Approximate Gowers spaces

Noé de Rancourt

Université Paris VII, IMJ-PRG

Winter School in Abstract Analysis, section Set theory & Topology

Hejnice, January 30, 2018

Infinite-dimensional Ramsey theory and the pigeonhole principle

Infinite-dimensional Ramsey theory is about coloring infinite sequences of objects.

Theorem (Mathias-Silver)

Let \mathcal{X} be an analytic set of infinite subsets of \mathbb{N} . Then there exists $M \subseteq \mathbb{N}$ infinite such that:

- either for every infinite $A \subseteq M$, we have $A \in \mathcal{X}$;
- or for every infinite $A \subseteq M$, we have $A \notin \mathcal{X}$.

Here, the set A can be viewed as an increasing sequence of integers.

Infinite-dimensional Ramsey theory and the pigeonhole principle

Let FIN denote the set of finite subsets of \mathbb{N} . Given a sequence $A_0 < A_1 < A_2 < \ldots$ of nonempty elements of FIN, a *block-sequence* is a sequence of the form $\bigcup_{i \in B_0} A_i$, $\bigcup_{i \in B_1} A_i$, $\bigcup_{i \in B_2} A_i$, \ldots where $B_0 < B_1 < B_2 < \ldots$ is a sequence of nonempty elements of FIN.

Theorem (Milliken)

Let \mathcal{X} be an analytic set of increasing sequences of nonempty elements FIN. Then there exists a sequence $A_0 < A_1 < A_2 < \ldots$ of nonempty elements of FIN such that:

- either every block-sequence of (A_i) is in \mathcal{X} ;
- or no block-sequence of (A_i) is in \mathcal{X} .

Infinite-dimensional Ramsey theory and the pigeonhole principle

A *pigeonhole principle* is a one-dimensional Ramsey result, i.e. a Ramsey result where you color objects. Every infinite-dimensional Ramsey result has an associated pigeonhole principle, which is obtained by coloring sequences according to their first term.

The pigeonhole principle associated to Mathias-Silver's theorem is the following: for every coloring of the integers with two colors, there exists an infinite monochromatic subset.

The pigeonhole principle associated to Milliken's theorem is:

Theorem (Hindman)

For every coloring of the nonempty elements of FIN, there exists a sequence $A_0 < A_1 < A_2 < \ldots$ of nonempty elements of FIN such that all the sets of the form $\bigcup_{i \in B} A_i$, for $B \in \text{FIN} \setminus \{\varnothing\}$, have the same color.

Can we still get something interesting without pigeonhole principle?

Gowers' Ramsey-type theorems for Banach spaces

The first Ramsey-type result without pigeonhole principle is by Gowers, for Banach spaces.

Fix *E* a Banach space. Recall that a (normalized) sequence $(e_i)_{i \in \mathbb{N}}$ of *E* is called a *Schauder basis* if for every $x \in E$, there exists a unique sequence $(x^i)_{i \in \mathbb{N}}$ of scalars such that $x = \sum_{i=0}^{\infty} x^i e_i$.

A block-sequence of (e_i) is a sequence $(x_i)_{i \in \mathbb{N}}$ of (normalized) vectors of *E* with supp $(x_0) < \text{supp}(x_1) < \text{supp}(x_2) < \ldots$ A block-subspace is a (closed) subspace spanned by a block-sequence.

We want a Ramsey result where we color block-sequences and where we find a monochromatic block-subspace.

Notation

• For $A \subseteq S_E$ and $\delta > 0$, let $(A)_{\delta} = \{y \in S_E \mid \exists x \in A ||x - y|| \leq \delta\}$.

② For X a set of block-sequences and ∆ a sequence of positive numbers, let (X)_∆ be the set of block-sequences (y_n) for which there exists (x_n) ∈ X with ∀n ∈ N ||x_n - y_n|| ≤ ∆_n.

Definition

Say that *E* satisfies the *approximate pigeonhole principle* if for every $A \subseteq S_E$, for every (block) subspace $X \subseteq E$ and for every $\delta > 0$, there exists a (block) subspace $Y \subseteq X$ such that either $S_Y \subseteq (A)_{\delta}$, or $S_Y \subseteq (A^c)_{\delta}$.

Theorem

E satisfies the approximate pigeonhole principle iff it is c₀-saturated.

 \Leftarrow is by Gowers, \Rightarrow comes from a combination of a result by Milman, and another by Odell and Schlumprecht.

Theorem (Gowers' Ramsey-type theorem for c_0)

Let E be a c_0 -saturated Banach space with a Schauder basis (e_i). Let Δ be a sequence of positive numbers, and \mathcal{X} be an analytic set of block-sequences. Then there exists a block-subspace X such that:

- either no block-sequence of X is in \mathcal{X} ;
- or every block-sequence of X is in $(\mathcal{X})_{\Delta}$.

To remedy to the lack of pigeonhole principle, we introduce Gowers' game:

Definition

Let *E* be a Banach space with a Schauder basis (e_i) , let *X* be a block-subspace, and let \mathcal{X} be a set of block-sequences of (e_i) . *Gowers' game* $G_X(\mathcal{X})$ is defined as follows:

where the Y_i 's are block-subspaces of X, and the y_i 's are normalized vectors. Player **II** wins the game iff $(y_i)_{i \in \mathbb{N}}$ is a block-sequence that belongs to \mathcal{X} .

Theorem (Gowers' Ramsey-type theorem)

Let E be a Banach space with a Schauder basis (e_i) . Let Δ be a sequence of positive numbers, and \mathcal{X} be an analytic set of block-sequences. Then there exists a block-subspace X such that:

- either no block-sequence of X is in \mathcal{X} ;
- or **II** has a winning strategy in $G_X((\mathcal{X})_{\Delta})$.

It turns out that this result has nothing to do with Banach spaces.

Let P be a set (the set of *subspaces*) and \leq and \leq ^{*} be two quasi-orderings on P, satisfying:

• for every $p, q \in P$, if $p \leq q$, then $p \leq^* q$;

③ for every $p, q \in P$, if p ≤ q, then there exists $r \in P$ such that r ≤ p, r ≤ q and p ≤ r;

If or every ≤-decreasing sequence (p_i)_{i∈N} of elements of P, there exists p^{*} ∈ P such that for all i ∈ N, we have p^{*} ≤ p_i;

Write $p \leq q$ for $p \leq q$ and $q \leq^* p$.

Let (X, d) be Polish metric space (the set of *points*) and $\lhd \subseteq X \times P$ a binary relation, satisfying:

• for every $p \in P$, there exists $x \in X$ such that $x \triangleleft p$.

§ for every $x \in X$ and every $p, q \in P$, if $x \triangleleft p$ and $p \leq q$, then $x \triangleleft q$.

The sextuple $\mathcal{G} = (P, X, d, \leq \leq \leq^*, \lhd)$ is called an *approximate Gowers* space.

The formalism of Gowers spaces

Two examples

- The Mathias-Silver space:
 - $X = \mathbb{N}$, and $\forall x, y \in \mathbb{N} \ (x \neq y \Rightarrow d(x, y) = 1)$;
 - P is the set of infinite subsets of \mathbb{N} ;
 - $\bullet \ \leqslant \ \text{is the inclusion;}$
 - \leqslant^* is the inclusion-by-finite;
 - \lhd is the membership relation.
- For E a Banach space with a Schauder basis (e_i), the standard Gowers space associated to E:
 - $X = S_E$ and d is the usual distance;
 - *P* is the set of block-subspaces of *E*;
 - $\bullet\,\leqslant\,$ is the inclusion;
 - \leq^* is the inclusion up to finite dimension ($F \leq^* G$ iff $F \cap G$ has finite codimension in F);
 - \lhd is the membership relation.

Notation

• For
$$A \subseteq X$$
 and $\delta > 0$, let $(A)_{\delta} = \{y \in X \mid \exists x \in A \ d(x, y) \leq \delta\}.$

So For X ⊆ X^ω and Δ a sequence of positive numbers, let $(X)_{\Delta} = \{(y_n) \in X^ω \mid \exists (x_n) \in \mathcal{X} \forall n \in \mathbb{N} \ d(x_n, y_n) \leqslant \Delta_n\}.$

Definition

Say that \mathcal{G} satisfies the *pigeonhole principle* if for every $A \subseteq X$, for every $p \in P$ and for every $\delta > 0$, there exists $q \leq p$ such that either $q \subseteq (A)_{\delta}$, or $q \subseteq (A^c)_{\delta}$. (Here, q is identified with $\{x \in X \mid x \triangleleft q\}$.)

- The Mathias-Silver space satisfies the pigeonhole principle;
- The pigeonhole principle for the standard Gowers space associated to *E* is precisely the approximate pigeonhole principle defined some slides ago.

Definition

Given $p \in P$ and $\mathcal{X} \subseteq X^{\mathbb{N}}$, *Gowers' game* $G_p(\mathcal{X})$ is defined as follows:

 $\begin{array}{c|c} I & p_0 \leqslant p & p_1 \leqslant p & \dots \\ II & x_0 \lhd p_0 & x_1 \lhd p_1 & \dots \\ \end{array}$ Player II wins the game iff $(x_i)_{i \in \mathbb{N}} \in \mathcal{X}$.

We now add some structure to compensate for the lack of ordering on X.

Consider a family \mathcal{K} of compact subsets of X and a binary operation \oplus on \mathcal{K} , associative and commutative, satisfying the following conditions:

- $\forall K_1, K_2 \in \mathcal{K}, \ K_1 \cup K_2 \subseteq K_1 \oplus K_2;$
- For all $p \in P$ and all $K_1, K_2 \in \mathcal{K}$, if $K_1 \triangleleft p$ and $K_2 \triangleleft p$, then $K_1 \oplus K_2 \triangleleft p$.

(Here, $K \lhd p$ means that $\forall x \in K \ x \lhd p$.)

Definition

Given $p \in P$ and $\mathcal{X} \subseteq X^{\mathbb{N}}$, the strong asymptotic game $SF_p(\mathcal{X})$ is defined as follows:

 $\begin{array}{c|c} \mathbf{I} & p_0 \lessapprox p & p_1 \lessapprox p & \dots \\ \mathbf{II} & \mathcal{K}_0 \lhd p_0 & \mathcal{K}_1 \lhd p_1 & \dots \\ \text{where } \mathcal{K}_i \text{'s are elements of } \mathcal{K}. \ \text{Player } \mathbf{I} \text{ wins the game iff for every} \\ \text{sequence } \mathcal{A}_0 < \mathcal{A}_1 < \dots \text{ of subsets of } \mathbb{N}, \text{ we have} \\ \left(\bigoplus_{i \in \mathcal{A}_0} \mathcal{K}_i\right) \times \left(\bigoplus_{i \in \mathcal{A}_1} \mathcal{K}_i\right) \times \dots \subseteq \mathcal{X}. \end{array}$

Theorem (dR.)

Let $p \in P$, Δ a sequence of positive numbers, and $\mathcal{X} \subseteq X^{\omega}$ analytic. Then there exists a $q \leq p$ such that:

- either I has a winning strategy in $SF_q(\mathcal{X}^c)$;
- or II has a winning strategy in $G_q((\mathcal{X})_{\Delta})$.

Moreover, if \mathcal{G} satisfies the pigeonhole principle, the second conclusion can be replaced with the following (stronger) one:

• I has a winning strategy in $SF_q((\mathcal{X})_{\Delta})$

- To get Mathias-Silver's theorem, take for K the set of finite subsets of N, and for ⊕ the union. Then, in SF_q(X^c), II just has to play a increasing sequence {n₀}, {n₁}, {n₂},... of singletons, so any subsequence will be in X^c.
- To get Gowers' theorem, take for \mathcal{K} the set of S_F 's, where $F \subseteq E$ is a finite-dimensional block-subspace, where $S_F \oplus S_G = S_{F+G}$. Then in $SF_q(\mathcal{X}^c)$, II just has to play a sequence $\mathcal{K}_0 = \{x_{i_0}, -x_{i_0}\}, \mathcal{K}_1 = \{x_{i_1}, -x_{i_1}\}, \ldots$, where $i_0 < i_1 < \ldots$ are integers and (x_i) is the canonical basis of the block-subspace q. Then every block-sequence of $(x_{i_0}, x_{i_1}, \ldots)$ will belong to a set of the form $(\bigoplus_{i \in A_0} \mathcal{K}_i) \times (\bigoplus_{i \in A_1} \mathcal{K}_i) \times \cdots$.

Lemma

A separable Banach space E is C-isomorphic to ℓ_2 if and only if every finite-dimensional subspace $F \subseteq E$ is C-isomorphic to $\ell_2^{\dim(F)}$.

Corollary

Let E be a separable Banach space, non-isomorphic to ℓ_2 . Let P be the set of (closed, infinite-dimensional) subspaces of E that are not isomorphic to ℓ_2 , \subseteq^* be the inclusion of subspaces up to finie dimension, and d be the usual distance on S_E . Then $(P, S_E, d, \subseteq, \subseteq^*, \in)$ is an approximate Gowers space.

Corollary (dR. – Ferenczi)

Let E be a separable Banach space, non-isomorphic to ℓ_2 , Δ be a sequence of positive numbers, $\varepsilon > 0$ and $\mathcal{X} \subseteq S_E^{\omega}$ be analytic. Then there exists a closed, infinite-dimensional subspace $X \subseteq E$, non-isomorphic to ℓ_2 , such that:

- either X has an FDD $(F_n)_{n \in \mathbb{N}}$ with constant $\leq 1 + \varepsilon$, such that $d_{BM}(F_n, \ell_2^{\dim(F_n)}) \xrightarrow[n \to \infty]{n \to \infty} \infty$ and such that every normalized block-sequence of (F_n) is in \mathcal{X}^c ;
- or II has a winning strategy in G_X((X)_Δ), when I only plays subspaces that are non-isomorphic to ℓ₂.

Thank you for your attention!