Weak Fraïssé classes and ℵ₀-categoricity

Noé de Rancourt

Charles University, Prague

Workshop on Generic Structures

October 27, 2021

The setting

We work in a fixed finite and relational language \mathcal{L} .

All classes of finite structures will be supposed to be closed under isomorphism, hereditary, to satisfy the joint embedding property, and to contain arbitrarily large structures.

- Hereditary: if $A \in \mathfrak{F}$ and $B \leqslant A$ then $B \in \mathfrak{F}$.
- Joint embedding property: if $\mathcal{A}, \mathcal{B} \in \mathfrak{F}$ then there exists $\mathcal{C} \in \mathfrak{F}$ into which both \mathcal{A} and \mathcal{B} can embed.

If \mathcal{X} is an (infinite) countable structure, denote by $Age(\mathcal{X})$ the class of all finite structures that are embeddable into \mathcal{X} .

If \mathfrak{F} is a class of finite structures, denote by $\sigma\mathfrak{F}$ the class of all countable structures \mathcal{X} with $\mathsf{Age}(\mathcal{X}) \subseteq \mathfrak{F}$.

Question

When does $\sigma \mathfrak{F}$ have a generic element, and how does this element look like?

$\mathsf{Mod}(\mathcal{L})$

Denote by $\mathsf{Mod}(\mathcal{L})$ the set of all countable structures with underlying set \mathbb{N} .

 $\mathsf{Mod}(\mathcal{L})$ can be endowed with a compact Polish space structure, by identifying it with $\prod_{i < n} 2^{\mathbb{N}^{a_i}}$, where $\mathcal{L} = \{R_i \mid i < n\}$ and R_i has arity a_i .

 $\sigma_{\mathbb{N}}\mathfrak{F}:=\sigma\mathfrak{F}\cap\mathsf{Mod}(\mathcal{L})$ is a closed subset of $\mathsf{Mod}(\mathcal{L})$.

For \mathcal{X} countable, let $\langle \mathcal{X} \rangle := \{ \mathcal{Y} \in \mathsf{Mod}(\mathcal{L}) \mid \mathcal{Y} \cong \mathcal{X} \}.$

Observation

$$\sigma_{\mathbb{N}}\operatorname{\mathsf{Age}}(\mathcal{X})=\overline{\langle\mathcal{X}
angle}.$$

Theorem (Cameron 1991)

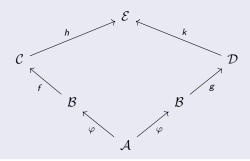
If \mathfrak{F} is a Fraïssé class, then its Fraïssé limit has a comeager isomorphism class in $\sigma\mathfrak{F}$.

Weak amalgamation

We work in the category of all \mathcal{L} -structures with embeddings as arrows.

Definition

An arrow $\varphi \colon \mathcal{A} \to \mathcal{B}$, where $\mathcal{A}, \mathcal{B} \in \mathfrak{F}$, is \mathfrak{F} -amalgamable if $\forall \mathcal{C}, \mathcal{D} \in \mathfrak{F}$, $\forall f \colon \mathcal{B} \to \mathcal{C}$, $\forall g \colon \mathcal{B} \to \mathcal{D}$, $\exists \mathcal{E} \in \mathfrak{F}$, $\exists h \colon \mathcal{C} \to \mathcal{E}$, $\exists k \colon \mathcal{D} \to \mathcal{E}$ such that the following diagram commutes:



Weak amalgamation

Say that the class \mathfrak{F} :

- satisfies the amalgamation property (AP) if for every $A \in \mathfrak{F}$, Id_A is \mathfrak{F} -amalgamable;
- satisfies the cofinal amalgamation property (CAP) if for every $\mathcal{A} \in \mathfrak{F}$, there exists $\mathcal{B} \in \mathfrak{F}$ with $\mathcal{A} \leqslant \mathcal{B}$ such that $\mathrm{Id}_{\mathcal{B}}$ is \mathfrak{F} -amalgamable;
- satisfies the weak amalgamation property (WAP) if for every $A \in \mathfrak{F}$, there exists an \mathfrak{F} -amalgamable arrow with domain A.

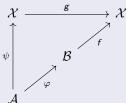
Theorem (Krawczyk-Kubiś 2021)

 $\sigma_{\mathbb{N}}\mathfrak{F}$ contains a comeager isomorphism class if and only if the class \mathfrak{F} has the WAP.

Weak/pre-(ultra)homogeneity

Definition

A countable structure $\mathcal X$ is said to be weakly ultrahomogeneous (or weakly homogeneous, or prehomogeneous) if for every $\mathcal A \in \mathsf{Age}(\mathcal X)$ and every $\psi \colon \mathcal A \to \mathcal X$, there exists $\mathcal B \in \mathsf{Age}(\mathcal X)$ and $\varphi \colon \mathcal A \to \mathcal B$ such that for every $f \colon \mathcal B \to \mathcal X$, there exists $g \in \mathsf{Aut}(\mathcal X)$ such that the following diagram commutes:

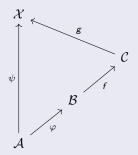


Such a φ will be called a ψ -homogeneity witness.

Weak injectivity

Definition

A countable structure $\mathcal X$ is said to be weakly injective if for every $\mathcal A \in \mathsf{Age}(\mathcal X)$ and every $\psi \colon \mathcal A \to \mathcal X$, there exists $\mathcal B \in \mathsf{Age}(\mathcal X)$ and $\varphi \colon \mathcal A \to \mathcal B$ such that for every $\mathcal C \in \mathsf{Age}(\mathcal X)$ and every $f \colon \mathcal B \to \mathcal C$, there exists $g \colon \mathcal C \to \mathcal X$ such that the following diagram commutes:



Such a φ will be called a ψ -injectivity witness.

Weak ultrahomogeneity and weak injectivity

Theorem (Krawczyk-Kubiś 2021)

A countable structure $\mathcal X$ is wealkly injective if and only if it is weakly ultrahomogeneous. Moreover, for $\mathcal A \in \mathsf{Age}(\mathcal X)$ and $\psi \colon \mathcal A \to \mathcal X$, ψ -injectivity witnesses and ψ -homogeneity witnesses coincide.

Let $\mathcal X$ be a weakly ultrahomogeneous structure. $\mathcal X$ is said to be:

- ultrahomogeneous if for every finite $A \leq \mathcal{X}$, Id_A is a homogeneity witness for the inclusion map $A \hookrightarrow \mathcal{X}$.
- cofinally ultrahomogeneous if for every finite $\mathcal{A} \leqslant \mathcal{X}$, there exists a finite \mathcal{B} with $\mathcal{A} \leqslant \mathcal{B} \leqslant \mathcal{X}$ such that $\mathrm{Id}_{\mathcal{B}}$ is a homogeneity witness for the inclusion map $\mathcal{B} \hookrightarrow \mathcal{X}$.

The Fraïssé correspondance

Theorem (Pouzet–Roux 1996, Krawczyk–Kubiś 2021)

If a countable structure $\mathcal X$ is weakly ultrahomogeneous, then $\operatorname{Age}(\mathcal X)$ has the WAP. Conversely, if a class $\mathfrak F$ of finite structures has the WAP, then there exists a countable weakly ultrahomogeneous structure $\mathcal X$, unique up to isomorphism, such that $\operatorname{Age}(\mathcal X)=\mathfrak F$. This structure moreover satisfies:

- (1) $\langle \mathcal{X} \rangle$ is a dense G_{δ} subset of $\sigma_{\mathbb{N}}\mathfrak{F}$;
- (2) for every $A, B \in Age(X)$, every $\psi \colon A \to X$ and every $\varphi \colon A \to B$, the arrow φ is a ψ -homogeneity witness iff it is an \mathfrak{F} -amalgamable arrow and ψ factors through φ .

The structure \mathcal{X} is called the (weak) Fraïssé limit of \mathfrak{F} and denoted by $\mathsf{Flim}(\mathfrak{F})$. It follows from (2) that $\mathsf{Flim}(\mathfrak{F})$ is ultrahomogeneous (resp. cofinally ultrahomogeneous) iff \mathfrak{F} has the AP (resp. the CAP).

Genericity

Theorem (Pouzet-Roux 1996)

If $\mathcal X$ is a countable structure such that $\langle \mathcal X \rangle$ is comeager in its closure in $\mathsf{Mod}(\mathcal L)$, then $\mathcal X$ is weakly ultrahomogeneous.

Summary

To summarize:

- We have a Fraïssé correspondance between classes with the WAP and weakly ultrahomogeneous structures. It generalizes the usual Fraïssé correspondance.
- For a countable structure \mathcal{X} , the following are equivalent:
 - (1) \mathcal{X} is weakly ultrahomogeneous;
 - (2) \mathcal{X} is weakly injective;
 - (3) $\langle \mathcal{X} \rangle$ is a G_{δ} subset of $\mathsf{Mod}(\mathcal{L})$;
 - (4) $\langle \mathcal{X} \rangle$ is comeager in its closure in $\mathsf{Mod}(\mathcal{L})$.

\aleph_0 -categoricity

Definition

A countable structure $\mathcal X$ is said to be \aleph_0 -categorical if it is countable and there exists a first-order theory T whose only countable model is $\mathcal X$, up to isomorphism.

Theorem (Engeler-Ryll-Nardzewski-Svenonius)

Let X be a countable structure. The following are equivalent:

- (1) \mathcal{X} is \aleph_0 -categorical;
- (2) for every $n \in \mathbb{N}$, \mathcal{X} has finitely many n-types without parameters;
- (3) for every $n \in \mathbb{N}$, $\mathcal{X}^n /\!\!/ \operatorname{Aut}(\mathcal{X})$ is finite.

Homogeneity properties and ℵ₀-categoricity

Fact

If \mathcal{X} is ultrahomogeneous, then \mathcal{X} is \aleph_0 -categorical.

There are no other implications between a homogeneity property and \aleph_0 -categoricity.

Example

Let $\overline{\mathbb{Q}}:=\mathbb{Q}\cup\{\pm\infty\}$. Then $(\overline{\mathbb{Q}},<)$ is \aleph_0 -categorical, but not weakly ultrahomogeneous.

Example

Consider the following graph Z:

Then Z is not \aleph_0 -categorical, but it is cofinally homogeneous.

ℵ₀-categorical weakly ultrahomogeneous structures

If \mathcal{X} is weakly ultrahomogeneous and $\mathcal{A} \in \mathsf{Age}(\mathcal{X})$, then the type of an embedding $\psi \colon \mathcal{A} \to \mathcal{X}$ is entirely determined by a ψ -injectivity witness.

Theorem

Let \mathfrak{F} be a class of finite structures with the WAP and let $\mathcal{X}:=\mathsf{Flim}(\mathfrak{F})$. The following are equivalent:

- (1) \mathcal{X} is \aleph_0 -categorical;
- (2) for every $A \in \mathfrak{F}$, there is a finite family \mathfrak{B}_A of amalgamable arrows with domain A such that each $\psi \colon A \to \mathcal{X}$ has an injectivity witness in \mathfrak{B}_A .

ℵ₀-categorical weakly ultrahomogeneous structures

Definition

Say that a class \mathfrak{F} of finite structures satisfies the uniform WAP if it satisfies the WAP and condition (2) from last slide.

Theorem

The uniform WAP can be read on the class in a finitary way.

Age of an ℵ₀-categorical structure

Theorem

Let \mathcal{X} be an \aleph_0 -categorical structure. Then $\mathsf{Age}(\mathcal{X})$ has the WAP and $\mathsf{Flim}(\mathsf{Age}(\mathcal{X}))$ is also \aleph_0 -categorical.

Definition

A countable structure \mathcal{X} is said to be universal if every element of $\sigma \operatorname{Age}(\mathcal{X})$ can be embedded into \mathcal{X} .

The WAP for Age(\mathcal{X}) relies on the two following results.

Theorem (Folklore? Seen in Cameron 1991)

 \aleph_0 -categorical structures are universal.

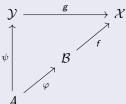
Theorem (Krawczyk–Kubiś 2021)

If \mathcal{X} is universal, then $Age(\mathcal{X})$ has the WAP.

Strong universality

Definition

A countable structure $\mathcal X$ is said to be strongly universal if for every countable structure $\mathcal Y$, every $\mathcal A \in \mathsf{Age}(\mathcal Y)$, and every $\psi \colon \mathcal A \to \mathcal Y$, there exists $\mathcal B \in \mathsf{Age}(\mathcal Y)$ and $\varphi \colon \mathcal A \to \mathcal B$ such that for every $f \colon \mathcal B \to \mathcal X$, there exists an embedding $g \colon \mathcal Y \to \mathcal X$ such that the following diagram commutes:



Such a φ will be called an ψ -universality witness.

Strong universality

Strong universality implies universality.

Theorem

Every \aleph_0 -categorical structure is stronlgy universal.

Strong universality is difficult to handle and very different from weak ultra-homogeneity. For instance, even if Age(X) satisfies the AP, identity arrows cannot always be universality witnesses.

Question

Are there non- \aleph_0 -categorical, strongly universal structures?

Sketch of the proof of the main theorem

If $\mathcal X$ is a countable structure and $\mathcal A \in \mathsf{Age}(\mathcal X)$, then for $f,g\colon \mathcal A \to \mathcal X$, we write $f\leqslant g$ if there exists an embedding $h\colon \mathcal X \to \mathcal X$ such that $g=h\circ f$. This is a quasiordering, denote by \equiv the associated equivalence relation. If X is \aleph_0 -categorical, then \equiv has finitely many classes. In particular, the quasiordering \leqslant has maximal elements.

Lemma

Let $\psi \colon \mathcal{A} \to \mathcal{X}$ be \leqslant -maximal. Let φ be a ψ -universality witness. Then φ is an $\mathrm{Age}(\mathcal{X})$ -amalgamable arrow.

Taking one arrow of this form for each maximal class is enough to witness that $Age(\mathcal{X})$ satisfies the uniform WAP.

An open question

Question

Is there a condition (C) on countable structures, expressible in category-theoretic terms, such that for every class $\mathfrak F$ with the uniform WAP, structures $\mathcal Y\in\sigma\mathfrak F$ are \aleph_0 -cateogrical iff they satisfy (C)?

Could this condition (C) be strong universality?

Link with model-companionship

Definition

A theory T is said to be model-complete if every embedding between models of T is elementary.

Definition

Let T be a theory. A model-companion of T is a theory T' such that:

- (1) T' is model-complete;
- (2) every model of T embeds into a model of T';
- (3) every model of T' embeds into a model of T.

If a model companion exists, then it is unique.

Link with model-companionship

Fact

Let $\mathcal X$ be an \aleph_0 -categorical, weakly ultrahomogeneous structure. Then $\mathsf{Th}(\mathcal X)$ is model-complete.

Using the main theorem, the latter fact, and universality, we easily obtain:

Theorem (Saracino 1973)

Let T be an \aleph_0 -categorical theory. Then T has a model companion, which is also \aleph_0 -categorical.

Thank you for your attention!