Ramsey determinacy of the adversarial Gowers games

Noé de Rancourt

Université Paris VII, IMJ-PRG

Descriptive set theory in Paris December 8, 2015

Theorem (Gowers' first dichotomy, 1996)

Every infinite-dimensional Banach space has an infinite-dimensional closed subspace which either has a unconditional basis, or is hereditarily indecomposable.

To proves this, Gowers uses a Galvin-Prikry-like theorem in separable Banach spaces: here, we color (some) infinite sequences of vectors and want to get an infinite-dimensional closed subspace which is "almost" monochromatic.

This theorem is an *approximate* and *strategical* Ramsey result.

Rosendal's version of Gowers' theorem

E: countable-dimensional vector space over an at most countable field K. In what follows, all subspaces will be infinite-dimensional.

Definition

For a subspace $X \subseteq E$, we define: • The Gowers game G_X : • U_0 U_1 ... • $U_0 \in U_0$ $u_1 \in U_1$..., where the U_i 's are subspaces of X and the u_i 's are vectors of E. The outcome of the game is the sequence $(u_i)_{i\in\mathbb{N}} \in E^{\mathbb{N}}$.

• the asymptotic game F_X is the same as G_X , except that the U_i 's are moreover required to have finite codimension in X.

Properties

Let $\mathcal{X} \subseteq E^{\mathbb{N}}$.

- If I has a strategy to play in \mathcal{X}^c in F_X , then he also has one in G_X ;
- If II has a strategy to play in \mathcal{X} in G_X , then she also has one in F_X .

Definition

 $\mathcal{X} \subseteq E^{\mathbb{N}}$ is *strategically Ramsey* if for every subspace $X \subseteq E$, there exists a further subspace $Y \subseteq X$ such that:

- either I has a strategy to play in \mathcal{X}^c in F_Y ;
- or **II** has a strategy to play in \mathcal{X} in G_Y .

Endow *E* with the discrete topology. Then $E^{\mathbb{N}}$ is a Polish space.

Theorem (Rosendal, 2008)

Every analytic subset of $E^{\mathbb{N}}$ is strategically Ramsey.

Definition (Gowers and asymptotic games in \mathbb{N})

For $M \subseteq \mathbb{N}$ infinite:

In G_M , the N_i 's are infinite subsets of M, and in F_M , they are cofinite subsets of M. The outcome is the sequence $(n_i)_{i \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$.

Identifying subsets of $\mathbb N$ with sequences, we have, for $\mathcal X\subseteq\mathbb N^\mathbb N$:

Proposition

If I has a strategy in F_M to play in X^c, then there is N ⊆ [M]^ω such that [N]^ω ∩ X = Ø;
If II has a strategy in G_i, to play in X, then there is

(2) If II has a strategy in G_M to play in X, then there is N ⊆ [M]^ω such that [N]^ω ⊆ X.

(1) holds approximately in Banach spaces, and (2) holds approximately in c_0 -saturated Banach spaces.

Definition

For $X \subseteq E$ a subspace, we define:

- The game A_X : I $u_0 \in U_0, V_0$ $u_1 \in U_1, V_1$..., II U_0 $v_0 \in V_0, U_1$ where the U_i 's are infinite-dimensional subspaces of X, the V_i are finite-codimensional subspaces of X, and the u_i 's and the v_i 's are vectors of E. The outcome of the game is the pair of sequences $((u_i)_{i \in \mathbb{N}}, (v_i)_{i \in \mathbb{N}}).$
- The game B_X is defined in the same way as A_X , except that this time, the U_i 's are required to be finite-codimensional in X whereas the V_i 's can be arbitrary infinite-dimensional subspaces of X.

In A_X , I plays the role of I in F_X and the role of II in G_X . In B_X , it's the opposite.

Definition

 $\mathcal{X} \subseteq E^{\mathbb{N}}$ is *adversarially Ramsey* if for every subspace $X \subseteq E$, there exists a further subspace $Y \subseteq X$ such that :

- either I has a strategy in A_Y to play in \mathcal{X}^c ;
- or II has a strategy in B_Y to play in \mathcal{X} .

Each player has a winning strategy in the game which is the most difficult for him.

Theorem (Rosendal, 2012)

Every Σ_0^3 or Π_0^3 subset of $E^{\mathbb{N}}$ is adversarially Ramsey.

Let Γ be a suitable class of subsets of Polish spaces. If every $\Gamma\text{-subset}$ of $E^{\mathbb{N}}$ is adversarially Ramsey, then:

- every Γ-subset of E^N is strategically Ramsey (take the projection on the v_i's);
- every Γ-set of sequences of integers is determined (play with the norms of the vectors).

In particular, in ZFC, we can't go beyond Borel.

Theorem (d.R., 2014)

Every Borel subset of $E^{\mathbb{N}}$ is adversarially Ramsey.

For a subspace $X \subseteq E$, we define the Kastanas game K_X :

where the u_i 's and the v_i 's are vectors of E, and the U_i 's and the V_i 's are infinite-dimensional subspaces of X such that $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq ...$ The outcome of the game is the pair of sequences $((u_i)_{i \in \mathbb{N}}, (v_i)_{i \in \mathbb{N}})$.

Proposition

- If I has a strategy in K_X to play in \mathcal{X}^c , then there exists a subspace $Y \subseteq X$ such that I has a strategy in A_Y to play in \mathcal{X}^c ;
- If II has a strategy in K_X to play in \mathcal{X} , then there exists a subspace $Y \subseteq X$ such that II has a strategy in B_Y to play in \mathcal{X} .

Question

Can we deduce the adversarial Ramsey property for a suitable class of subsets of Polish spaces from the determinacy of Gale-Stewart games on integers for the same class ?

If yes, this would:

- provide a direct proof that, under PD, every projective set of infinite sets of integers (resp. every projective subset of E^N) is Ramsey (resp. strategically Ramsey);
- prove that under AD, every set of infinite sets of integers is Ramsey.