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A partition relation

This talk is about nonprincipal ultrafilters on ω (or on other countable
sets).

Given U such an ultrafilter, and n, k , h ∈ ω, we will consider the following
partition relation:

ω −→ (U)nk,h,

meaning that for every coloring c : [ω]n → k , there exists U ∈ U such that
|c [[U]n]| ⩽ h.

The goal of this talk is to link the properties of this partition relation with
the position of U in the Rudin-Keisler ordering.
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The Rudin-Keisler ordering

Definition

Let X , Y be sets, U be an ultrafilter on X , and f : X → Y . The
ultrafilter f (U) on Y is defined by V ∈ f (U) ⇔ f −1[V ] ∈ U .

Definition

Let U , V be ultrafilters on X , Y respectively. We say that V ⩽RK U if
there exists f : X → Y such that f (U) = V. This defines a quasi-ordering
on the class of all ultrafilters. The associated equivalence relation and
strict relation are denoted by ≡RK and <RK .

Principal ultrafilters are pairwise RK-equivalent and are RK-minimum.
From now, we forget them.

Lemma

Let U be an ultrafilter on a set X , and let U ∈ U . Let
U ↾ U = U ∩ P(U). Then U ≡RK U ↾ U.
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Selective ultrafilters

Theorem

Let U be an ultrafilter. The following are equivalent:

U is RK-minimal (above principal ultrafilters);

Every f : ω → ω is either 1-1, or constant, on an element of U ;
Every partition ω =

⊔
i∈I Ai has either a member in U , or a selector

in U ;
ω −→ (U)22,1
∀k, n < ω, ω −→ (U)nk,1

An ultrafilter satisfying these properties is called selective.
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An implication

What remains of this equivalence when we relax the partition relation?

Definition (Blass)

U is (n, h)-weakly Ramsey if for every k < ω, ω −→ (U)nk,h.

Definition

An RK-chain of length n below U is a chain of the form
U0 <RK U1 <RK . . . <RK Un−1 = U .

Theorem

If U is (n, h)-weakly Ramsey, then every RK-chain below U has length at

most ⌊n−1
√
h⌋.

This result was already known for rapid P-points, it was proved by Laflamme.
He also showed that it is optimal. Note that it implies that (n, 2n−1 − 1)-
weakly Ramsey ultrafilters are selective.
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The proof

The result follows from the following proposition:

Proposition

Suppose that U is at the top of a RK-chain of length m. Then for every
n ⩾ 1, there exists a coloring of [ω]n with mn−1 colors, such that every
element of U meets every color.

The result is proved by induction on m. It is obvious for m = 1.

We fix m ⩾ 1 and we fix U at the top of a RK-chain of length m + 1. So
there is V <RK U at the top of a RK-chain of length m. We fix f : ω → ω
witnessing V ⩽RK U . So there is no U ∈ U on which f is 1-1.

For every n ⩾ 1, fix a coloring c̃ : [ω]n → mn−1 such that every V ∈ V
meets every color.
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In the ω where U lives, we color a set s ∈ [ω]n according to its pattern
and the color of its image by f .

Red dots represent elements of s. Here, the pattern of s is (2, 1, 3).
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Formally, a n-pattern is an uple p = (p0, . . . , pr−1) of nonzero integers
such that p0 + . . . + pr−1 = n. Given s ∈ [ω]n the pattern of s is
p(s) = (|f −1[{j0}]∩s|, . . . , |f −1[{jr−1}]∩s|), where {j0 < . . . < jr−1} = f [s].

We define a coloring c of [ω]n as follows: c(s) = (p(s), c̃(f [s])).

For a fixed k , there are
(
n−1
k−1

)
n-patterns of length k , and mk−1 possible

colors for f [s] when |f [s]| = k .

So the total number of colors is:

n∑
k=1

(
n − 1

k − 1

)
mk−1 = (m + 1)n−1.
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Fix U ∈ U . We now want to show that U meets every color. We restrict
our attention to colors of the form (p, l) where the pattern p has length
k .

Claim

There exists V ∈ V such that for every i ∈ V , |f −1[{i}] ∩ U| ⩾ n.

Proof.

Suppose not. Then there exists V ∈ V such that for every i ∈ V ,
|f −1[{i}] ∩ U| < n. So U ∩ f −1[V ] ∈ U , and on this set, f is n-to-1. So
it can be partitioned into n sets on which f is 1-to-1, and one of them,
say W , is in U . We have:

U ≡RK U ↾ W ≡RK V ↾ f (W ) ≡RK V,

a contradiction.
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Now, given a c-color (p, l) where the pattern p has length k, we can find
t ∈ [V ]k such that c̃(t) = l , and s ∈ [U]n having pattern p and such that
f [s] = t. Then c(s) = (p, l).
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What about the converse?

Theorem

Consistently, there exists a P-point ultrafilter U on ω having a unique
strict RK-predecessor, up to equivalence, and such that for all n ⩾ 2 and
h ⩾ 1, U fails to be (n, h)-weakly Ramsey.

Definition

A coideal on ω is the complement of an ideal. Equivalently, it is a
nonempty proper subset H ⊆ P(ω), upwards closed, and such that if
A ∪ B ∈ H, then either A ∈ H, or B ∈ H.

A P+-coideal is a coideal H such that for every decreasing sequence
(An)n<ω of elements of H, there exists A∗ ∈ H such that for every
n, A∗ ⊆∗ An.

A P-point is an ultrafilter which is also a P+-coideal.

Equivalently, an ultrafilter U is a P-point iff every f : ω → ω is either
constant, or finite-to-one, on an element of U .
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A technical lemma

Lemma

Let U , V and W be ultrafilters on ω, where U is a P-point and V is
selective. Suppose that V ⩽RK U and W ⩽RK U , respectively witnessed
by f , g : ω → ω. Then there exists h : ω → ω such that the following
diagram commutes on an element of U :

(ω,U)

(ω,W)

(ω,V)

g

f

h

In particular, h witnesses that V ⩽RK W.
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Proof (sketch).

Let, for all i , p ∈ ω, Ai = f −1[{i}] and Bp = g−1[{p}]. Passing to an
element of U if necessary, we can assume that the Ai ’s and the Bp’s are
finite. We would like to find an element of U on which (the trace of)
each Bp is contained in one of the Ai ’s.

Define a coloring of the c : [ω]2 → 2 as follows: c({i , j}) = 1 iff there is a
Bp intersecting both Ai and Aj . For a fixed i , there are only finitely Bp’s
intersecting Ai . And for each of these Bp, there are only finitely many
Aj ’s intersecting it. To summarize, there are only finitely many j ’s such
that c({i , j}) = 1.

So there cannot be V ∈ V such that c ↾ [V ]2 ≡ 1. Since V is selective,
there exists V ∈ V such that c ↾ [V ]2 ≡ 0. Let U = f −1[V ]; then U ∈ U .

Restricting our attention to U, the trace of each Bp cannot intersect two
different Ai ’s. So each one of them is contained in at most one Ai , as
wanted.
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Ramsey theory on graphs

Definition

A k-colored graph is a finite set G equipped with a mapping
γG : [G ]2 → k .

We denote by
(
B
A

)
the set of isomorphic copies of A in B. We consider the

following partition relation for colored graphs:

C −→ (B)Ap ,

meaning that for every mapping f :
(
C
A

)
→ p, there exists B ′ ∈

(
C
B

)
such

that f is constant on
(
B′

A

)
.

Theorem (Nešeťril–Rödl)

For every k, p ⩾ 1 and for every k-colored graphs A and B, there exists a
k-colored graph C such that C −→ (B)Ap .
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Canonical Ramsey theory

For I ⊆ n, define pI : [ω]
n → [ω]I by pI ({s0 < . . . < sn−1}) = {si | i ∈ I}.

Theorem (Erdös-Rado’s canonical Ramsey theorem)

For every partition f : [ω]n → ω, there exists an infinite M ⊆ ω and I ⊆ n
such that for every s, t ∈ [M]n, we have f (s) = f (t) ⇔ pI (s) = pI (t).

For n = 1, we get the fact that every mapping ω → ω is either constant,
or 1-1, on some infinite set.

Theorem (Prömel–Voigt)

Let k ⩾ 1 and let G be a k-colored graph. Then there exists a k-colored
graph F having the following property: every f : F → ω is either
constant, or 1-1, on a copy of G.
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The construction of the counterexample

Reminder: We are looking for an ultrafilter U , having only one strict RK-
predecessor, up to equivalence, and failing to be (n, h)-weakly Ramsey for
every n ⩾ 2 and h ⩾ 1. We can actually restrict our attention to n = 2.

We start by fixing a selective ultrafilter V on ω which will be the only strict
RK-predecessor of U .

Using Prömel–Voigt’s theorem, we can define a sequence (Gn)n∈ω, where
Gn is a (n + 1)-colored graph, having the following properties:

γGn : [Gn]
2 → (n + 1) is surjective;

every f : Gn+1 → ω is either 1-1 or constant on a copy of Gn;

|G0| ⩾ 3.

This implies that for every n ∈ N, Gn+1 −→ (Gn)
•
2 .

We let X =
⋃

n∈ω{n} × Gn, and we denote by π : X → ω the projection.
The ultrafilter U will be an ultrafilter on X , the mapping π witnessing that
V ⩽RK U .
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For A ⊆ X and n ∈ ω, we let (A)n = {x ∈ Gn | (n, x) ∈ A}. We let

H = {H ⊆ X | (∀m)(Vn) (H)n contains a copy of Gm}.

Since (∀n)Gn+1 −→ (Gn)
•
2 , it follows that H is a coideal.

N. de Rancourt, J. Verner Weakly Ramsey ultrafilters



Lemma

H is a P+-coideal.

Proof.

Let (Hn) be a decreasing sequence of elements of H. Let
Vn = {m ∈ ω | (Hn)m contains a copy of Gn}. We have Vn ∈ V. (Vn)n∈ω

is decreasing and has empty intersection. Since V is selective, there exists
V ∈ V such that V ⊆ V0 and for every n ∈ ω, V ⊆∗ Vn.

Define H ⊆ X in the following way: for m /∈ V , (H)m = ∅, and for
m ∈ (Vn \ Vn+1) ∩ V , (H)m = (Hn)m. For such an m, (H)m contains a
copy of Gn.

As a consequence, for every m ∈ Vn ∩ V , (H)m contains a copy of Gp for
some p ⩾ n, so contains a copy of Gn. This shows that H ∈ H.

Finally, for every m ∈ Vn ∩ V , (H)m ⊆ (Hn)m. So
H \ Hn ⊆

⋃
m∈V\Vn

{m} × (H)m. Since V \ Vn is finite, we deduce that

H \ Hn is finite, too. So H ⊆∗ Hn.
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Force with (H,⊆). Note that (H,⊆) is forcing-equivalent to (H/FIN,⊆∗),
which is σ-closed, so this forcing does not add new reals. In particular, V
is still an ultrafilter in the extension.

Denote by U the generic. Then U is a P-point ultrafilter on X .

Lemma

π(U) = V.

Proof.

Let A ⊆ ω. If A /∈ V , then π−1[A] /∈ H, so π−1[A] /∈ U .

If A ∈ V, then for every H ∈ H, we have H ∩ π−1[A] ∈ H. In particular,
{H ∈ H | H ⊆ π−1[A]} is dense and open in H, so contains an element
of U . Thus, π−1[A] ∈ U .
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Lemma

For every h ⩾ 1, U fails to be (2, h)-weakly Ramsey.

Proof.

Recall that X =
⋃

n∈N{n} × Gn, and that each [Gn]
2 comes with a given

coloring with range in (n + 1). So part of [X ]2 is already colored, a priori
with ω colors. Fixing h, we can turn this partial ω-coloring into a total
h-coloring c as follows: we replace all edges colored in a color ⩾ h by the
color 0, and we color all the edges that are not yet colored in color 0.
The rest remains as it is.

Let U ∈ U ; we show that U meets every color. We have U ∈ H, so there
is an n ∈ ω such that (U)n contains a copy of Gh−1. The natural coloring
of this graph meets all colors from 0 to h − 1. Moreover, none of these
colors have been modified when definig c . This concludes.
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Lemma

The unique strict RK-predecessor of U is V.

We recall a previous result:

Lemma

Let U , V and W be ultrafilters on ω, where U is a P-point and V is
selective. Suppose that V ⩽RK U and W ⩽RK U , respectively witnessed
by f , g : ω → ω. Then there exists h : ω → ω such that the following
diagram commutes on an element of U :

(ω,U)

(ω,W)

(ω,V)

g

f

h

In particular, h witnesses that V ⩽RK W.
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Let W be a RK-predecessor of U , witnessed by g : ω → ω. The lemma
allows us to assume the existence of h : ω → ω such that π = h ◦ g ; in
particular, h witnesses V ⩽RK W. We want to prove that either g is 1-1
on an element of U , or h is 1-1 on an element of W. So we let:

D = {H ∈ H | either g↾H is 1-1, or h↾g [H] is 1-1}.

We show that D is dense; this is enough to conclude.

Recall that if Γn+1 is a copy of Gn+1, then there is a copy of Gn in Γn+1

on which either g is 1-1, or it is constant.
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Fix H ∈ H. We can find H ′ ∈ H ↾ H such that either for every n, g is
constant on (H ′)n, or for every n, g is 1-1 on (H ′)n.
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Suppose that for every n, g is 1-1 on (H ′)n. For x ̸= y ∈ H ′, either
x , y ∈ (H ′)n for the same n, so g(x) ̸= g(y); or x ∈ (H ′)m and y ∈ (H ′)n
for m ̸= n. In this case, π(x) = m ̸= n = π(y), and since π factorizes
through g , we get that g(x) ̸= g(y). So g is 1-1 on H ′, and H ′ ∈ D.

Suppose that for every n, g is constant on (H ′)n, and denote by zn its
value. Since π = h ◦ g , then h(zn) is equal to the value of π on (H ′)n,
which is n. So h↾g [H′] is 1-1, so H ′ ∈ D. This finishes the proof!

Note that only c dense sets have been used in this proof. Since our forcing
is ω1-closed, this implies that under CH, a sufficiently generic ultrafilter
can be built without passing to an extension. In particular, the result we
proved is true in ZFC + CH.
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Thank you for your attention!
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