
normalized sequence pxnqnPω is a block-sequence of pFnqnPω if and only if pRxnqnPω is
a block-FDD of pFnqnPω. In particular, a block-sequence of pFnqnPω is a basic sequence
with constant less or equal to than the constant of pFnqnPω.

An unconditional finite-dimensional decomposition (UFDD) is an FDD pFnqnPω such
that for every pxnqnPω P ±nPω Fn, if the series

°8
n�0 xn converges, then for every

A � ω, the series
°
nPA xn also converges. If this holds, it can be shown that for

every a � panqnPω P `8 and, the series Ta
�°8

n�0 xn
� � °8

n�0 anxn converges. More-

over, letting F � À
nPω Fn, this defines a bounded operator Ta : F ÝÑ F , and

K :� supaPS`8 ~Ta~   8. The constant K is called the unconditional constant of
the FDD.

A sequence pFnqnPω of nonzero finite-dimensional subspaces of E is a UFDD
if and only if there exists a constant K such that for every n P ω, for
every pε0, . . . , εn�1q P t�1, 1un, and for every pxiqi n P ±

i n Fn, we have
}°i n εixi} ¤ K }°i n xi}. In this case, the unconditional constant of pFnqnPω is
the least K satisfying this property. This characterisation shows that a block-FDD
of pFnqnPω is a UFDD with unconditional constant less or equal than the uncondi-
tional constant of pFnqnPω. We can also show that a sequence pFnqnPω of nonzero finite-
dimensional subspaces of E is a UFDD if and only if there exists a constant K 1 such
that for every n P ω, for every A � n, and for every pxiqi n P

±
i n Fn, we have

}°iPA xi} ¤ K 1 }°i n xi}.
Before going further, let us recall some facts about the equivalence of sequences.

Here, α will denote an integer or ω. Two sequences pxnqn α and pynqn α of elements
of a Banach space E are said to be C-equivalent, for some constant C ¥ 1, if there
exist A,B ¥ 1 such that AB ¤ C and for every panqn α P Rα with finite support, we
have 1

A }
°
n α anyn} ¤ }°n α anxn} ¤ B }°n α anyn}. Two sequences are equivalent

if they are C-equivalent for some C. If two normalized sequences pxnqn α and pynqn α
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are C-equivalent, and if X and Y denote the respective closed subspaces spanned by the
xn’s and the yn’s, then there exists a unique C-isomorphism T from X to Y , such that
for every n   α, T pxnq � yn. Moreover, if pxnqnPω is a basic sequence with constant M ,
then pynqnPω is a basic sequence with constant less or equal than CM .

A classical result says that a small perturbation of a basic sequences is still a basic
sequence, equivalent to the first one. We will later need a generalization of this result;
we state it now. Recall that, given a finite-dimensional normed space F , a normalized
basis pfiqi d of F is said to be an Auerbach basis if all of the biorthogonal functionals
f�i P F �, for i   d, have norm 1. Auerbach’s lemma says that such bases always
exist; for a proof see problem 12.1 in [2]. Here, we will say that a sequence pxiqi α of
normalized vectors in a Banach space is M -Auerbach, for M ¥ 1, if for every sequence
paiqi α P Rα with finite support, and for every n   α, we have |an| ¤ M}°i α aixi}.
Remark that if two sequences pxnqn α and pynqn α are C-equivalent, and if pxnqn α isM -
Auerbach, then pynqn α is CM -Auerbach. Obviously, Auerbach bases are 1-Auerbach,
and basic sequences with constant M are 2M -Auerbach. But there also exist other
examples of Auerbach sequences. For exemple, take pFiqiPω a FDD with constant C,
let ni �

°
j i dimpFjq, and for every i P ω, let pxnqni¤n ni�1 be a normalized basis of

Fi which is M -Auerbach, for a fixed M . Then the sequence pxnqnPω is 2CM -Auerbach;
however, this is not necessarily a basic sequence.

The principle of small perturbations we will use here is the following.

Lemma IV.3. Let pxiqi α be a C-Auerbach sequence, and let pyiqi α be a normalized
sequence in the same Banach space. Let ε   1

C , and suppose that
°
i α }xi � yi} ¤ ε.

Then the sequences pxiqi α and pyiqi α are 1�Cε
1�Cε -equivalent.

Proof. Let paiqi α P Rα be a sequence with finite support. We have:�����¸
i α

aiyi

����� ¤
�����¸
i α

aixi

������ ¸
i α
|ai|}yi � xi}

¤
�����¸
i α

aixi

������ C
�����¸
i α

aixi

����� � ¸
i α
}yi � xi}

¤ p1� Cεq
�����¸
i α

aixi

����� .
On the other hand, we have:�����¸

i α
aixi

����� ¤
�����¸
i α

aiyi

������ ¸
i α
|ai|}yi � xi}

¤
�����¸
i α

aiyi

������ Cε
�����¸
i α

aixi

����� ,
so:

p1� Cεq
�����¸
i α

aixi

����� ¤
�����¸
i α

aiyi

����� .
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The result immediately follows.

We now turn back to FDDs and introduce a method for constructing them. The
idea is the same as the usual method for building basic sequences: each term has to
be choosen “far enough” from the previous ones. We give here a formulation of this
criterion that will be quite convenient for our work. We start by giving a new version of
the asymptotic game.

Definition IV.4. Let E be a Banach space. The subspace-asymptotic game below E,
denoted by SubFE , is the following two-players game:

I X0 X1 . . .
II F0 F1 . . .

where the Xn’s are finite-codimensional subspaces of E, and the Fn’s are finite-
dimensional subspaces of E, with the constraint for II that for all n P ω, Fn � Xn.
The outcome of the game is the sequence pFnqnPω.

Our criterion will be the following.

Lemma IV.5. Let E be a separable Banach space and ε ¡ 0. Then player I has a
strategy in SubFn to build a FDD with constant less or equal than 1� ε.
Proof. Recall that Cpr0, 1sq, the space of continuous functions r0, 1s ÝÑ R with the sup
norm, has a Schauder basis peiqiPω with constant 1 (see [2], theorem 1.2.1). We denote
by Pi, i P ω, the projections relative to this basis. Recall also Banach-Mazur’s theorem
(theorem 1.4.3. in [2]), saying that every separable Banach space can be isometrically
embedded in Cpr0, 1sq. So we can assume that E � Cpr0, 1sq. Remark that a strategy for
I in the subspace-asymptotic game into Cpr0, 1sq to reach some target immediately gives
a strategy for I in the same game played in E to reach the same target: I can play in E
the intersection of E and of the subspace he would play in Cpr0, 1sq. So we can assume
that E � Cpr0, 1sq.

Consider the approximate asymptotic space pP, SE , d,Æ, Pq where P is the set of all
infinite-dimensional subspaces of E, d is the distance of the norm on SE , and X Æ Y if
X is a finite-codimensional subspace of Y . On this space, we can consider the system of
compact sets pK,`q where K is the set of balls of nonzero finite-dimensional subspaces
of E and SF `SG � SF�G. In this space, the strong asymptotic game below E is exactly
the same as the subspace-asymptotic game below E. Moreover, denote by XC the set of
basic sequences in E with constant less or equal than C. Then, for a sequence pFnqn ω
of nonzero finite-dimensional subspaces of E, if bsppSFnqnPωq � X1�ε, then pFnqnPω is
a FDD with constant less or equal than 1 � ε. However, by lemma IV.3, we have that
for a well-chosen sequence ∆ of positive real numbers, pX1� ε

2
q∆ � X1�ε. So by theorem

III.16, it is enough to show that player I has a strategy in the asymptotic game FE to
build a basic sequence with constant 1� ε

2 .

Fix δ P �0, 1
2

�
be such that 1�2δ

1�2δ ¤ 1� ε
2 . We describe a strategy for I in FE on a play

pX0, x0, X1, x1, . . .q of this game. We suppose moreover that at the same time as each xi,
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a vector yi is built such that }xi� yi} ¤ δ
2i�1 and such that pyiqiPω is a block-sequence of

penqnPω. This will be enough to conclude: indeed, pyiqiPω will be a basic sequence with
constant 1, so by lemma IV.3, pxiqiPω will be a basic sequence with constant 1� ε

2 .

At the first turn of the game, I plays X0 � E. II answers with x0. Then, for n0 P ω
large enough, we can let y0 � Pn0 px0q

}Pn0 px0q} and we have }x0�y0} ¤ δ
2 . Suppose now that the

first i turns of the game have been played, so x0, . . . , xi and y0, . . . , yi have been built.
Let mi � max supppyiq. Player I plays Xi�1 � KerPmi . Then II answers by xi�1 ¡ yi;

for ni�1 P ω large enough, letting yi�1 � Pni�1 pxi�1q
}Pn0 pxi�1q} , we have }xi�1 � yi�1} ¤ δ

2i�2 . We

have yi�1 ¡ yi as wanted, what finishes the proof.

It will be very important, in the following work, to be able to characterise separable
spaces that are not isomorphic to `2. Recall that it is a well-known fact that if a
separable Banach space X is not isomorphic to `2, then for every C ¥ 1, there exists a

finite-dimensional subspace F of X which is not C-isomorphic to `
dimpF q
2 . We state here

a little stronger result.

Lemma IV.6 (Folklore). Let X be a Banach space and pFnqnPω be an increasing se-
quence of finite-dimensional subspaces of X such that

�
nPω Fn is dense in X. Then

dBM pX, `2q � supnPω dBM pFn, `dimpFnq
2 q.

Proof. Let C ¥ 1 and suppose that for every n, Fn is C-isomorphic to `2. We need to
show that X is C-isomorphic to `2. For every n, let ϕn : Fn ÝÑ En an isomorphism,
where En is a subspace of `2, ~ϕn~ ¤ C, and ~ϕ�1

n ~ ¤ 1. By composing successively
the ϕn’s by isometries between finite-dimensional subspaces of `2, we can moreover
assume that E0 � E1 � . . .. Let U be a nonprincipal ultrafilter on ω. For every
x P �iPω Fi, we let ϕpxq � limiÝÑU ϕipxq. As, if x P BFnpRq, we have for every i large
enough, ϕipxq P BEnpCRq, this limit is well-defined. This defines a linear mapping
ϕ :
�
nPω Fn ÝÑ `2 with, for every x, }x} ¤ }ϕpxq} ¤ C}x}. So ϕ can be extended to an

C-isomorphism between X and a subspace Y of `2, and since Y is isometric to `2, this
concludes.

We can now state a characterisation of non-isomorphism to `2 based on FDDs. This
characterisation will be central in the following work.

Lemma IV.7. Let E be a separable Banach space. Then E is non-isomorphic to
`2 if and only if there is a FDD pFnqnPω in E such that for every n P ω, we have

dBM pFn, `dimpFnq
2 q ¥ n. Moreover, if such a FDD exist, it can be choosen with constant

as close as 1 as we want.

Proof. It is immediate that if there is a FDD pFnqnPω in E with dBM pFn, `dimpFnq
2 q ¥ n

for every n, then E is not isomorphic to `2. Now suppose that E is not isomorphic to
`2. Then no finite-codimensional subspace of E is isomorphic to `2, so by lemma IV.6,

94



when playing the subspace-asymptotic game in E, player II can, at the nth turn, play

Fn with dBM pFn, `dimpFnq
2 q ¥ n. Lemma IV.5 concludes immediately.

An FDD satisfying the conclusion of lemma IV.7 will be called a good FDD in the
rest of this manuscript.

To finish this section, we recall some simple facts about directs sums and HI spaces.
Recall that two subspaces Y, Z of a Banach space X are in topological direct sum if
Y X Z � t0u and if the natural projection Y ` Z ÝÑ Y is bounded. This is equivalent
to say that the mapping Y �Z ÝÑ Y `Z defined by py, zq ÞÑ y � z is an isomorphism;
thus, by the open mapping theorem, saying that Y and Z are in topological direct sum
is equivalent to say that Y XZ � t0u and Y �Z is closed in X. In particular, a space X
is HI if and only if no pair of subspaces of X are in topological direct sum. Also recall
that Y and Z are not in topological direct sum if and only if dpSY , SZq � 0: indeed,
saying that the projection Y ` Z ÝÑ Y is unbounded is equivalent to say that we can
find y P SY and z P Z such that }y�z} is arbitrarily small, so that y and z are arbitrarily
close.

IV.2 The first dichotomy

In this section, we give a Hilbert-avoiding version of Gowers’ first dichotomy I.21. We fix
E a separable Banach space non-isomorphic to `2. We let P be the set of its subspaces
that are not isomorphic to `2, and on P , we put the usual quasi-order �� defined by
X �� Y if X X Y has finite codimension in X. We let d be the distance on SE induced
by the norm.

The results presented in this section take their roots in an idea of Valentin Ferenczi.
He remarked that lemma IV.6 has the following corollary:

Proposition - definition IV.8. The space HAE � pP, SE ,�,��, Pq, called the Hilbert-
avoiding space over E, is an approximate Gowers space.

Proof. The verification of the axioms 1., 4., and 5. in the definition of a Gowers space
are straightforward. The axiom 2. follows from the fact that if a space X has a finite-
codimensional subspace isomorphic to `2, then X is itself isomorphic to `2. We now
verify 3.. Let pXnqPω be a �-decreasing sequence of elements of P . Since Xn is non-
isomorphic to `2, then by the lemma there exist a finite-dimensional subspace Fn � Xn

such that Fn is not n-isomorphic to `
dimpFnq
2 . Then we let X� � °

nPω Fn. Since X
contains all the Fn’s, it is infinite-dimensional and non-isomorphic to `2. Moreover, for
every n P ω, X� � Xn �

°
i n Fi, so X� �� Xn as wanted.
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In the same way as we deduced Gowers’ Ramsey-type theorem from its abstract
version theorem III.17, we can, using this space, give a Hilbert-avoiding version of this
theorem:

Theorem IV.9. Let X P pSEqω be an analytic set, ∆ be a sequence of positive real
numbers, and ε ¡ 0. Then:

• either there exists a good FDD pFnqnPω in E, with constant at most 1 � ε, such
that no block-sequence of this FDD belongs to X ;

• or there exists a subspace X of E, non-isomorphic to `2, such that II has a strategy
in Gowers’ game below X to reach pX q∆.

Beware: here, when talking about Gowers’ game, we talk about the version of Gow-
ers’ game corresponding to the approximate Gowers space HAE . This means that in
this game, player I is only allowed to play subspaces of X that are not isomorphic to `2.

Proof of theorem IV.9. Let K be the set of unit spheres of nonzero finite-dimensional
subspaces of E. For F,G � E finite-dimensional, let SF ` SG � SF�G. This defines a
system pK,`q of compact sets on HAE . Apply the abstract Gowers’ theorem III.17 to
HAE , to this system, to the set X , the subspace E, and the sequence ∆. It gives us a
subspace X of E, non-isomorphic to `2, such that:

• either player I has a strategy τ in SFX to build a sequence pSFnqnPω such that
bsppSFnqnPωq � X c;
• or player II has a strategy in GX to reach pX q∆.

In the second case we are done, so suppose now that we are in the first case. By
lemma IV.5, player I has also a strategy σ in SubFX to build a FDD with constant at
most p1 � εq. Remark that in this case, the games SFX and SubFX can be identified.
We let I play to this unique game using both of the strategies τ and σ at the same
time, that is, at each turn, he plays the intersection of the subspace given by σ and of
the subspace given by τ , which is still finite-codimensional in X. This ensures that the
outcome pFnqnPω will be a FDD with constant at most 1�ε such that bsppSFnqnPωq � X c.
On her side, since I always plays subspaces that are non-isomorphic to `2, II can play

at the nth turn a subspace Fn such that dBM pFn, `dimpFnq
2 q ¥ n. This ensures that the

outcome will be a good FDD. To finish, block-sequences of pSFnqnPω are exactly the
block-sequences of the FDD pFnqnPω, so the fact that bsppSFnqnPωq � X c ensures that
the outcome will have the wanted property.

We can now turn to our dichotomy. Recall that a Banach space X is said to be
primary if for every subspaces Y,Z of X, if X � Y `Z, then either Y or Z is isomorphic
to X. This motivates the following definition, that can be seen as a variant of primary
spaces, or as a weakening of HI spaces:
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Definition IV.10.

1. A separable Banach space X is said to be Hilbert-primary if for every subspaces
Y,Z of X, if X � Y ` Z, then either Y or Z is isomorphic to `2.

2. The space X is hereditarily Hilbert-primary (HHP) if every subspace of X is
Hilbert-primary.

Remark that, in the same way as we did for HI spaces in the last section, HHP
spaces can be characterized as spaces X such that no pair of subspaces Y,Z � X non-
isomorphic to `2 is in topological direct sum. Obviously, `2 is HHP, and every HI space
is HHP. The following proposition gives us another example of an HHP space.

Lemma IV.11. If X is a separable HI space, then X ` `2 is HHP.

Proof. Suppose not. Then X ` `2 has two subspaces Y and Z, non-isomorphic to `2,
and whose sum is a topological direct sum. We denote respectively by P`2 and PX the
projections of X ` `2 onto X and `2 and we suppose that the norm on X ` `2 has been
choosen in such a way that these projections have norm 1.

We describe a play pU0,Ru0, U1,Ru1, . . .q of the game SubFX``2 where puiqiPω is a
normalized sequence and where I plays using his strategy to build a FDD with constant
at most 2. Describe how II plays. Suppose that we are at turn i, so player I just
played Ui; and suppose that i is even. Since Ui is a finite-codimensional subspace of
X ` `2, we have that Ui X Y is not isomorphic to `2, so in particular, P`2æpUi X Y q is
not an isomorphism onto its image. In particular, there exists ui P SUiXX such that
}P`2puiq} ¤ 1

2n�4 . We let II play Rui in SubFX``2 . If i is odd, we do the same but with
Z instead of Y .

In this way we have built a basic sequence puiqiPω with constant at most 2 such that
ui P Y for i even and ui P Z for i odd. Let U be the closed subspace spanned by the
ui’s, and let x P U with norm 1. We write x � °8

i�0 xiui. Then for every i P ω, |xi| ¤ 4.
And we have:

}P`2pxq} �
����� 8̧
i�0

xiP`2puiq
����� ¤ 4

����� 8̧
i�0

P`2puiq
����� ¤ 1

2
.

So }PXpxq} � }x � P`2pxq} ¥ 1
2 . In particular, PXæU is an isomorphism between

U and its image. Since both Y X U and Z X U are infinite-dimensional, and are in
topological direct sum, the same holds for their images by PX . But PXpY X Uq and
PXpZ X Uq are subspaces of X which is HI, so this is a contradiction.

By now, we do not know any other example of an HHP space. It would be particularly
interesting for us to know if there exist HHP spaces that are non-isomorphic to `2 and
that do not have any HI subspace; such spaces should be `2-saturated (i.e. `2 can be
embedded in every subspace of such a space).

Our dichotomy is the following.
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Theorem IV.12. Let E be a separable Banach space, non-isomorphic to `2. Then there
exists a subspace X of E, non-isomorphic to `2, such that:

• either X has a good UFDD;

• or X is HHP.

This is a dichotomy between two classes that are, in some sense, hereditary. The
second one is hereditary with respect to taking subspaces that are non-isomorphic to
`2, and the first one is hereditary with respect to good block-FDDs: a block-FDD of
a UFDD is a UFDD. Moreover, these classes are disjoint: if pFiqiPω is a good UFDD
of X, then for every infinite and coinfinite A � ω, we have a decomposition of X in a
direct sum of two subspaces that are not isomorphic to `2,

À
iPA Fi and

À
iPAc Fi. Thus,

we have a genuine dichotomy of spaces non-isomorphic to `2 in the sense of Gowers; we
know how to build lots of operators on a space X with a good UFDD, the only missing
thing would be a better understanding of the operators on a HHP space that is not
isomorphic to `2.

Proof of theorem IV.12. Fix ∆ a sequence of positive real numbers that will be deter-
mined at the end of the proof. For every integer N ¥ 1, let XN be the set of sequences
pxiqiPω P pSEqω such that there exists n P ω and a sequence paiqi n P Rn such that�������
¸
i n
i even

aixi

������� ¡ N

�����¸
i n

aixi

�����. The XN ’s are open subsets of pSEqω. Firstly suppose that

the following property p�q holds:

p�q There exists N P ω and a good FDD pFnqnPω in E such that no block-sequence of
pFnqnPω belongs to XN .

We then show that pFnqnPω is a UFDD. More precisely, we will show that given
m P ω, A � m, and pyiqi m P

±
i m Fi, we have }°iPA yi} ¤ pN � 1q }°i m yi}; by the

criterion given in the last section, it will be enough to conclude.

Let B � ti   m | yi � 0u. If B � ∅, then there is noting to prove, so we suppose
B � ∅. If minB P A, then we can build a sequence A0   A1   . . .   An�1 of
subsets of B such that B �

¤
i n

Ai and A X B �
¤
i n
i even

Ai. Then, we let, for i   n,

ai �
���°jPAi yj

��� and xi � 1
ai

°
jPAi yj . In this way, we have

¸
iPA

yi �
¸
i n
i even

aixi and

¸
i m

yi �
¸
i n

aixi. Moreover, pxiqi n is a finite block-sequence of pFnqnPω, so it can

be prolonged to an (infinite) block-sequence, that will belong to X cN . Therefore, we

have that

�������
¸
i n
i even

aixi

������� ¤ N

�����¸
i n

aixi

�����, or in other words }°iPA yi} ¤ N }°i m yi}, as
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wanted. Now, if minB R A, then we can apply the previous result to Ac and get that
}°iPAc yi} ¤ N }°i m yi}, so }°iPA yi} ¤ }

°
i m yi} � }

°
iPAc yi} ¤ pN � 1q }°i m yi},

as wanted.

We now suppose that the property p�q is not satisfied. We build a decreasing sequence
pXN qNPω of subspaces of E, non-isomorphic to `2, in the following way. We let X0 � E.
If XN has been constructed, knowing that p�q is not satisfied and applying theorem IV.9
to the space XN , the sequence ∆ and the set XN�1, we get XN�1 � XN non-isomorphic
to `2 such that player II has a strategy in GXN�1

to reach pXN�1q∆. The sequence
pXN qNPω being built, there exists a subspace X � E non-isomorphic to `2 such that for
every n, we have X �� XN . This show that for every N ¥ 1, player II has a strategy
in GX to reach pXN q∆.

We now show that X is HHP. Suppose not, then there exists two subspaces Y,Z of
X, non-isomorphic to `2, such that Y ` Z is a topological direct sum. We let P be the
projection from Y ` Z to Y and we choose an integer N ¥ ~P~. We consider a play of
FX and a play of GX played simultaneously, and having the same outcome pxiqiPω, as
represented on the diagrams below:

I U0 U1 U2 U3 . . .
FX

II x0 x1 x2 x3 . . .

I U0 X Y U1 X Z U2 X Y U3 X Z . . .
GX

II x0 x1 x2 x3 . . .

This is how these games are played:

• In FX , I plays using a strategy enuring that the outcome is a basic sequence with
constant at most 2. Such a strategy exists by lemma IV.5 (here, the games FX
and SubFX can be identified, since II only plays vectors). We denote by pUiqiPω
the sequence of his moves.

• At the turn i of GX , if i is even, I plays Ui X Y , and if i is odd, he plays Ui X Z.

• In GX , II plays using her strategy to reach pX4N q∆. The sequence of her moves
will be denoted by pxiqiPω.

• At the turn i of FX , II plays xi. This is always a legal move: indeed, by the rules
of GX , we have xi P Ui.

This ensures that the sequence pxiqiPω built in this way is a basic sequence with
constant at most 2, is in pX4N q∆, and that for i even, we have xi P Y , and for i odd, we
have xi P Z.
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We now choose ∆ in such a way that if pyiqiPω is a basic sequence with constant
at most 2, and if pziqiPω P pSEqω is a sequence such that for every i, }yi � zi} ¤ ∆i,
then pyiqiPω and pziqiPω are 2-equivalent; such a ∆ exists by lemma IV.3. Remark that if
pyiqiPω and pziqiPω are 2-equivalent, and if pyiqiPω P X4N , then pziqiPω P XN . In particular,
we deduce that pxiqiPω P XN . So there exists n P ω and a sequence paiqi n P Rn such

that

�������
¸
i n
i even

aixi

������� ¡ N

�����¸
i n

aixi

�����. Now let y �
¸
i n
i even

aixi and z �
¸
i n
i odd

aixi. We have

y P Y , z P Z and }y} ¡ N}y � z}; this contradicts the fact that the projection from
Y ` Z to Y has norm less or equal than N .

IV.3 The second dichotomy

In this section, we give a Hilbert-avoiding version of Ferenczi and Rosendal’s dichotomy
between minimal subspaces and tight subspaces (theorem I.25). We begin with some
definitions. Given a FDD pFiqnPω in some Banach space E, and A � ω, we will denote
by rFi | i P As the subspace

À
iPA Fi.

Definition IV.13.

1. A separable Banach space X non-isomorphic to `2 is minimal among non-hilbertian
spaces (MNH) if it embeds in all of its subspaces that are not isomorphic to `2.

2. Let pFiqiPω be a FDD in some Banach space E. A Banach space X is tight in
pFiqiPω if there is an infinite sequence of intervals I0   I1   . . . of integers such

that for every infinite A � ω, we have X �
�
Fi

���i R �jPA Ij
�
.

3. A good FDD pFiqiPω is said to be tight for non-hilbertian spaces (TNH) if every
Banach space non-isomorphic to `2 is tight in it. A Banach space X is tight for
non-hilbertian spaces (TNH) if it has a good FDD which is TNH.

Some more properties of TNH spaces will be proved in the next setion. The di-
chotomy we will prove is the following:

Theorem IV.14. Let E be a Banach space with a good FDD pEiqiPω. Then pEiqiPω has
a good block-FDD pFiqiPω such that:

• either rFi | i P ωs is MNH;

• or pFiqiPω is TNH.

In particular, every separable Banach space non-isomorphic to `2 has either an MNH
subspace, or a TNH subspace.
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Again, this a genuine dichotomy in the sense of Gowers. A subspace of a MNH space
that is not isomorphic to `2 is itself MNH; and a good block-FDD of a TNH FDD is
itself TNH. Moreover, a TNH space cannot be MNH.

The rest of this section is devoted to prove this dichtomy. Remark that the “in
particular” part of the theorem is a direct consequence of the first part, since every
separable Banach space non-isomorphic to `2 contains a good FDD. So we prove the
first part. We fix a Banach space E with a good FDD pEiqiPω.

Since the proof is quite technical, it is inconvenient to deal with approximation, so
we will work with vector spaces on a countable field. For every i P ω, we fix a basis
peijqj di of Ei. In this way, every x P E can be decomposed in a unique way as a sum

x � °8
i�0 x

i with xi P Ei for every i, and every xi can be decomposed in a unique way
as a sum xi � °j di x

i
je
i
j . We fix K a countable subfield of R such that for every x P E,

if all the xij are in K and if all them are zero except for a finite number, then }x} P K.
Such a field can be built inductively: begin with K0 � Q, and define Kn�1 the subfield
of R generated by Kn and all of the }x}’s, for x P E such that for every x P E, all the xij
are in K and all them are zero except for a finite number; and then let K � �nPωKn.
In the rest of this section, vector spaces on K will be denoted by capital script roman
letters, and closed subspaces of E (of finite or infinite dimension) will be denoted by
capital printscript roman letters. We let V be the K-vector subspace of E generated
by all the eij ’s. For R a K-vector subspace of E, we let R be its closure in E, and

SR be the set of its normalized vectors. Remark that R is a R-vector subspace of
E, that R is R-finite-dimensional if and only R is K-finite-dimensional, and that
in this case, their dimensions are equal. We have V � E. Also remark that since,
for x P V , we have x

}x} P V , then for R a vector subspace of V , SR is always
non-trivial.

We now define a Gowers space. For every i P ω, we let E i be the K-vector
subspace of Ei generated by the eij ’s for j   di. Obviously we have E i � Ei and

V � À
iPωE i . We define a block-FDD of pE i qiPω as a sequence pF i qiPω of

nonzero finite-dimensional K-vector subspaces of E such that there exists a sequence
A0   A1   . . . of finite sets of integers such that for every i, we have F i � `jPAiE j .
A block-FDD pF i qiPω will often be denoted by the letter F ; thus, when we speak
about a block-FDD F without further explanation, it will be supposed that its terms

are denoted by F i . Remark that if F is a block-FDD of E , then
�
F i

	
iPω

is a

block-FDD of pEiqiPω. So we will say that F is good if and only if
�
F i

	
iPω

is a good

block-FDD of pEiqiPω.

We let P be the set of good block-FDDs of E . If F ,G P P , we let F ¤G
if F is the block-FDD of G . We let F ¤� G if there exists n P ω such that
pF i qi¥n ¤G . We let X be the set of pairs pR , xq whereR is a finite-dimensional
subspace of V and x an element of SV . For F P P and pR , xq P X, we say that
pR , xq � F if R �ÀiPωF i .

Lemma IV.15. G � pP,X,¤,¤�,�q is a Gowers space.
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Proof. The only non-trivial property to verify is the diagonalization property. So, sup-
pose that we have a ¤-decreasing sequence pF iqi P ω of elements of P (with for every
i, F i � pF j

iqjPω). Then we can verify, by induction, that for every k P ω and i   j,
we have F k

j �Àl¥kF l
i. Letting F � � pF i

iqiPω, this proves that F � is a good
block-FDD and that for every i P ω, pF l

�ql¥i ¤ F i, as wanted.

In this proof, we will use variants of the usual games FF , GF , AF , BF of the
Gowers space G, but with additional rules. These games will be denoted with a prime:
F 1
F

, G1
F

, A1
F

, B1
F

. We define these games below.

Definition IV.16. Let F P P .

• The game G1
F

is defined in the following way:

I F 0 F 1 . . .
II R 0 , x0 R 1 , x1 . . .

where the F i’s are good block-FDDs of F , the R i ’s are finite-dimensional
subspaces of V , and the xi’s are elements of SV , with the constraints for II
that for all i   ω, R i �ÀjPωF j

i, and xi PR 0 � . . . �R i . The outcome
of the game is the sequence pxiqiPω P pSV qω.

• The game F 1
F

is defined in the same way as G1
F

apart form the fact that this
time, player I has to choose the F i in such a way that F i Æ F .

• The game A1
F

is defined in the following way:

I R 0 , x0,G 0 R 1 , x1,G 1 . . .
II F 0 S 0 , y0, F 1 S 1 , y1, F 2 . . .

where the F i’s and the G i’s are elements of P , the R i ’s and the S i ’s are
finite-dimensional subspaces ofV , and the xi’s and the yi’s are elements of SV .
The rules are the following:

– for I : for all i P ω, G i Æ F , R i � À
jPωF j

i, and

xi PR 0 � . . .�R i ;

– for II : for all i P ω, F i ¤ F , S i �ÀjPωG j
i, and yi P S 0 �. . .�S i ;

and the outcome of the game is the pair of sequences ppxiqiPω, pyiqiPωq P ppSV qωq2.

• The game B1
F

is defined in the same way as A1
F

, except that this time the F i’s
are required to satisfy F i Æ F , whereas the G i are only required to satisfy
G i ¤ F .

The starting point of this proof will be the following lemma.
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Lemma IV.17. There exists F P P such that either player I has a strategy in A1
F

to ensure that the sequences pxiqiPω and pyiqiPω are not equivalent, or player II has a
strategy in B1

F
to ensure that the sequences pxiqiPω and pyiqiPω are equivalent.

Proof. The idea is that the games A1
F

and B1
F

can be seen as special cases of the
games AF and BF by coding the rules in the target set. Let X be the set of sequences
pR 0 , x0,S 0 , y0,R 1 , x1, . . .q P Xω satisfying one of the two following conditions:

• The sequences pxiqiPω and pyiqiPω are inequivalent, and for every i P ω, we have
xi PR 0 � . . .�R i ;

• There exists i P ω such that yi R S 0 � . . . � S i , and for every j ¤ i,
xj PR 0 � . . .�R j .

The first condition says that I reaches his target without cheating, and the second one
says that II cheats, and is the first player to do so. Then we have that:

• If player I has a strategy in AF to reach X , then he has a strategy in A1
F

to
ensure that the sequences pxiqiPω and pyiqiPω are inequivalent;

• If player II has a strategy in BF to reach X c, then he has a strategy in B1
F

to
ensure that the sequences pxiqiPω and pyiqiPω are equivalent.

Since the set X is a Gδ-subset of Xω, the conclusion of the lemma immediately
follows from the adversarial Ramsey property in the space G (theorem II.4).

In the rest of this proof, we fix the block-FDD F given by the last lemma. We say
that a sequence puiqiPω P pSF qω is F -correct if there existsG ¤ F and a partition
of ω in successive intervals I0   I1   . . . such that for every i P ω, the finite sequence
pujqjPIi is a basis of G i . The next proposition contains the combinatorial content of
theorem IV.14.

Proposition IV.18. One of the following statements is satisfied:

(1) For every F -correct sequence puiqiPω, player I has a strategy in F 1
F

to build a
sequence pxiqiPω that is not equivalent to puiqiPω;

(2) There exists a F -correct sequence puiqiPω such that player II has a strategy in
G1
F

to build a sequence pxiqiPω that is equivalent to puiqiPω.

Proof. Suppose that (1) is not satisfied. For the rest of the proof, we fix a F -correct
sequence puiqiPω such that player I has no strategy in F 1

F
to build a sequence pxiqiPω

that is not equivalent to puiqiPω. By the determinacy of this game, player II has a
strategy τ in F 1

F
to build a sequence which is equivalent to puiqiPω. By correctness of

this sequence, we can also fix G ¤ F and a partition of ω in successive intervals
I0   I1   . . . such that for every i P ω, pujqjPIi is a basis of G i .
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Step 1. We prove that II has a strategy in A1
F

to build two equivalent sequences.
We describe this strategy on a play pG ,R 0 , x0,F 0 ,S 0 , y0,G , . . .q of A1

F
, in

which the FDDs played by II will always be equal toG and that will be played at the
same time as an auxiliary play pH 0 ,U 0 , z0,H 1 ,U 1 , z1, . . .q of F 1

F
during which

player II always plays according to her strategy τ . Actually, the R i ’s played by I in
A1
F

will not matter at all in this proof, so we will omit them in the notation. At the
same time as the games are played, a sequence of integers 0 � n0   n1   . . . will be
constructed. The idea is that the turn i of A1

F
will be played at the same time as the

turns ni, ni� 1, . . . , ni�1� 1 of the game F 1
F

. Suppose that we are just before the turn
i of the game A1

F
, so the xj ’s, the F j ’s, the S j ’s, and the yj ’s have been defined

for all j   i. Suppose also that the integers nj have been defined for all j ¤ i, and that
we are just before the turn ni of the game F 1

F
, so the H n ’s, the U n ’s and the zn’s

have been played for all n   ni. We represent on the diagram below the turn i of the
game A1

F
, and the turns ni, . . . , ni�1 � 1 of the game F 1

F
.

I F i . . . F i . . .
F 1
F

II . . . U ni , zni . . . U ni�1�1 , zni�1�1

I . . . xi, F i . . .
A1
F

II . . . , G S i , yi, . . .

We now describe how these turns are played. In A1
F

, player II plays G . Then
player I answers by a FDD F i Æ F and a vector xi P

À
kPωG k . Thus, xi can be

decomposed on the basis pumqmPω: we can find ni�1 P ω and pami qm ni�1 P Kni�1 such
that xi �

°
m ni�1

ami um. Moreover, we can assume that ni�1 ¡ ni.

Now, during the ni�1 � ni following turns of the game F 1
F

, we will let player I
play F i (So we will have, for every ni ¤ m   ni�1, H m � F i ). According to
the strategy τ , player II will answer with U ni , zni , . . . ,U

ni�1�1 , zni�1�1. We now
let S i � U ni � . . . � U ni�1�1 , and yi �

°
m ni�1

ami zm. Since all the U m ’s,

for ni ¤ m   ni�1 are finite-dimensional subspaces of
À

kPωF k
i, then S i is itself a

finite-dimensional subspace of
À

kPωF k
i. And since all the zm, for ni ¤ m   ni�1, are

elements of U 0 � . . . �U ni�1�1 � S 0 � . . . �S i , then yi is itself an element of
S 0 � . . .�S i . So we can let II play S i and yi in A1

F
, what finishes the description

of the strategy.

The fact that in F 1
F

, player II always plays according to the strategy τ , ensures that
the sequences pumqmPω and pzmqmPω are equivalent. Remark that the sequence pxiqiPω
is built from pumqmPω in exactly the same way that the sequence pyiqiPω is built from
pzmqmPω; so this ensures that pxiqiPω and pyiqiPω are equivalent, concluding this step of
the proof.
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Step 2. II has a strategy σ in B1
F

to build two equivalent sequences. Indeed, by step
1, I has no strategy in A1

F
to build inequivalent sequences; so the conclusion follows

from lemma IV.17.

Step 3. We conclude, proving that player II has a strategy in G1
F

to build a sequence
pyiqiPω that is equivalent to puiqiPω. We describe this strategy on a play of G1

F
that will

played simultaneously with a play of B1
F

where II will play according to her strategy
σ, and a play of F 1

F
where II will play according to her strategy τ (for a fixed i P ω, the

turn i of each game will be played at the same time). The moves of the players during
the turn i of the games are described in the diagram below.

I F i . . .
F 1
F

II . . . R i , xi

I R i , xi, G i

B1
F

II . . . , F i S i , yi, . . .

I G i . . .
G1
F

II . . . S i , yi

We describe more precisely these moves. Suppose that in G1
F

, player I plays G i .
We look at the move F i made by II in B1

F
according to her strategy σ, and we let I

copy this moves in F 1
F

. In this game, according to her strategy τ , player II will answer
with some R i and xi. Now, in B1

F
, we can let I answer with R i , xi and G i . In

this game, according to her strategy σ, player II answers with some S i and some yi.
Then the strategy of player II in G1

F
will consist in answering with S i and yi.

Let us verify that this strategy is as wanted. The outcome of the game F 1
F

is the
sequence pxiqiPω; the use of the strategy τ by II ensures that this sequence is equivalent
to puiqiPω. The outcome of the game B1

F
is the pair of sequences ppxiqiPω, pyiqiPωq; the

use by II of her strategy σ ensures that these two sequences are equivalent. We deduce
that the sequences puiqiPω and pyiqiPω are equivalent, concluding the proof.

We now let, for every i P ω, Fi � F i . The sequence pFiqiPω is a good block-FDD
of pEiqiPω and we can let F � rFi | i P ωs. By proposition IV.18, theorem IV.14 will be
proved once we have proved the two following lemmas:

Lemma IV.19. Suppose that there exists a F -correct sequence puiqiPω such that player
II has a strategy in G1

F
to build a sequence pxiqiPω that is equivalent to puiqiPω. Then

pFiqiPω has a good block-FDD pGiqiPω such that G � rGi | i P ωs is MNH.
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Lemma IV.20. Suppose that for every F -correct sequence puiqiPω, player I has a
strategy in F 1

F
to build a sequence pxiqiPω that is not equivalent to puiqiPω. Then the

FDD pFiqiPω is TNH.

In order to prove these, we need two more lemmas. The first one is due to Ferenczi
and Rosendal and its proof can be found in [18] (lemma 3).

Lemma IV.21 (Ferenczi – Rosendal). For every n P ω, there exists cpnq ¥ 1 such that
for every Banach space U , and every subspaces V and W having both codimension n, V
and W are cpnq-isomorphic.

Lemma IV.22. Let G P P , U a subspace of
�
G i

��� i P ω� non-isomorphic to `2, and

ε ¡ 0. Then there exists H ¤ G such that
�
H i

��� i P ω� can be 1 � ε-embedded in

U .

Proof. Let C be the constant of the FDD
�
G i

	
iPω

. We fix ∆ a sequence of positive

real numbers that will be defined in the course of the proof. We build inductively the
block-sequence H . We will let, for every i P ω, ni �

°
j i dim pH i q, and we will

build, at the same time as the block-sequence H , two normalized sequences pxnqnPω
and pynqnPω, with the property that for every i, the sequence pxnqni¤n ni�1 will be a
basis of H i , and for every n P ω, }xn � yn} ¤ ∆n.

Fix i P ω and suppose that theH j ’s have been built for j   i, that the nj ’ have been
built for j ¤ i, and that the xi’s and the yj ’s have been built for n   ni. Let mi P ω be
such that for every j   i, H j �Àm miG m (take for example for mi the supremum

of the supports of the xn’s for n   ni). Then
À

m¥miG m �
�
G m

���m ¥ mi

�
has

finite codimension in
�
G m

���m P ω
�
, so U XÀm¥miG m is not isomorphic to `2, and

contains a R-finite-dimensional vector subspace Hi such that Hi is not 2ei-isomorphic

to `
dimpHiq
2 . We let ni�1 � ni � dimpHiq and we let pynqni¤n ni�1 be an Auerbach basis

of Hi. We choose xni , . . . , xni�1�1 normalized vectors in
À

m¥miG m such that for
ni ¤ n   ni�1, we have }xn � yn} ¤ ∆n. We now let H i be the vector subspace of
V generated by the xn’s for ni ¤ n   ni�1. This achieves the construction of H .
This is a good FDD: indeed, since pxnqni¤n ni�1 is 1-Auerbach, we can choose ∆ small

enough to ensure that pyiqni¤n ni�1 is 2-equivalent to it, so H i is 2-isomorphic to Hi

and hence cannot be ei-isomorphic to `
dimpH i q
2 .

Since all the pxnqni¤n ni�1 are 2-Auerbach and since the FDD
�
H i

	
iPω

has constant

at most C, this ensures that pxnqnPω is 4C-Auerbach. So if ∆ has been choosen small
enough, we can ensure that the sequences pxnqnPω and pynqnPω are p1 � εq-equivalent.

Since the closed subspace of E generated by the xi’s is
�
H i

��� i P ω�, and since all the

yi’s are in U , this ensures that
�
H i

��� i P ω� can be p1� εq-embedded in U .
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Proof of lemma IV.19. Since the sequence puiqiPω is F -correct we can fix G ¤ F
and a partition of ω in successive intervals I0   I1   . . . such that for every i P ω,
the finite sequence pujqjPIi is a basis of G i . We let Gi � G i . Then pGiqiPω is a
good block-FDD of pFiqiPω; we will show that G � rGi | i P ωs is MNH. By lemma
IV.22, it is enough to show that for every H ¤G , the space G can be embedded in

H �
�
H i

��� i P ω�. Fix such an H and consider a play of G1
F

where I plays H at

each turn, and II answers with her strategy to build a sequence pxiqiPω that is equivalent
to puiqiPω. Since all the xi’s are in H and since the closed space generated by the ui’s is
G, the mapping ui ÞÑ xi extends to an embedding of G into H.

Proof of lemma IV.20. We have to prove that every Banach G space non-isomorphic to
`2 is tight in pFiqiPω. By lemma IV.22, it is enough to prove it in the case where G

has the form
�
G i

��� i P ω�, where G ¤ F . So we fix such a G . For every i P ω,

we let ni �
°
j i dim pG i q, and we let punqni¤n ni�1 be a normalized basis of G i

that is 2-Auerbach (this can be done by firstly, choosing an Auerbach basis of G i and
then, perturbing it a little bit in order to have all the terms in G i ). In this way, the

sequence pukqkPω is F -correct. We let C be the constant of the FDD
�
G i

	
iPω

. We

then have that the sequence pukqkPω is 4C-Auerbach. Since the proof is quite technical,
we will proceed in several steps.

Step 1. The hypothesis of this lemma says that I has a strategy τ in F 1
F

to build
a sequence that is inequivalent to pukqkPω. We reinterpret this statement using the
asymptotic game of an approximate asymptotic space we now define. The space will be
A � pω, Y,D,Æ,�q, where:

• the set of subspaces is ω, and the order Æ is defined by m Æ nô n ¤ m;

• an element of Y is a pair pI, xq where I is a finite interval of ω and x is an element
of SF ; the distance on Y is defined by dppI, xq, pJ, yqq � }x � y} if I � J and 1
otherwise;

• pI, xq � n if n ¤ I, i.e. every element of I is greater or equal than n.

In this proof, we will denote by F 2n the asymptotic game of the space A under the
subspace n of A in order to avoid confusion with F 1

F
. We fix K ¥ 1, and ∆ a sequence

of positive real numbers, less than 1, such that for every normalized sequences pxiqiPω
and pyiqiPω, if pxiqiPω is 16KC-Auerbach and if for every i P ω, }xi � yi} ¤ 2∆i, then
pxiqiPω and pyiqiPω are 2-equivalent. We let X be the set of sequences pI0, x0, I1, x1, . . .q
of elements of Y such that if for every i P ω, we have xi P

�
SÀ

j¤i

�À
kPIj

Fk

	



∆i

, then

pxiqiPω is not 4K-equivalent to puiqiPω. The aim of this step is to show that I has a
strategy to reach X in F 20 . For this, we describe a play pn0, I0, x0, n1, I1, x1, . . .q of F 20
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at the same time as a play pF 0 ,R 0 , y0,F 1 ,R 1 , y1, . . .q of F 1
F

during which I
always plays according to his strategy τ and such that for every i P ω, }xi � yi} ¤ 2∆i.
Suppose that the first i turns of both games have been played; at the turn i, in F 1

F
,

according to his strategy, player I plays F i . Since F i Æ F , there is ni P ω such
that pF k qk¥ni ¤ F i ; we let I play this ni in F 20 . In this game, II answers with Ii and

xi, and we can suppose that xi P
�
SÀ

j¤i

�À
kPIj

Fk

	



∆i

otherwise II has lost the game.

So we can find a nomalized element yi P
À

j¤i
�À

kPIj F k

	
such that }xi � yi} ¤ 2∆i.

In F 1
F

, we let II play R i � À
kPIi F k and yi; this finishes the description of the

strategy.

Now verify that this strategy is as wanted, that is, that pI0, x0, I1, x1, . . .q P X .
Suppose not. Then pxiqiPω is 4K-equivalent to puiqiPω, so pxiqiPω is 16KC-Auerbach. By
the choice of ∆, we get that pxiqiPω and pyiqiPω are equivalent, so pyiqiPω is equivalent to
puiqiPω, thus contradicting the assumption on the strategy τ .

Step 2. We prove that for every K ¥ 1, there exists a sequence of intervals of
integers I0   I1   . . . such that for every infinite A � ω containing 0, we have

G �K

�
Fi

���i R �jPA Ij
�
. We fix K ¥ 1, and we keep the sequence ∆ and the set X

defined at the previous step relatively to K. We define a system of compact sets on
A. For J a nonempty finite interval of integers, let KJ � tJu � SpÀi¤maxpJq Fiq; this

is a compact subset of Y . We let K be the set of all the KJ ’s, and for KJ1 ,KJ2 P K,
we let KJ1 ` KJ2 � KJ , where J is the smallest interval of ω containing J1 and J1.
Then pK,`q is a system of compact sets on A. By step 1, player I has a strategy
in F 20 to reach X ; so by theorem III.16, he has a strategy in SF 20 , the strong asymp-
totic game of the space A under the subspace 0, to build a sequence pKJiqiPω with
bsppKJiqiPωq � pX q∆. In particular, there exists such a sequence with minpJ0q ¡ 0 and
for every i ¥ 1, maxpJi�1q � 1   minpJiq. We let I0 = J0,minpJ0q � 1K and for every
i ¥ 1, Ii � JmaxpJi�1q � 1,minpJiq � 1K, in such a way that we have a partition of ω in
intervals I0   J0   I1   J1   . . .. We prove that the sequence pIiqiPω is as wanted.

Suppose not. Then there exists an infinite A � ω containing 0 such that

G �K

�
Fi

���i R �jPA Ij
�
. In particular, in

�
Fi

���i R �jPA Ij
�
, there is a normalized se-

quence pxiqiPω that is K-equivalent to puiqiPω. We can then find a normalized se-
quence pyiqiPω that is close enough to pxiqiPω to be 2-equivalent to it, and such that
moreover, every yi has finite support on the FDD pFiqiPω; so we can find integers
0 � n0   n1   . . . in A such that for every i, supppyiq   min Ini�1 . For every i,
we let Li � Jni Y Ini�1 Y Jni�1 Y . . . Y Jni�1�2 Y Ini�1�1 Y Jni�1�1. In this way we
have KLi � `ni¤n ni�1KJn , and pLi, yiq P KLi . Since bsppKJnqnPωq � pX q∆, we deduce
that pL0, y0, L1, y1, . . .q P pX q∆. So there exists pziqiPω P pSF qω such that for every i,
}zi � yi} ¤ ∆i, and such that pL0, z0, L1, z1, . . .q P X . Since the ni’s are in A, and since

supppyiq   minpIni�1q, we have that for every i, yi P
�
Fk

���k   minpIni�1q, k R
�
j i Inj

�
.
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Remark that the set of k   minpIni�1q such that k R �j i Inj is exactly
�
j¤i Li, so

yk P SÀ
j¤i

�À
kPLj

Fk

	. So for every i, zi P
�
SÀ

j¤i

�À
kPLj

Fk

	



∆i

. By the definition of

X , this implies that pziqiPω and puiqiPω are not 4K-equivalent. But on the other hand,
pyiqiPω is 2-equivalent to pxiqiPω which is K-equivalent to puiqiPω which is 4C-Auerbach.
So pyiqiPω is 16KC-Auerbach, and by the choice of ∆, we get that pziqiPω is 2-equivalent
to pyiqiPω, so 4K-equivalent to puiqiPω, a contradiction.

Step 3. We show that G is tight in pFnqnPω. For this, for every N ¥ 1, we consider
a sequence of intervals of integers IN0   IN1   . . . given by step 2, such that for every
infinite A � ω containing 0, we have G �N

�
Fn
��n R �iPA I

N
i

�
. For every d P ω, we

denote by cpdq the constant given by lemma IV.21 such that for every Banach space U ,
and every subspaces V and W having both codimension d, V and W are cpdq-isomorphic.
We build a sequence J1   J2   . . . of intervals of integers in the following way. All the
Jl’s, for l   k, being defined, we can choose Jk such that:

• for every N ¤ k, Jk contains at least one interval of the sequence pINi qiPω;

• maxpJkq ¥ dk�maxpINk0 q, where dk � dimprFn | n   minpJkqsq and Nk � rkcpdkqs.
We show that for every infinite A � ω, we have G � rFn |n R

�
kPA Jk s. Suppose

not, and let A be witnessing it. Let K ¥ 1 such that G �K rFn |n R
�
kPA Jk s. Let

k0 P A such that K ¤ k0. Let n0 � min Jk0 . Since maxpJk0q ¥ dk0 � maxpINk0
0 q,

we have in particular dk0 ¤ dimprFn | maxpINk0
0 q   n ¤ maxpJk0qsq, so we can find

a subspace H � rFn | maxpINk0
0 q   n ¤ maxpJk0qs of dimension dk0 . Remark that

rFn |pn   n0q _ pn R
�
kPA Jkq s and rFn |pn ¥ n0q ^ pn R

�
kPA Jkq s `H both have codi-

mension dk0 in their sum, so they are cpdk0q-isomorphic. In particular, since G can be
k0-embedded in the first of these spaces, then it can be Nk0 � rk0cpdk0qs-embedded in

the second one. So in particular, G �Nk0

���Fn
�������n R I

Nk0
0 Y

��� ¤
kPA
k¡k0

Jk

��
���. But the set

I
Nk0
0 Y

��
kPA
k¡k0

Jk



contains infinitely many of the I

Nk0
i , i P ω, and in particular I

Nk0
0 ,

so this contradicts the hypothesis.

IV.4 Links with ergodicity and Johnson’s problem

In this section, we discuss some consequences of the two previous dichotomies that could
help for Johnson’s problem and for Ferenczi and Rosendal’s conjecture about ergodic
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spaces. We start by looking at the form that the first dichotomy takes for non-ergodic
spaces. The result we will prove is the following:

Theorem IV.23. Let E be a non-ergodic separable Banach space, non-isomorphic to
`2. Then there exists a subspace X of E, non-isomorphic to `2, such that:

• either X has a unconditional basis;

• or X is HHP.

This theorem is an immediate consequence of the first dichotomy and of the following
proposition, which is an unpublished result by Ferenczi:

Proposition IV.24 (Ferenczi). Let E be a non-ergodic separable Banach space, non-
isomorphic to `2, having a good UFDD. Then E has a subspace X, non-isomorphic to
`2, with an unconditional basis.

We reproduce here the proof of this proposition. We start by introducing two results
that will be needed in the proof. The first one involves the following property, defined
and studied by Pisier [53]:

Definition IV.25. A Banach space X is said to have the property (H) if for every
λ ¥ 1, there exists a constant Kpλq such that for every finite sequence pxiqi n P pSXq ω,

if pxiqi n is λ-unconditional, then
?
n

Kpλq ¤ }
°
i n xi} ¤ Kpλq?n.

A Hilbert space has property (H): indeed, a λ-inconditional normalized sequence in
a Hilbert space is λ2-equivalent to an orthonormal sequence (see, for example, [36], page
71). So property (H) characterizes spaces that are, in some sense, “close” to `2. In [5]
and [4], Anisca proved the following result:

Theorem IV.26 (Anisca). Every separable Banach space non-isomorphic to `2 and
having the property (H) is ergodic.

The second result we need is due to Rosendal ([55], theorem 15). Let E1
0 be the

equivalence relation on rωsω defined as follows: if A,B P rωsω, we say that AE1
0B if

there exists n P ω such that |A X n| � |B X n| and Azn � Bzn. Rosendal proved the
following:

Proposition IV.27. Let E be a meager equivalence relation on rωsω, with E1
0 � E.

Then E0 ¤B E.

(In [55], this result is stated and proved for equivalence relations on Ppωq, however,
the same proof works in the case of rωsω.)

We now prove proposition IV.24. For s P 2 ω, we denote by Ns the basic open subset
tA P rωsω | @n   |s| pn P Aô spnq � 1qu of rωsω. We begin with a lemma.

Lemma IV.28 (Ferenczi). Let X be a non-ergodic Banach space with an FDD pFiqiPω.
Then there exists a constant K such that for every i P ω, rFj | j   is �K rFj | j ¥ is.
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Proof. For every i P ω, let ni �
°
j i dimpFjq. Let pxnqni¤n ni�1 be a normalized basis

of Fi. For A P Ppωq, let XA be the closed subspace of X generated by the xn’s, for
n P A. Remark that for A P rωsω and for a cofinite B � A, we have XA � XB `XAzB:
indeed, up to reducing B, we can suppose that there exists i P ω such that B ¥ ni and
AzB   ni; but in this case we have XB � rFj | j ¥ is and XAzB � rFj | j   is, so the
answer follows. In particular, if A,B P rωsω are such that AE1

0B, then XA and XB have
the same finite codimension in XAYB, so by lemma IV.21, they are isomorphic.

We define an equivalence relation E on rωsω by AEB if XA and XB are isomorphic.
As we just saw, E1

0 � E. Also remark that the mapping A ÞÑ XA from rωsω to SubpXq
with the Effros Borel structure is a Borel mapping. Indeed, if U is an open subset of X
and if XA X U � ∅, then there exists m P ω such that XAXm X U � ∅, so for B P rωsω,
as soon as AXm � BXm, we have XB XU � ∅. In particular, since X is non-ergodic,
then E0 does not reduce to E. So by proposition IV.27, we deduce that E is non-meager.

E is analytic so has the Baire property, so by Kuratowski-Ulam theorem, there exists
A P rωsω such that the E-equivalence class of A, denoted by rAs, is non-meager. For
K ¥ 1, denote by rAsK the set of B P rωsω such that XA and XB are K-isomorphic.
Since rAs � �K¥1rAsK , then for some K ¥ 1, rAsK is non-meager. So it is comeager in
a basic open set Ns, for some s P 2 ω. We let N � |s| and m � |tn   |s| | spnq � 1u|.
We denote by cpmq (resp. cpN � mq) the constant given by lemma IV.21 such that
two subspaces of a Banach space having both codimension m (resp. N � m) are m-
isomorphic (resp. pN �mq-isomorphic). We show that for i P ω such that ni ¥ N , we
have rFj | j   is �K2cpmqcpN�mq rFj | j ¥ is; the conclusion will follow.

Let i be such that ni ¥ N . Consider t1 � s"p0, . . . , 0q and t2 � p0, . . . , 0q"s, where in
each definition, there are ni 0’s. Since rAsK is dense in Ns, there exists B1 P Nt1XrAsK .
We define B2 P rωsω in the following way: for n ¥ N � ni, we let n P B2 iff n P B1, and
for n   N � ni, we let n P B2 iff t2pnq � 1. The set B2 has been obtained by shifting m
1’s at the beginning of B1. In particular, |pB1 YB2qzB1| � |pB1 YB2qzB2| � m so XB1

and XB2 are cpmq-isomorphic. Thus, XB2 is Kcpmq-isomorphic to A.

In the same way, we can consider u1 � s " p1, . . . , 1q and u2 � p1, . . . , 1q " s, where
in each definition, there are ni 1’s. Then there exists C1 P Nu1 and C2 P Nu2 such
that C1zpN � niq � C2zpN � niq, and C1 P rAks. The set C2 has been obtained by
shifting N�m 0’s at the beginning of C1. Thus, XC1 and XC2 are cpN�mq-isomorphic.
Therefore, XC2 and XB2 are K2cpmqcpN �mq-isomorphic. Since rFj | j   is � C2 and
B2 � rFj | j ¥ is, the conclusion follows.

Proof of proposition IV.24. Let pEiqiPω be a good UFDD of E, and let K be its uncon-
ditional constant. If there exists a block-sequence of this UFDD that spans a subspace
that is non-isomorphic to `2, then we can take for X this subspace and we are done. So
we will suppose that every block-sequence of pEiq spans a subspace isomorphic to `2.
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Step 1. We show that there exists a constant C such that every block-sequence of pEiq
spans a subspace C-isomorphic to `2. If not, then for every i P ω and every C, there
exists a block-sequence pxi,Cn qnPω of rEj | j ¥ is spanning a block-subspace that is not
C-isomorphic to `2. By lemma IV.6, for every i and C, we can find an integer ni,C
such that pxi,Cn qn ni,C spans a finite-dimensional subspace that is not C-isomorphic to

`
ni,C
2 . Now we build an increasing sequence of integers pmN qN¥1 in the following way

: m1 � 0 and mN having been built, let mN�1 � min supppxmN ,NnmN,N
q. In this way,

the sequence px0,1
0 , . . . x0,1

n0,1�1, x
m2,2
0 , . . . , xm2,2

nm2,2�1, x
m3,3
0 , . . .q is a block-sequence of pEiq

having subsequences spanning finite-dimensional spaces that are arbitrarily far away
from euclidean spaces; so the subspace spanned by this sequence is not isomorphic to `2,
a contradiction.

Step 2. We show that there is a constant M such that every block-sequence of pEiq
is M -equivalent to the canonical basis of `2. Let pxnqnPω be such a sequence. It is K-
unconditional and by the previous step, it spans a block-subspace that is C-isomorphic
to `2, so it is C-equivalent to a sequence pynqnPω in `2 that is KC-unconditional. Re-
mark that pynq is not necessarily normalized, but by C-equivalence with the normal-
ized sequence pxnq, we get that for every n, 1

C ¤ }yn} ¤ C. Let zn � yn
}yn} . By

KC-unconditionality of pynq, we get that pznqnPω is K2C4-equivalent to pyiq, so K2C5-
equivalent to pxiq. Moreover, pziq is a normalized KC-unconditional sequence in `2, so
it is K2C2-equivalent to the canonical basis of `2. So pxiq is K4C7-equivalent to the
canonical basis of `2. Hence, M � K4C7 is as wanted.

Step 3. We show that there exists µ ¥ 1 such that for every A ¥ 1 and i0 P ω, there
exists j0 ¥ i0 and a µ-unconditional normalized sequence pxkqk k0 P rEi | i0 ¤ i   j0s ω
spanning a subspace that is not A-isomorphic to `k0

2 . Since E is non-ergodic and
non-isomorphic to `2, by theorem IV.26, it does not have property (H); so there ex-
ists λ ¥ 1 such that for every B ¥ 1, there exists a finite λ-unconditional sequence

pukqk k0 P pSEqk0 with either }°i n xi}  
?
n

λ4B7 , or λ4B7?n   }°i n xi}. In particular,
this sequence is not λ4B7-equivalent to the orthonormal basis of a euclidean space, but
it is λ-unconditional, so by the same method as in the previous step, we can show that
spanptuk | k   k0uq is not B-isomorphic to a `k0

2 . We can take a sufficiently small per-
turbation pvkqk k0 of pukqk k0 , still normalized and whose elements have finite support,
to ensure that pvkqk k0 is 2λ-unconditional and spans a space that is not B

2 -isomorphic
to a euclidean space. Now recall that lemma IV.28 gives a constant D such that for
every i P ω, rEj | j   is �D rEj | j ¥ is. Using these embeddings, we can find,
given i0 P ω, a sequence pwkqk k0 that is 2Dλ-unconditional and that spans a subspace
that is not B

2D -isomorphic to a euclidean space, such that for every k   k0, we have
wk P rEi | i ¥ i0s. Finally, we can choose a sufficiently small perturbation pxkqk k0 of
pwkqk¡k0 , still normalized, and such for every k   k0, xk is a vector of rFi | i ¥ i0s with

112



finite support, such that pxkqk k0 is 4Dλ-unconditional and spans a subspace that is not
B
4D -isomorphic to a euclidean space. So we can take µ � 4Dλ.

Step 4. We conclude. Using step 3, we can build a sequence pxnqn ω P pSEqω and in-
tegers 0 � n0   n1   . . . such that, for every i, letting Fi � spanptxn | ni ¤ n   ni�1uq,
we have that pFiqiPω is a good block-FDD of pEiq, and the sequence pxnqni¤n ni�1 is

µ-unconditional. Since pFiq is good, we have that F :� rFi | i P ωs � spanptxn | n P ωuq
is not isomorphic to `2. So to conclude the proof, it is enough to show that the se-
quence pxnqnPω is unconditional. So let panqnPω P Rω be with finite support, and
pεnqnPω P t�1, 1uω, we will show that }°nPω εnanxn} ¤ M2µ }°nPω anxn}. For i P ω,

let bi �
���°ni¤n ni�1

anxn

���, yi � 1
bi

�°
ni¤n ni�1

anxn

	
, ci �

���°ni¤n ni�1
εnanxn

���,
zi � 1

ci

�°
ni¤n ni�1

εianxn

	
. Since the sequence pxnqni¤n ni�1 is µ-unconditional, we

have that ci ¤ µbi. Also remark that pyiqiPω and pziqiPω are normalized block-sequences
of the FDD peiq, so by step 2, they are M -equivalent to the canonical basis of `2. Thus,
we have:

�����¸
nPω

εnanxn

����� �
�����¸
iPω

cizi

�����
¤ M

d¸
iPω

c2
i

¤ Mµ

d¸
iPω

b2i

¤ M2µ

�����¸
iPω

biyi

�����
� M2µ

�����¸
nPω

anxn

����� .

We now give an interesting consequence of theorem IV.23 for Johnson spaces. In [3],
Anisca proves a result implying that a separable Banach space with a finite number of
subspaces, up to isomorphism, must contain a subspace isomorphic to `2. In particular,
a Johnson space must contain a subspace isomorphic to `2. So theorem IV.23 has the
following corollary:

Corollary IV.29. A Johnson space either has an unconditional basis, or is HHP.

Thus, to prove that a Johnson space necessarily has an unconditional basis, it would
be enough to prove that a non-trivial HHP space must have at least three subspaces,
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up to isomorphism. By similarity with Gowers–Maurey’s result that an HI space is
not isomorphic to any proper subspace of itself, this seems plausible. However, we did
not manage to prove this conjecture. In the next section, a simple proof of Gowers–
Maurey’s theorem will be presented; this could be a good starting point to try to prove
that non-trivial HHP spaces have many non-isomorphic subspaces.

We now turn to the consequences of the second dichotomy. In [15], Ferenczi and
Godefroy studied the links between tightness and Baire-category. In particular, they
proved that if peiqiPω is a basis and X a Banach space, then X is tight in peiq if and only
if the set of A � ω such that X � spanptei | i P Auq meager in Ppωq. Using the same
ideas, and the result of Rosendal IV.27 linking ergodicity with Baire category, we get
the following result:

Theorem IV.30. Every TNH space is ergodic.

Proof. Let X be a TNH space with a TNH FDD pFiqiPω. As in the proof of lemma
IV.28, we let, for every i P ω, ni �

°
j i dimpFjq, and pxnqni¤n ni�1 be a normalized

basis of Fi. For A P rωsω, we let XA be the closed subspace of X generated by the xn’s,
for n P A. And we define an equivalence relation E on rωsω by AEB if XA and XB

are isomorphic. We will show that E0 ¤B E. Since E1
0 � E, it is enough to show, by

proposition IV.27, that E is meager, so by Kuratwski–Ulam’s theorem, that for every
A P rωsω, the E-equivalence class rAs of A is meager. We distinguish two cases.

First case: XA is isomorphic to `2. For N ¥ 1, we let DN the set of B P rωsω such
that XB is not N -isomorphic to `2. This is an open set: indeed, if XB is not N -
isomorphic to `2, then by lemma IV.6, there exists n P ω such that XBXn is not N -
isomorphic to a euclidean space, so as soon as C P rωsω satisfies B X n � C X n, we
have C P DN . The set DN is also dense: indeed, if s P 2 ω, the set B P rωsω defined
by n P B ô pn ¥ |s| _ spnq � 1q is in Ns and XB has finite codimension in X, so it is
not isomorphic to `2 and thus, B P DN . Since rAs � ��n¥1DN

�c
, we have that rAs is

meager.

Second case: XA is not isomorphic to `2. In this case, since the FDD pFiq is
TNH, then there is an infinite sequence of intervals I0   I1   . . . of integers

such that for every infinite M � ω, we have XA �
�
Fi

���i R �jPM Ij

�
. We can let

Ji � tn P ω | Dj P Ii nj ¤ n   nj�1u, in such a way that J0   J1   . . . and that for
B P rωsω, if for an infinite number of i, we have BXJi � ∅, then XB is not isomorphic to
XA. For k P ω, we let Dk the set of B P rωsω such that there exists i ¥ k with BXJi � ∅.
Then Dk is an open dense set, and by the previous remark, rAs X p�kPωDkq � ∅, so
rAs is meager.

Corollary IV.31. Every separable Banach space, non-ergodic and non-isomorphic to
`2, has a MNH subspace.

This corollary, combined with theorem IV.23, show that to prove the conjecture IV.1,
it is enough to prove the following conjecture, seeming much easier:
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Conjecture IV.32. A HHP space cannot be MNH.

The methods presented in next section could help for this conjecture as well.

IV.5 A simple proof of Gowers–Maurey’s theorem

In this section, we present a new proof of the following result by Gowers and Maurey
[25]:

Theorem IV.33 (Gowers–Maurey). An HI space is not isomorphic to any proper sub-
space of itself.

Recall that a bounded operator T : X ÝÑ Y between two Banach space is said
to be bounded below if there is a constant c ¡ 0 such that for every x P X, we have
}T pxq} ¥ c}x} (by the open mapping theorem, it is equivalent to say that it is one-to-one
and has closed range), and strictly singular if no restriction of T to a subspace of X is
bounded below. In [25], Gowers and Maurey prove theorem IV.33 in the following way:
they prove, using spectral theory and Fredholm theory, that every bounded operator
from a complex HI space to itself has the form λ Id�S, where S is a strictly singular
operator (this is not true for real HI spaces), and they deduce the theorem for complex
and real HI spaces using Fredholm theory. Here, we present a simple proof using only
Fredholm theory and working as well for real and complex spaces. We suppose here that
the spaces we consider are real, but the proof is the same for complex spaces.

We start by recalling some basic Fredholm theory; for more details and for proofs,
the reader can refer to [1], section 4.4.

Definition IV.34. Let T : X Ñ Y be a bounded operator between two Banach spaces.

1. We denote by npT q P ω Y t�8u the dimension of the kernel of T , and
dpT q P ω Y t�8u the codimension of the range of T .

2. We say that T is semi-Fredholm if it has closed range and if at least one of the
numbers npT q and dpT q is finite.

3. We say that T is Fredholm if both numbers npT q and dpT q are finite (this implies
that T has closed range).

4. If T is semi-Fredholm, we define its Fredholm index as
ipT q � npT q � dpT q P ZY t�8,�8u.

We denote by FredpX,Y q and F̂redpX,Y q respectively the set of Fredholm operators
and of semi-Fredholm operators between X and Y . We equip Z Y t�8,�8u with the
topology such that Z is a discrete subset, the sets Jn,�8K form a basis of neighborhoods
of �8, and the sets J�8, nK form a basis of neighborhoods of �8. We have the following
theorem:
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Theorem IV.35. F̂redpX,Y q is an open subset of the space of bounded operators from
X to Y , and the Fredholm index i : F̂redpX,Y q ÝÑ ZY t�8,�8u is continuous.

We now present the proof of theorem IV.33. Let X be a Banach space (at this point,
we do not need to assume that X is HI). We say that a bounded operator T : X ÝÑ X is
infinitely singular if for every ε ¡ 0, there exists a subspace Y of X such that ~TæY ~ ¤ ε.
We say that λ is an infinitely singular value of a bounded operator T : X ÝÑ X if
T � λ IdX is infinitely singular.

Lemma IV.36. Let T : X ÝÑ X a bounded operator. We have equivalence between:

(1) T is not infinitely singular;

(2) There exists a finite-codimensional subspace Y of X such that TæY is bounded below;

(3) T is semi-Fredholm and ipT q   �8.

Proof. (2) ñ (1) is obvious.

(3) ñ (2) Since ipT q   �8, then kerpT q is finite-dimensional; let Y be a closed com-
plement of kerpT q. Then T is a bijection between Y and impT q and impT q is closed,
by the open mapping theorem, TæY is bounded below.

(2) ñ (3) Letting F be a complement of Y in X, we have impT q � T pY q�T pF q. Since
T is bounded below on Y , we have that T pY q is closed; moreover T pF q has finite
dimension so impT q is closed. Since kerpT q is finite-dimensional, the result follows.

(1) ñ (2) Suppose that (2) is not satisfied, and let ε ¡ 0. Then by lemma IV.5, there
exists a normalized basic sequence pfnqnPω in X, with constant at most 2, such that,
for every n P ω, }T pfnq} ¤ ε

2n�3 (in the game SubFX , player I plays with a strategy
to build a FDD with constant at most 2, and in the subspace Xn played by I at the
pn�1qth turn, II can always choose a convenient fn by the assumption). We let Y
be the closed subspace of X generated by the fn’s. Then for x � °8

n�0 xnfn P Y ,
we have }T pxq} ¤ °8

n�0 |xn|}T pfnq} ¤
°8
n�0 4}x} ε

2n�3 � ε}x}. So ~TæY ~ ¤ ε, and
T is infinitely singular.

Lemma IV.37. Let T : X Ñ Y be an isomorphism, where Y is a proper subspace of
X. Then T has at least two infinitely singular values, a positive one and a negative one.

Proof. For t P r0, 1s, define Tt � tT�p1�tq IdX . We show that there exists t P p0, 1q such
that Tt is infinitely singular; this will imply that t�1

t is a negative infinitely singular value
of T . Suppose not. Then by lemma IV.36, for every t P r0, 1s, Tt is semi-Fredholm. So
letting fptq � ipTtq we define a function f : r0, 1s ÝÑ ZY t�8,�8u; by the continuity
of Fredholm index, this function is continuous, so constant. This is a contradiction since
fp0q � 0 and fp1q   0.

We prove in the same way that T has a positive infinitely singular value, considering
the operators T 1t � tT � p1� tq IdX .
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Using lemma IV.37, the proof of Gowers–Maurey theorem will be complete once we
prove the following lemma:

Lemma IV.38. A bounded operator from an HI space into itself has at most one in-
finitely singular value.

Proof. Suppose that X is HI and let T : X ÝÑ X be a bounded operator. Suppose
that T has two infinitely singular values λ and µ. Let ε ¡ 0. We can find subspaces
Y,Z � X such that ~pT � λ IdXqæY ~ ¤ ε and ~pT � λ IdXqæZ~ ¤ ε. Since X is HI, Y
and Z are not in topological direct sum, so we have dpSY , SZq � 0. In particular, we
can find y P SY and z P SZ with }y � z} ¤ ε. So we have:

|λ� µ| � }λx} � }µy}
¤ }λy � µz}
¤ }λy � T pyq} � }T pyq � T pzq} � }T pzq � µz}
¤ ε� ~T~ � }y � z} � ε
¤ p2� ~T~qε.

So by making ε ÝÑ 0, we get that λ � µ.

We hope that this kind of methods could also apply to show that HHP spaces cannot
be MNH, or at least that they must have two non-isomorphic subspace that are non-
isomorphic to `2, thus respectively proving the conjectures IV.1 or IV.2. However, this
seems quite difficult, since here, we should replace the use of infinitely singular operators
with `2-singular operators, that is, operators T : X ÝÑ X such that for every ε ¡ 0,
there exists a subspace Y , non-isomorphic to `2, such that ~TæY ~ ¤ ε. These operators
are not Fredholm in general. Thus, an idea could be to define an analog of Fredholm
index allowing us to deal with operators T such that kerpT q is isomorphic to `2, but not
necessarily finite-dimensional.
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