Introduction
Distortion risk measures
Well suited distributions
Distorted variational inequalities

Existence of Risk-aware equilibrium solutions (distribution - risk-type tradeoffs)

NMEK615 - Stochastic programming and approximations

Lukáš Račko

20.11.2025

Contents

- Introduction
- 2 Distortion risk measures
- Well suited distributions
- Distorted variational inequalities

Games with random payoffs

Definition

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Let I be the set of players. $\forall i \in I : X_i$ be a set of strategies of the player i and $u_i : X \times \Omega \to \mathbb{R}$ be such that $u_i(x)$ is \mathcal{A} -measurable for every $i \in I$ and $x \in X$. We say that $G = (I, \{X_i\}_{i \in I}, \{u_i\}_{i \in I})$ is a game with random payoff. For a given $\omega \in \Omega$ we will write $G(\omega)$ and mean $(I, \{X_i\}_{i \in I}, \{u_i(\omega)\}_{i \in I})$ the realization of game G.

Solution concepts

How to characterize 'equilibrium' solutions in this model?

- $oldsymbol{\bullet}$ Make more solutions 'equilibrial' using probability constraints $oldsymbol{lpha}$ -Nash equilibria.
- $\ \, \textbf{②}$ Introduce the risk aversion into the payoff (and hope for the best) $\ \, \mathcal{R}\text{-equilibria}.$

Variational inequalities

For a standard model where we would like to maximize the expected payoff the equilibrium exists if and only if the following holds

$$\mathsf{E}\ u_i(x_i, \boldsymbol{x}_{-i}) \ge \mathsf{E}\ u_i(y, \boldsymbol{x}_{-i}), \forall y \in X_i, \forall i \in I. \tag{1}$$

Theorem (Nash, 1955)

If the set of players I is finite, $X_i = \mathcal{D}(P_i)$ and P_i is a finite set of pure strategies for each player $i \in I$ then there exists a solution $x^* \in X$ that satisfies (1).

So in the 'risk-neutral' setting (or better in Von Neumann-Morgenstern utility setting) there is no restriction on the distribution of the payoff u_i and the only restriction in terms of strategies is that players must be able to diversify/randomize/mix their actions for the equilibrium to exist.

General variational inequalities

What happens when we replace E with general (player-dependent) risk measure \mathcal{R}_i ?

$$-\mathcal{R}_i(-u_i(x_i, \boldsymbol{x}_{-i})) \ge -\mathcal{R}_i(-u_i(y, \boldsymbol{x}_{-i})), \forall y \in X_i, \forall i \in I.$$
 (2)

In general, there may be no equilibrium, even when all the input data are 'nice'.

Contradiction

Let $\mathcal{R}_i = \text{CV@R}_{1-\alpha}$ and $I = \{0, 1\}, P_i = \{0, 1\}$ and $(u_i(\boldsymbol{p}))_{\boldsymbol{p} \in P_0 \times P_1} \sim N_4((\mu_i(\boldsymbol{p}))_{\boldsymbol{p} \in P_0 \times P_1}, \Sigma_i)$. Then we receive a variational inequality

$$-CV@R_{1-\alpha}(-u_0(x_0^*, x_1^*)) \ge -CV@R_{1-\alpha}(-u_0(y, x_1^*)), \forall y \in X_0$$
 (3)

which can be reduced to

$$- \text{CV@R}_{1-\alpha}(-u_0(x_0^*, x_1^*)) \ge - \text{CV@R}_{1-\alpha}(-u_i(y, x_1^*)), \forall y \in X_0, \quad (4)$$

$$\mu_0(x_0^*, x_1^*) - \sigma_0(x_0^*, x_1^*) \text{CV@R}_{1-\alpha}(Z) \ge$$
 (5)

$$\geq \mu_0(y, x_1^*) - \sigma_0(y, x_1^*) \text{ CV@R}_{1-\alpha}(Z), \forall y \in X_0, \tag{6}$$

$$\mu_0(x_1^*, x_2^*) - \mu_0(y, x_2^*) \ge (\sigma_0(x_0^*, x_1^*) - \sigma_0(y, x_1^*))C(\alpha), \tag{7}$$

where $Z \sim N(0,1)$ and $C(\alpha) = \text{CV}@\text{R}_{1-\alpha}(Z) \to \infty, \alpha \to 0$. And so the equilibrium may not exists for any α but at least we have a nice "closed form" characterization!

Sensible risk measures

We want to restrict ourselves into a sensible class of risk measures. Because each risk measure can be viewed as defining a linear ordering over a class of lotteries $L(\Sigma)$ defined as $X \succeq_{\mathcal{R}} Y$ if and only if $-\mathcal{R}(-X) \geq -\mathcal{R}(-Y)$, $X,Y \in L(\Sigma)$. We want to have at least some connection of \mathcal{R} with the Von Neumann-Morgenstern utility theory therefore we want this ordering $\succeq_{\mathcal{R}}$ to be at least consistent with \succeq_{FSD} because then if every Von Neumann-Morgenstern utility agent agrees that X is better than Y our agent should agree as well.

Distortion risk measures

Definition

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Non-decreasing function $\psi : [0,1] \to [0,1]$ that satisfies $\psi(0) = 0$, $\psi(1) = 1$ is called a distortion function. By the dual distortion function corresponding to ψ we mean $\psi^*(x) := 1 - \psi(1-x)$, $x \in [0,1]$. The monotone, normalized set function defined on (Ω, \mathcal{A}) as $\Psi(.) = (\psi \circ \mathbb{P})(.) = \psi(\mathbb{P}(.))$ is called the distorted version of \mathbb{P} or ψ -distortion of \mathbb{P} .

Definition

Let $L(\Omega, \mathcal{A}, \mathbb{P})$ be the space of integrable random variables. Functional $\rho: L(\Omega, \mathcal{A}, \mathbb{P}) \to \mathbb{R}$ is called the distortion risk measure if $\rho(X) = \oint X d(\psi \circ \mathbb{P})$ for some distortion function ψ .

Distortion risk measures

Theorem (Basic properties of distortion risk measures?)

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and Ψ be a distorted version of \mathbb{P} then

- If $X \succeq_{FSD} Y$ then $\oint Xd\Psi \ge \oint Yd\Psi$

Whatsmore, the distortion risk measures are exactly the Kahneman-Tversky's prospects!

The distorted expectation form

For non-negative random variables we receive just

$$\oint Xd(\psi \circ \mathbb{P}) = \int_{(0,\infty)} \psi(\mathbb{P}(X > t))dt = \int_{(0,\infty)} \psi(S_X(t))dt, \tag{8}$$

where $S_X(t)$ is the survival function of X. Notice the similarity to the formula for the expectation of the non-negative random variable X as

$$\mathsf{E} \ X = \int_{(0,\infty)} S_X(t) dt$$

The integrated quantile function form

Another equivalent reformulation is the integrated quantile function form

$$\oint Xd(\psi \circ \mathbb{P}) = \int_0^1 F_X^{-1}(\alpha)d\psi(\alpha). \tag{9}$$

For example

$$CV@R_{1-\alpha}(X) = \frac{1}{\alpha} \int_{1-\alpha}^{1} F_X^{-1}(u) du$$
 (10)

would correspond to a distortion function

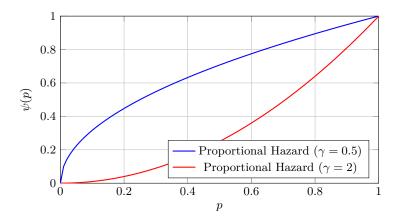
$$\psi(u) = \min\left(\frac{u}{1-\alpha}, 1\right) \tag{11}$$

Popular distortion risk measures

Measure Name	Distortion Function $g(p)$
Value at Risk (VaR)	$g(p) = 1_{\{p > 1 - \alpha\}}$
Conditional VaR	$g(p) = \min\left\{\frac{p}{1-\alpha}, 1\right\}$
Proportional Hazard Transform	$g(p) = p^{\gamma}, \gamma > 0$
Wang Transform	$g(p) = \Phi(\Phi^{-1}(p) + \lambda), \lambda \in \mathbb{R}$
Lookback / Minimax Distortion	$g(p) = 1 - (1 - p)^{\gamma}, \gamma > 0$

Table 1: Commonly used distortion risk measures and their distortion functions

Some examples



Finding a well suited distribution

To see for which distributions we may find a 'tracktable' variational inequalities lets consider the integrated quantile form of a distortion risk measure

$$\oint u(\boldsymbol{x})d(\psi \circ \mathbb{P}) = \int_0^1 F_{u(\boldsymbol{x})}^{-1}(\alpha)d\psi(\alpha). \tag{12}$$

and recall that $u(x) = \sum_{p \in P} x(p)u(p)$. And so the distribution of u(x) can fully be characterized via the distribution of a random vector $(u(p))_{p \in P}$. And immediately we can see that we need distributions of random vectors that "behave nicely" with respect to positive transformation and summation.

Normal distribution

We know that for a normally distributed random vector $\boldsymbol{X} \sim N_d(\mu, \Sigma)$ we receive that

$$\langle \boldsymbol{a}, \boldsymbol{X} \rangle \sim N_1(\langle \boldsymbol{a}, \mu \rangle, \sigma^2(\boldsymbol{a}))$$
 (13)

where $\sigma^2(\boldsymbol{a}) = \boldsymbol{a}^T \Sigma \boldsymbol{a}$ and in particular

$$\langle \boldsymbol{a}, \boldsymbol{X} \rangle = \langle \boldsymbol{a}, \mu \rangle + \sigma(\boldsymbol{a}) Z,$$
 (14)

where $Z \sim N_1(0, 1)$.

Elliptically symmetric distributions

This can be generalized into the class of elliptically symmetric distributions where for $X \sim Ell_d(\mu, \Sigma, g_d)$ we receive that

$$\langle \boldsymbol{a}, \boldsymbol{X} \rangle = \langle \boldsymbol{a}, \mu \rangle + \sigma(\boldsymbol{a}) Z,$$
 (15)

where $Z \sim Ell_d(0, 1, g_1)$.

Recall that the elliptical distribution is characterized by location μ , scale Σ and a d-dimensional density generator g_d such that

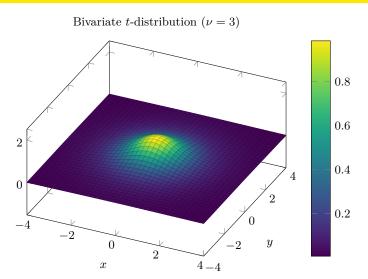
$$f(\mathbf{x}) \propto g_d((\mathbf{x} - \mu)^T \Sigma(\mathbf{x} - \mu)).$$
 (16)

List of some Elliptical distributions

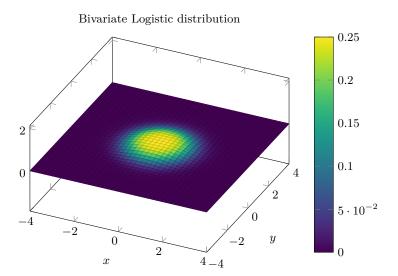
Table 2: Examples of d-dimensional Elliptically Symmetric Distributions

Distribution	Description
Multivariate Normal	$\exp\left(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^{ op}oldsymbol{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu}) ight)$
Multivariate t	$\left[1 + \frac{1}{\nu}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]^{-(\nu + d)/2}$
Multivariate Laplace	$\exp\left(-\sqrt{(\mathbf{x}-oldsymbol{\mu})^{ op}oldsymbol{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})} ight)$
Multivariate Pearson Type VII	$\left[1 + (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) / m\right]^{-(m+d)/2}$
Multivariate Logistic	$\frac{\exp(-(\mathbf{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}))}{(1+\exp(-(\mathbf{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})))^2}$

t-distribution



Multivariate Logistic distribution



Why is this representation suitable?

Suppose that $(u_i(\mathbf{p}))_{\mathbf{p}\in P} \sim Ell_K((\mu_i(\mathbf{p}))_{\mathbf{p}\in P}, \Sigma_i, g_K)$ then $u_i(\mathbf{x}) = \langle \mathbf{x}, (u_i(\mathbf{p}))_{\mathbf{p}\in P} \rangle \sim Ell_1(\mu_i(\mathbf{x}), \sigma(\mathbf{x}), g_1)$ and

$$F_{u_i(\mathbf{x})}^{-1}(p) = \mu_i(\mathbf{x}) + \sigma(\mathbf{x})F_{Z_1}^{-1}(p), \tag{17}$$

where $Z_1 \sim Ell_1(0,1,g_1)$. Therefore for a given distortion function ψ_i we can express the distorted payoff as

$$\oint u_i(x)d\Psi = \int_0^1 \mu_i(x) + \sigma(x)F_{Z_1}^{-1}(p)d\psi(p) =$$
(18)

$$= \mu_i(\mathbf{x}) + \sigma(\mathbf{x}) \int_0^1 F_{Z_1}^{-1}(p) d\psi(p) =$$
 (19)

$$= \mu_i(\mathbf{x}) + \sigma(\mathbf{x})\Psi(Z_1), \tag{20}$$

where $\Psi(Z_1) \in \mathbb{R}^*$ is a constant independent of the strategies $x \in X$. This also yields one important condition for reasonable distributions that $|\Psi(Z_1)| < \infty$.

Going beyond...

Now let's reverse this process. Let us 'wish' for a nice 'tracktable' distribution and eventually maybe find it? For risk-aware Game theoretical applications nice distributions would have tractable quantiles in the following sense

$$F_{\langle \boldsymbol{a}, X \rangle}^{-1}(\alpha) = \langle \boldsymbol{a}, \mu \rangle f(\alpha) + \sigma(\boldsymbol{a})g(\alpha), \alpha \in [0, 1], \tag{21}$$

for some $f,g:[0,1]\to\mathbb{R}$ which are (at least) Lebesgue-Stieltjes ψ -integrable and $\forall \boldsymbol{a}\in[0,1]^d:\sum_{i=1}^d a_i=1, a_i\geq 0$. If such random vector existed we can express the distorted payoff in terms of 'location' μ and a 'scale' σ and some constants $\Psi(f), \Psi(g)$ as

$$\oint \langle \mathbf{a}, \mathbf{X} \rangle d\Psi = \langle \mathbf{a}, \boldsymbol{\mu} \rangle \Psi(f) + \sigma(\mathbf{a}) \Psi(g).$$
(22)

When such characterization is sensible?

Mostly never except the 'trivial' Elliptical case... But if:

$$|f'(\alpha)| \le \sqrt{\mu^T \Sigma^{-1} \mu} g'(\alpha), \forall \alpha \in [0, 1],$$

$$\varphi(t) = \int_0^1 \exp(i(\langle t, \mu \rangle f(\alpha) + \sigma(t)g(\alpha)))d\alpha$$
 is positive definite.

then there is a well-defined random vector that has projections with the quantile function

$$F_{\langle \boldsymbol{a}, X \rangle}^{-1}(\alpha) = \langle \boldsymbol{a}, \mu \rangle f(\alpha) + \sigma(\boldsymbol{a})g(\alpha).$$

Distorted variational inequalities

Suppose now that we have a sensible distribution class $D_i(\mu, \sigma)$ and $(u_i(\mathbf{p}))_{\mathbf{p} \in P} \sim D_i(\mu_i, \sigma_i)$ so that $F_{u_i(\mathbf{x})}^{-1}(\alpha) = \langle \mathbf{x}, \mu_i \rangle f_i(\alpha) + \sigma_i(\mathbf{x})g_i(\alpha)$ then we can formulate the variational inequality

$$\oint u_i(\boldsymbol{x})d\Psi_i \ge \oint u_i(y,\boldsymbol{x}_{-i})d\Psi_i, \forall y \in X_i, i \in I$$
(23)

in terms of the problem data as

$$\mu_i(\boldsymbol{x})\Psi_i(f_i) + \sigma_i(\boldsymbol{x})\Psi_i(g_i) \ge \mu_i(y, \boldsymbol{x}_{-i})\Psi_i(f_i) + \sigma_i(y, \boldsymbol{x}_{-i})\Psi_i(g_i), \quad (24)$$

$$(\mu_i(\boldsymbol{x}) - \mu_i(\boldsymbol{y}, \boldsymbol{x}_{-i}))\Psi_i(f_i) \ge (\sigma_i(\boldsymbol{y}, \boldsymbol{x}_{-i}) - \sigma_i(\boldsymbol{x}))\Psi_i(g_i), \tag{25}$$

$$\frac{\mu_i(x) - \mu_i(y, x_{-i})}{\sigma_i(y, x_{-i}) - \sigma_i(x)} \ge \frac{\Psi_i(g_i)}{\Psi_i(f_i)},\tag{26}$$

 $\forall y \in X_i, i \in I$. Note that usually $\Psi_i(f_i) = 1$.

Interesting consequences

If the parameters μ_i represent the mean payoff of the player i and g_i is Ψ_i -orthogonal i.e. $\int_0^1 g_i(\alpha) d\psi(\alpha) = 0$ then the player i actually strategizes in the same way as if he was maximizing the expectation.

$$\frac{\mu_i(\boldsymbol{x}) - \mu_i(\boldsymbol{y}, \boldsymbol{x}_{-i})}{\sigma_i(\boldsymbol{y}, \boldsymbol{x}_{-i}) - \sigma_i(\boldsymbol{x})} \ge \frac{\Psi_i(g_i)}{\Psi_i(f_i)}$$
(27)

Introduction
Distortion risk measures
Well suited distributions
Distorted variational inequalities

Thank you for your attention!

Its time for the discussion...