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Terminology

In this talk, all Banach spaces will be infinite-dimensional, and
by a subspace, I will mean an infinite-dimensional, closed

subspace.

A space is said to be Hilbertian if it is isomorphic to a Hilbert
space.

We will work in real spaces, but everything works as well in
complex spaces.
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Gowers’ classification program

It is well known that there is no hope classifying separable Banach spaces
up to isomorphism.

In his famous paper An infinite Ramsey theorem and some Banach-space
dichotomies (Ann. Math. ’02), Gowers suggests a weak classification
program for separable Banach spaces, up to subspaces. The goal is to
build a list of classes of separable Banach spaces (usually called a Gowers
list), as fine as possible, and satisfying the following conditions:

(1) the classes are hereditary: if X belongs to a class C then all
subspaces of X also belong to C (or, in the case of classes defined by
properties of bases, all block-subspaces of X belong to C);

(2) the classes are pairwise disjoint;

(3) knowing that a space belongs to a class gives much information
about the structure of this space;

(4) every Banach space contains a subspace belonging to one of the
classes.
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Gowers’ first dichotomy

Property (4) is usually the one that is the most difficult to prove; it requires
to prove Banach-space dichotomies

Theorem (“The first dichotomy”, Gowers, ’96)

Every Banach space X contains a subspace Y such that:

either Y has an unconditional basis;

or Y is hereditarily indecomposable (HI), that is, it contains no
topological direct sum of two subspaces.

Gowers’ first dichotomy provides a Gowers list with two classes: the class
of spaces having an unconditional basis, and the class of HI spaces. The
fact that HI spaces have very few operators justifies property (3) for this
class.
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Ferenczi–Rosendal’s third dichotomy

Definition

A Banach space is minimal if it embeds into all of its subspaces.

If (xi )i∈I is a family of vectors in a Banach space, we denote by [xi | i ∈ I ]
the closed subspace it spans.

Definition

A Banach space Y is tight in a basis (ei ) if there exists a sequence
of successive intervals of integers I0 < I1 < ... such that for every
infinite A ⊆ N, Y cannot be embedded into [ei | i /∈

⋃
n∈A In].

A basis (ei ) is tight if every Banach space is tight in it.

A Banach space X is tight if it admits a tight basis.

For instance, Tsirelson’s space is tight.
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Ferenczi–Rosendal’s third dichotomy

Theorem (“The third dichotomy”, Ferenczi–Rosendal, ’09)

Every Banach space either has a minimal subspace, or has a tight
subspace.

This dichotomy, combined with the first one, provides a Gowers list with
three classes:

minimal spaces with an unconditional basis;

spaces having an unconditional and tight basis;

tight HI spaces.

Other dichotomies by Gowers and Ferenczi–Rosendal extend this list to 6
classes (all of whose are known to be nonempty) and 19 possible subclasses.
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A non-example: James’ space

Maybe the first ever (?) example of a “pathological” Banach space was
James’ quasi-reflexive space J .

James’ space is ℓ2 saturated; hence, a Gowers list will never give any
relevant information about it.

Hence the idea to prove local dichotomies, i.e., dichotomies that are sim-
ilar to the latter ones but where the outcome space can always be found
“locally”, that is, in a fixed family of subspaces. The word “local” used
here was stolen to Ramsey-theorists.
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Local properties

Consider a local property (P) of Banach spaces, that is, a property such
that:

a Banach space X has (P) with constant C if and only if all of its
finite-dimensional subspaces have (P) with constant C ;

if a space X has (P) with constant C , and if Y is K -isomorphic to
X , then Y has (P) with constant KC .

This includes, for example, being Hilbertian, having type p, cotype q...

Informal fact

Usual Banach-space dichotomies can be localized to spaces failing
property (P).

We can actually generalize this to certain properties that are not local;
such properties can be defined via the notion of degree.
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Degrees

A pair (X ,F ) where X is a (finite- or infinite-dimensional) Banach space,
and F is a finite-dimensional subspace of X will be called an approximation
pair. Denote by AP the class of all approximation pairs.

Definition

A degree is a mapping d : AP → R+ such that for every operators S ,T
making the following diagram commute :

F X

G Y

ι

T

ι

S ,

we have d(Y ,G ) ⩽ ∥S∥ · ∥T∥ · d(X ,F ).

The degree d is said to be local if d(X ,F ) only depends on F (in which
case it is simply denoted by d(F )).
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Degrees

Definition

Let d be a degree. A Banach space is said to be d-small if
supF⊆Xd(X ,F ) < ∞, and d-large otherwise.

A local property and a local degree are the same thing. If (P) is a local
property, let d(F ) be the infimum of constants C such that F has property
(P) with constant C . Then d is a local degree, and being d-small is
equivalent to having property (P).
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Degrees: examples

(1) d(F ) = dim(F ) is a local degree. d-small spaces are exactly
finite-dimensional spaces.

(2) d2(F ) = dBM(F , ℓ
dim(F )
2 ) is a local degree, the Hilbertian degree.

d2-small spaces are exactly Hilbertian spaces.

(3) Fix 1 ⩽ p ⩽ 2. Then d(F ) = Tp(F ), the type constant, is a degree.
d-small spaces are exactly those having type p. The same works for
cotype.

W. Cuellar Carrera, N. de Rancourt, V. Ferenczi Local Banach-space dichotomies



Degrees: examples

(4) Fix 1 ⩽ p ⩽ ∞. Define d(X ,F ) as the infimum of the M’s for which
the canonical inclusion of F into X M-factorizes through some ℓnp,
meaning that there exists n ∈ N and operators U : F → ℓnp and
V : ℓnp → X with ∥U∥ · ∥V ∥ = M, making the following diagram
commute:

ℓnp

F X

V

ι

U .

Then d is a non-local degree. By a result by Lindenstrauss and
Rosenthal, we have that:

if 1 < p < ∞, a space is d-small if and only if it is either a
Lp-space, or a Hilbertian space;

if p = 1 or p = ∞, a space is d-small if and only if it is a
Lp-space.
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Degrees: examples

(5) Let d(X ,F ) be the infimum of the M’s for which the canonical
inclusion of F into X M-factorizes through some space with a
1-unconditional basis. Then d is a non-local degree. A space is
d-small iff it has Gordon-Lewis local unconditional structure.

(6) More generally, recall that an normed operator ideal U is given by,
for all Banach spaces X and Y , a vector subspace
U(X ,Y ) ⊆ L(X ,Y ) and a complete norm N on U(X ,Y ), such that,
whenever S ∈ L(X ,Y ), T ∈ U(Y ,Z ) and U ∈ L(Z ,W ), we have
UTS ∈ U(X ,W ) and N(UTS) ⩽ ∥U∥ · N(T ) · ∥S∥, and such that
moreover IdR ∈ U(R,R) with N(IdR) = 1. Then d(X ,F ) = N(ιF ,X )
is a degree.

(7) Let d(X ,F ) be the infimum of the K ’s such that F is
K -complemented in X . Then d is not a degree. This is somewhat
surprinsing, since if it were one, d-small spaces would exactly be
Hilbertian spaces.
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Properties of degrees

Proposition

Let d be a degree.

Finite-dimensional spaces are d-small.

The properties of being d-small and d-large are preserved by
isomorphism.

A complemented subspace of a d-small space is d-small.

If d is local, every subspace of a d-small space is d-small.

If (Xn) is a decreasing sequence of d-large spaces, then there is a
d-large space X∞ such that X∞ ⊆∗ Xn for every n (meaning that Xn

contains a finite-codimensional subspace of X∞).
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Better FDD’s

Given a degree d , it is not clear whether every d-large Banach space should
contain a d-large subspace with a basis (this is open for

d2(F ) = dBM(F , ℓ
dim(F )
2 )). Hence we can’t prove local dichotomies be-

tween classes defined by properties of bases. We use finite-dimensional
decompositions (FDD’s) instead.

Definition

An FDD (Fn) of a Banach space X is said to be d-better if
d(X ,Fn) −→ ∞.

If a space has a d-better FDD, then it is d-large. Conversely:

Lemma

Let X be a d-large Banach space. Then X has a subspace spanned by a
d-better FDD.

Standard results about bases, such as Bessaga–Pe lczyński selection princi-
ple, still hold for better FDD’s.
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A local version of Gowers’ first dichotomy

We fix a degree d . We will localize Gowers’ first dichotomy to the class of
d-large spaces, that is, we will ensure that the outcome space is d-large.
This strenghtening has a cost: the two conclusions have to be weakened
in some other way.

Definition

A space is said to be d-HI if it is d-large and contains no topological
direct sum of two d-large subspaces.

Theorem (The first dichotomy, local version)

Let X be a d-large Banach space. Then X has a d-large subspace Y
such that:

either Y is spanned by a d-better UFDD;

or Y is d-HI.

When d is the dimension, we recover the original dichotomy.
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A local version of Ferenczi–Rosendal’s third dichotomy

Definition

A Banach space is said to be d-minimal if it is d-large and embeds into
all of its d-large subspaces.

Definition

A Banach space Y is tight in a FDD (Fi ) if there exists a sequence
of successive intervals of integers I0 < I1 < ... such that for every
infinite A ⊆ N, Y cannot be embedded into [Fi | i /∈

⋃
n∈A In].

A FDD (Fi ) is d-tight if every d-large Banach space is tight in it.

A Banach space X is d-tight if it admits a d-better, d-tight FDD.

Theorem (The third dichotomy, local version)

Every d-large Banach space either has a d-minimal subspace, or has a
d-tight subspace.
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Growth gap for d-minimal spaces

Lemma

Fix d a local degree, and X a d-minimal Banach space. Then there is a
mapping Γ: N → R+, tending to infinity, such that for every d-large
subspace Y of X and every n, we have:

sup
F⊆Y

dim(F )=n

d(F ) ⩾ Γ(n).

In other words, d-large subspaces of a d-minimal space are uniformily
d-large. If X is not minimal (or equivalently, is saturated with d-small
subspaces), then there is a gap in the possible growth rates of the function

sup
F⊆Y

dim(F )=n

d(F ),

when Y ranges over all subspaces of X : either it is bounded, or it grows
at least at the same rate as Γ(n). This is a very surprising local property.
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Growth gap for d-minimal spaces

Question

Does there exist local degrees d such that all d-minimal subspaces are
minimal? Does there exist some for which d-minimality does not coincide
with minimality?
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A more general setting

In all generality, our local dichotomies can be extended to D-families, a
more general class of families of Banach spaces. In particular, given a
degree d , the family of d-large spaces is a D-family.

Unlike degrees, D-families have good closure properties: they are closed
under countable intersection and finite unions. So, given a sequence (dn)
of degrees, we can prove local dichotomies for the family of all spaces that
are dn-large for every n.

For instance, if 1 ⩽ p < 2, we can localize dichotomies to the class of
spaces that don’t have any type > p. Such a dichotomy could be used on
spaces having type p.
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The Hilbertian degree

We study in more details the Hilbertian degree d2(F ) = dBM(F , ℓ
dim(F )
2 ),

for which d-small spaces are Hilbertian spaces. For this degree, our local
dichotomies become:

Theorem

Let X be a non-Hilbertian Banach space. Then X has a non-Hilbertian
subspace Y satisfying one of the following propertties:

(1) Y is d2-minimal and has an unconditional basis;

(2) Y has a d2-better, d2-tight UFDD;

(3) Y is d2-HI and d2-minimal;

(4) Y is d2-HI and d2-tight.

This theorem gives no new information when X is not ℓ2-saturated. How-
ever, in the case of ℓ2-saturated spaces, this can be seen as a Gowers list
for non-Hilbertian, ℓ2-saturated Banach spaces.
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The Hilbertian degree

Lemma

Consider X =
(⊕

n∈N ℓknpn
)
ℓ2
, where pn −→ 2 and kn −→ ∞ are

well-chosen. Then X is ℓ2-saturated and has a subspace in class (2) of
the latter list.

This class (2) is the only one we know to be nonempty, when we restrict
our attention to ℓ2-saturated Banach spaces.

Question

Does there exist a Banach space which is simultaneously d2-minimal and
d2-HI?

Such a space should be ℓ2-saturated. We don’t even know whether ℓ2
saturated d2-minimal spaces, or ℓ2-saturated d2-HI spaces, exist.
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The Hilbertian degree

Question

Does James’ space belong to one of the classes? If not, in what classes
does it have subspaces? What about other classical ℓ2-saturated spaces?
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A few words on ergodicity

Definition (Ferenczi–Rosendal, ’05)

A separable Banach space X is said to be ergodic if E0 reduces to the
isomorphism relation between its subspaces.

This is a little bit stronger than saying that X has continuum-many pairwise
non-isomorphic subspaces.

Conjecture (Ferenczi–Rosendal, ’05)

Every non-Hilbertian separable Banach space is ergodic.

Theorem

Let X be a counterexample to the above conjecture. Then X has a
non-Hilbertian subspace Y (that is itself a counterexample) that is
d2-minimal. Moreover, it can be ensured that Y either has an
unconditional basis, or is d2-HI.
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Thank you for your attention!
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