Weakly Ramsey ultrafilters

Noé de Rancourt¹ joint work with Jonathan Verner²

¹KGRC, University of Vienna, ²Charles University, Prague

KGRC research seminar

April 23, 2020

This talk is about nonprincipal ultrafilters on ω (or on other countable sets).

Given $\mathcal U$ such an ultrafilter, and $n,k,h\in\omega,$ we will consider the following partition relation:

 $\omega \longrightarrow (\mathcal{U})_{k,h}^n,$

meaning that for every coloring $c \colon [\omega]^n \to k$, there exists $U \in \mathcal{U}$ such that $|c[[U]^n]| \leqslant h$.

The goal of this talk is to link the properties of this partition relation with the position of ${\cal U}$ in the Rudin-Keisler ordering.

Definition

Let X, Y be sets, \mathcal{U} be an ultrafilter on X, and $f: X \to Y$. The ultrafilter $f(\mathcal{U})$ on Y is defined by $V \in f(\mathcal{U}) \Leftrightarrow f^{-1}[V] \in \mathcal{U}$.

Definition

Let \mathcal{U} , \mathcal{V} be ultrafilters on X, Y respectively. We say that $\mathcal{V} \leq_{RK} \mathcal{U}$ if there exists $f: X \to Y$ such that $f(\mathcal{U}) = \mathcal{V}$. This defines a quasi-ordering on the class of all ultrafilters. The associated equivalence relation and strict relation are denoted by \equiv_{RK} and $<_{RK}$.

Principal ultrafilters are pairwise RK-equivalent and are RK-minimum. From now, we forget them.

Lemma

Let \mathcal{U} be an ultrafilter on a set X, and let $U \in \mathcal{U}$. Let $\mathcal{U} \upharpoonright \mathcal{U} = \mathcal{U} \cap \mathcal{P}(\mathcal{U})$. Then $\mathcal{U} \equiv_{RK} \mathcal{U} \upharpoonright \mathcal{U}$.

Selective ultrafilters

Theorem

Let \mathcal{U} be an ultrafilter. The following are equivalent:

- *U* is RK-minimal (above principal ultrafilters);
- Every $f: \omega \to \omega$ is either 1-1, or constant, on an element of \mathcal{U} ;
- Every partition ω = ⊔_{i∈I} A_i has either a member in U, or a selector in U;
- $\omega \longrightarrow (\mathcal{U})_{2,1}^2$
- $\forall k, n < \omega, \ \omega \longrightarrow (\mathcal{U})_{k,1}^n$

An ultrafilter satisfying these properties is called selective.

An implication

What remains of this equivalence when we relax the partition relation?

Definition (Blass)

 \mathcal{U} is (n, h)-weakly Ramsey if for every $k < \omega, \omega \longrightarrow (\mathcal{U})_{k,h}^n$.

Definition

An RK-chain of length *n* below \mathcal{U} is a chain of the form $\mathcal{U}_0 <_{RK} \mathcal{U}_1 <_{RK} \ldots <_{RK} \mathcal{U}_{n-1} = \mathcal{U}.$

Theorem

If \mathcal{U} is (n, h)-weakly Ramsey, then every RK-chain below \mathcal{U} has length at most $\lfloor^{n-1}\sqrt{h}\rfloor$.

This result was already known for rapid P-points, it was proved by Laflamme. He also showed that it is optimal. Note that it implies that $(n, 2^{n-1} - 1)$ -weakly Ramsey ultrafilters are selective.

The result follows from the following proposition:

Proposition

Suppose that \mathcal{U} is at the top of a RK-chain of length m. Then for every $n \ge 1$, there exists a coloring of $[\omega]^n$ with m^{n-1} colors, such that every element of \mathcal{U} meets every color.

The result is proved by induction on m. It is obvious for m = 1.

We fix $m \ge 1$ and we fix \mathcal{U} at the top of a RK-chain of length m + 1. So there is $\mathcal{V} <_{RK} \mathcal{U}$ at the top of a RK-chain of length m. We fix $f : \omega \to \omega$ witnessing $\mathcal{V} \leq_{RK} \mathcal{U}$. So there is no $U \in \mathcal{U}$ on which f is 1-1.

For every $n \ge 1$, fix a coloring $\tilde{c} : [\omega]^n \to m^{n-1}$ such that every $V \in \mathcal{V}$ meets every color.

In the ω where \mathcal{U} lives, we color a set $s \in [\omega]^n$ according to its pattern and the color of its image by f.

Red dots represent elements of s. Here, the pattern of s is (2, 1, 3).

Formally, a *n*-pattern is an uple $p = (p_0, \ldots, p_{r-1})$ of nonzero integers such that $p_0 + \ldots + p_{r-1} = n$. Given $s \in [\omega]^n$ the pattern of s is $p(s) = (|f^{-1}[\{j_0\}] \cap s|, \ldots, |f^{-1}[\{j_{r-1}\}] \cap s|)$, where $\{j_0 < \ldots < j_{r-1}\} = f[s]$.

We define a coloring c of $[\omega]^n$ as follows: $c(s) = (p(s), \tilde{c}(f[s]))$.

For a fixed k, there are $\binom{n-1}{k-1}$ n-patterns of length k, and m^{k-1} possible colors for f[s] when |f[s]| = k.

So the total number of colors is:

$$\sum_{k=1}^{n} \binom{n-1}{k-1} m^{k-1} = (m+1)^{n-1}.$$

Fix $U \in \mathcal{U}$. We now want to show that U meets every color. We restrict our attention to colors of the form (p, l) where the pattern p has length k.

Claim

There exists $V \in \mathcal{V}$ such that for every $i \in V$, $|f^{-1}[\{i\}] \cap U| \ge n$.

Proof.

Suppose not. Then there exists $V \in \mathcal{V}$ such that for every $i \in V$, $|f^{-1}[\{i\}] \cap U| < n$. So $U \cap f^{-1}[V] \in \mathcal{U}$, and on this set, f is *n*-to-1. So it can be partitioned into n sets on which f is 1-to-1, and one of them, say W, is in \mathcal{U} . We have:

$$\mathcal{U} \equiv_{RK} \mathcal{U} \upharpoonright W \equiv_{RK} \mathcal{V} \upharpoonright f(W) \equiv_{RK} \mathcal{V},$$

a contradiction.

Now, given a *c*-color (p, l) where the pattern *p* has length *k*, we can find $t \in [V]^k$ such that $\tilde{c}(t) = l$, and $s \in [U]^n$ having pattern *p* and such that f[s] = t. Then c(s) = (p, l).

Theorem

Consistently, there exists a P-point ultrafilter U on ω having a unique strict RK-predecessor, up to equivalence, and such that for all $n \ge 2$ and $h \ge 1$, U fails to be (n, h)-weakly Ramsey.

Definition

- A coideal on ω is the complement of an ideal. Equivalently, it is a nonempty proper subset H ⊆ P(ω), upwards closed, and such that if A ∪ B ∈ H, then either A ∈ H, or B ∈ H.
- A P^+ -coideal is a coideal \mathcal{H} such that for every decreasing sequence $(A_n)_{n < \omega}$ of elements of \mathcal{H} , there exists $A^* \in \mathcal{H}$ such that for every $n, A^* \subseteq A_n$.
- A *P*-point is an ultrafilter which is also a P^+ -coideal.

Equivalently, an ultrafilter \mathcal{U} is a *P*-point iff every $f: \omega \to \omega$ is either constant, or finite-to-one, on an element of \mathcal{U} .

Lemma

Let \mathcal{U} , \mathcal{V} and \mathcal{W} be ultrafilters on ω , where \mathcal{U} is a P-point and \mathcal{V} is selective. Suppose that $\mathcal{V} \leq_{RK} \mathcal{U}$ and $\mathcal{W} \leq_{RK} \mathcal{U}$, respectively witnessed by f, g: $\omega \rightarrow \omega$. Then there exists h: $\omega \rightarrow \omega$ such that the following diagram commutes on an element of \mathcal{U} :

In particular, h witnesses that $\mathcal{V} \leq_{RK} \mathcal{W}$.

Proof (sketch).

Let, for all $i, p \in \omega$, $A_i = f^{-1}[\{i\}]$ and $B_p = g^{-1}[\{p\}]$. Passing to an element of \mathcal{U} if necessary, we can assume that the A_i 's and the B_p 's are finite. We would like to find an element of \mathcal{U} on which (the trace of) each B_p is contained in one of the A_i 's.

Define a coloring of the $c: [\omega]^2 \to 2$ as follows: $c(\{i, j\}) = 1$ iff there is a B_p intersecting both A_i and A_j . For a fixed *i*, there are only finitely B_p 's intersecting A_i . And for each of these B_p , there are only finitely many A_j 's intersecting it. To summarize, there are only finitely many *j*'s such that $c(\{i, j\}) = 1$.

So there cannot be $V \in \mathcal{V}$ such that $c \upharpoonright [V]^2 \equiv 1$. Since \mathcal{V} is selective, there exists $V \in \mathcal{V}$ such that $c \upharpoonright [V]^2 \equiv 0$. Let $U = f^{-1}[V]$; then $U \in \mathcal{U}$.

Restricting our attention to U, the trace of each B_p cannot intersect two different A_i 's. So each one of them is contained in at most one A_i , as wanted.

Ramsey theory on graphs

Definition

A k-colored graph is a finite set G equipped with a mapping $\gamma_G \colon [G]^2 \to k$.

We denote by $\binom{B}{A}$ the set of isomorphic copies of A in B. We consider the following partition relation for colored graphs:

$$C \longrightarrow (B)^A_p,$$

meaning that for every mapping $f: \binom{C}{A} \to p$, there exists $B' \in \binom{C}{B}$ such that f is constant on $\binom{B'}{A}$.

Theorem (Nešetřil–Rödl)

For every $k, p \ge 1$ and for every k-colored graphs A and B, there exists a k-colored graph C such that $C \longrightarrow (B)_p^A$.

For $I \subseteq n$, define $p_I \colon [\omega]^n \to [\omega]^I$ by $p_I(\{s_0 < \ldots < s_{n-1}\}) = \{s_i \mid i \in I\}.$

Theorem (Erdös-Rado's canonical Ramsey theorem)

For every partition $f: [\omega]^n \to \omega$, there exists an infinite $M \subseteq \omega$ and $I \subseteq n$ such that for every $s, t \in [M]^n$, we have $f(s) = f(t) \Leftrightarrow p_I(s) = p_I(t)$.

For n = 1, we get the fact that every mapping $\omega \to \omega$ is either constant, or 1-1, on some infinite set.

Theorem (Prömel–Voigt)

Let $k \ge 1$ and let G be a k-colored graph. Then there exists a k-colored graph F having the following property: every $f: F \to \omega$ is either constant, or 1-1, on a copy of G.

Reminder: We are looking for an ultrafilter \mathcal{U} , having only one strict RK-predecessor, up to equivalence, and failing to be (n, h)-weakly Ramsey for every $n \ge 2$ and $h \ge 1$. We can actually restrict our attention to n = 2.

We start by fixing a selective ultrafilter \mathcal{V} on ω which will be the only strict RK-predecessor of \mathcal{U} .

Using Prömel–Voigt's theorem, we can define a sequence $(G_n)_{n \in \omega}$, where G_n is a (n + 1)-colored graph, having the following properties:

- $\gamma_{G_n} \colon [G_n]^2 \to (n+1)$ is surjective;
- every $f: G_{n+1} \rightarrow \omega$ is either 1-1 or constant on a copy of G_n ;
- $|G_0| \ge 3$.

This implies that for every $n \in \mathbb{N}$, $G_{n+1} \longrightarrow (G_n)_2^{\bullet}$.

We let $X = \bigcup_{n \in \omega} \{n\} \times G_n$, and we denote by $\pi \colon X \to \omega$ the projection. The ultrafilter \mathcal{U} will be an ultrafilter on X, the mapping π witnessing that $\mathcal{V} \leq_{RK} \mathcal{U}$. For $A \subseteq X$ and $n \in \omega$, we let $(A)_n = \{x \in G_n \mid (n, x) \in A\}$. We let $\mathcal{H} = \{H \subseteq X \mid (\forall m)(\mathcal{V}n) \ (H)_n \text{ contains a copy of } G_m\}.$

Since $(\forall n) G_{n+1} \longrightarrow (G_n)_2^{\bullet}$, it follows that \mathcal{H} is a coideal.

Lemma

 \mathcal{H} is a P^+ -coideal.

Proof.

Let (H_n) be a decreasing sequence of elements of \mathcal{H} . Let $V_n = \{m \in \omega \mid (H_n)_m \text{ contains a copy of } G_n\}$. We have $V_n \in \mathcal{V}$. $(V_n)_{n \in \omega}$ is decreasing and has empty intersection. Since \mathcal{V} is selective, there exists $V \in \mathcal{V}$ such that $V \subseteq V_0$ and for every $n \in \omega$, $V \subseteq^* V_n$.

Define $H \subseteq X$ in the following way: for $m \notin V$, $(H)_m = \emptyset$, and for $m \in (V_n \setminus V_{n+1}) \cap V$, $(H)_m = (H_n)_m$. For such an m, $(H)_m$ contains a copy of G_n .

As a consequence, for every $m \in V_n \cap V$, $(H)_m$ contains a copy of G_p for some $p \ge n$, so contains a copy of G_n . This shows that $H \in \mathcal{H}$.

Finally, for every $m \in V_n \cap V$, $(H)_m \subseteq (H_n)_m$. So $H \setminus H_n \subseteq \bigcup_{m \in V \setminus V_n} \{m\} \times (H)_m$. Since $V \setminus V_n$ is finite, we deduce that $H \setminus H_n$ is finite, too. So $H \subseteq^* H_n$. Force with (\mathcal{H}, \subseteq) . Note that (\mathcal{H}, \subseteq) is forcing-equivalent to $(\mathcal{H}/ \operatorname{FIN}, \subseteq^*)$, which is σ -closed, so this forcing does not add new reals. In particular, \mathcal{V} is still an ultrafilter in the extension.

Denote by \mathcal{U} the generic. Then \mathcal{U} is a *P*-point ultrafilter on *X*.

Lemma	
$\pi(\mathcal{U}) = \mathcal{V}.$	

Proof.

Let $A \subseteq \omega$. If $A \notin V$, then $\pi^{-1}[A] \notin \mathcal{H}$, so $\pi^{-1}[A] \notin \mathcal{U}$.

If $A \in \mathcal{V}$, then for every $H \in \mathcal{H}$, we have $H \cap \pi^{-1}[A] \in \mathcal{H}$. In particular, $\{H \in \mathcal{H} \mid H \subseteq \pi^{-1}[A]\}$ is dense and open in \mathcal{H} , so contains an element of \mathcal{U} . Thus, $\pi^{-1}[A] \in \mathcal{U}$.

Lemma

For every $h \ge 1$, \mathcal{U} fails to be (2, h)-weakly Ramsey.

Proof.

Recall that $X = \bigcup_{n \in \mathbb{N}} \{n\} \times G_n$, and that each $[G_n]^2$ comes with a given coloring with range in (n + 1). So part of $[X]^2$ is already colored, a priori with ω colors. Fixing h, we can turn this partial ω -coloring into a total h-coloring c as follows: we replace all edges colored in a color $\ge h$ by the color 0, and we color all the edges that are not yet colored in color 0. The rest remains as it is.

Let $U \in \mathcal{U}$; we show that U meets every color. We have $U \in \mathcal{H}$, so there is an $n \in \omega$ such that $(U)_n$ contains a copy of G_{h-1} . The natural coloring of this graph meets all colors from 0 to h-1. Moreover, none of these colors have been modified when definig c. This concludes.

Lemma

The unique strict RK-predecessor of \mathcal{U} is \mathcal{V} .

We recall a previous result:

Lemma

Let \mathcal{U} , \mathcal{V} and \mathcal{W} be ultrafilters on ω , where \mathcal{U} is a P-point and \mathcal{V} is selective. Suppose that $\mathcal{V} \leq_{RK} \mathcal{U}$ and $\mathcal{W} \leq_{RK} \mathcal{U}$, respectively witnessed by f, g: $\omega \rightarrow \omega$. Then there exists h: $\omega \rightarrow \omega$ such that the following diagram commutes on an element of \mathcal{U} :

In particular, h witnesses that $\mathcal{V} \leq_{RK} \mathcal{W}$.

Let \mathcal{W} be a RK-predecessor of \mathcal{U} , witnessed by $g: \omega \to \omega$. The lemma allows us to assume the existence of $h: \omega \to \omega$ such that $\pi = h \circ g$; in particular, h witnesses $\mathcal{V} \leq_{RK} \mathcal{W}$. We want to prove that either g is 1-1 on an element of \mathcal{U} , or h is 1-1 on an element of \mathcal{W} . So we let:

 $\mathcal{D} = \{ H \in \mathcal{H} \mid \text{either } g_{\restriction H} \text{ is } 1\text{-}1, \text{ or } h_{\restriction g[H]} \text{ is } 1\text{-}1 \}.$

We show that \mathcal{D} is dense; this is enough to conclude.

Recall that if Γ_{n+1} is a copy of G_{n+1} , then there is a copy of G_n in Γ_{n+1} on which either g is 1-1, or it is constant.

Fix $H \in \mathcal{H}$. We can find $H' \in \mathcal{H} \upharpoonright H$ such that either for every *n*, *g* is constant on $(H')_n$, or for every *n*, *g* is 1-1 on $(H')_n$.

Suppose that for every n, g is 1-1 on $(H')_n$. For $x \neq y \in H'$, either $x, y \in (H')_n$ for the same n, so $g(x) \neq g(y)$; or $x \in (H')_m$ and $y \in (H')_n$ for $m \neq n$. In this case, $\pi(x) = m \neq n = \pi(y)$, and since π factorizes through g, we get that $g(x) \neq g(y)$. So g is 1-1 on H', and $H' \in \mathcal{D}$.

Suppose that for every *n*, *g* is constant on $(H')_n$, and denote by z_n its value. Since $\pi = h \circ g$, then $h(z_n)$ is equal to the value of π on $(H')_n$, which is *n*. So $h_{|g[H']}$ is 1-1, so $H' \in \mathcal{D}$. This finishes the proof!

Note that only c dense sets have been used in this proof. Since our forcing is ω_1 -closed, this implies that under CH, a sufficiently generic ultrafilter can be built without passing to an extension. In particular, the result we proved is true in ZFC + CH.

Thank you for your attention!