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@ Introduction to interval computation

o interval arithmetic

o interval functions

o interval linear equations

@ nonlinear equations (the Interval Newton method)
o eigenvalues of interval matrices

Q Global optimization

@ interval approach (branch & prune scheme)
@ contracting and pruning boxes

o lower and upper bounds

o a-BB algorithm
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Interval Computations

An interval matrix
A=[AA={AcR™"| A< A<AL

The center and radius matrices

1 — 1 —
A= S(A+A), AR = S(A-A).

The set of all m x n interval matrices: TR™*",

Main Problem

Let f : R” — R™ and x € TR". Determine the image

f(x) ={f(x): x € x}.
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Interval Arithmetic

Interval Arithmetic

For arithmetical operations (4, —, -, =), their images are readily computed
a+b=[a+b3a+ b,
a—b=[a—ba—b]
a-b = [min(ab, ab, ab, ab), max(ab, ab, ab, ab)],
a+b=[min(a+ba+ba+ba+b),max(a+b,a+b,a+ba+b).

Some basic functions x2

, exp(x), sin(x), ..., too.

Can we evaluate every arithmetical expression on intervals?
Yes, but with overestimation in general due to dependencies.

v

Example
x> —x =[-1,2]* — [-1,2] = [-2,5],
x(x —1) = [-1,2]([-1,2] - 1) = [-4,2],
(x— 3P -3=(-12-32-}=[-}2
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Mean value form

Theorem
Let f :R"— R, x € IR” and a € x. Then

f(x) C f(a) + VF(x)" (x - a),

Proof.

By the mean value theorem, for any x € x there is ¢ € x such that

f(x) = f(a) + VFf(c)T(x —a) € f(a)+ VF(x)T(x — a). O

|

|

Improvements
@ successive mean value form
f(x) C f(a) + £, (x1,a2,...,an)(x1 — a1)
+ f;z(xl,XQ, as... ,a,,)(x2 — 32) + ...

+ f):n(x].) ce o3 Xp—1, xn)(xn — an).

@ replace derivatives by slopes

y
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Interval Linear Equations

Interval linear equations
Let A € IR™*" and b € IR™. The family of systems

Ax=b, AcA, beh.

is called interval linear equations and abbreviated as Ax = b.

\

The solution set is defined

2 :={xeR":3dJAc Adbecb: Ax = b}.

Theorem (Oettli-Prager, 1964)

The solution set Y is a non-convex polyhedral set described by

|Ax — b°| < AB|x| + b2,
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Interval Linear Equations

Example (Barth & Nuding, 1974))
(5% ) ()= (23)

X2 5

v
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Interval Linear Equations

Since 2 is hard to determine and deal with, we seek for enclosures

x € IR" such that X C x.

Many methods for enclosures exists, usually employ preconditioning. |

Preconditioning (Hansen, 1965)

Let R € R™". The preconditioned system of equations:
(RA)x = Rb.

@ the solution set of the preconditioned systems contains 2

@ usually, we use R ~ (A°)~!

@ then we can compute the best enclosure (Hansen, 1992, Bliek, 1992,
Rohn, 1993)
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Interval Linear Equations

Example (Barth & Nuding, 1974))

[2,4] [-2,1]\ (x\ _ [([-2,2]
[—1,2] [2,4] x)  \[-2,2]
X2 p
14
7 1
s 7 7 14
—7 +
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Interval Linear Equations

Example (typical case)

(Eig Jﬁ]) (2) - (—[6[’7?]91)

XQT

215

—05 1.0 X1
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Nonlinear Equations

System of nonlinear equations
Let f : R” — R". Solve

f(x)=0, xe€x,

where x € TR" is an initial box.

\

Interval Newton method (Moore, 1966)

o letting x° € x, the Interval Newton operator reads

N(x) := x° — VF(x) " (x%)

@ N(x) is computed from interval linear equations

VF(x)(x° — N(x)) = F(x°).

@ iterations: x:=xMN N(x)
@ fast (loc. quadratically convergent) and rigorous (omits no root in x)

@ if N(x) C intx, then there is a unique root in x

y
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Eigenvalues of Interval Matrices

@ For Ac R™" A= AT, denote its eigenvalues A\;(A) > --- > \,(A).

@ Let for A € TR™", denote its eigenvalue sets

Ni(A)={\i(A):AeA, A=ATY, i=1,...,n.

Theorem
@ Checking whether 0 € A;(A) for some i =1,...,n is NP-hard.

@ We have the following enclosures for the eigenvalue sets
Ai(A) C [N(AS) = p(A%), Xi(A€) + p(A%)], i=1,...,n.
@ By Hertz (1992)

Xa(R) = max A(A° + diag(z) A® diag(2),

A, (A) = zeeri:rll}" An( A — diag(z) A2 diag(2)).
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Global Optimization
Global optimization problem

Compute global (not just local!) optima to

min f(x) subject to g(x) <0, h(x) =0, x € x°,

where x° € TR” is an initial box.

Theorem (Zhu, 2005)

There is no algorithm solving global optimization problems using
operations +, X, sin.

From Matiyasevich's theorem solving the 10th Hilbert problem. [] I

Using the arithmetical operations only, the problem is decidable by Tarski's
theorem (1951).
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Interval Approach to Global Optimization
Branch & prune scheme

1: £:= {x°}, [set of boxes|
2: ¢* = o0, [upper bound on the minimal value]
3: while £ # () do

4:  choose x € L and remove x from L,

5. contract X,

6:  find a feasible point x € x and update c*,

7:  if max; x,-A > ¢ then

8 split x into sub-boxes and put them into L,

9

else
10: give x to the output boxes,
11:  end if

12: end while

It is a rigorous method to enclose all global minima in a set of boxes. |
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Box Selection

Which box to choose?
@ the oldest one

@ the one with the largest edge, i.e., for which max; x,-A is maximal
@ the one with minimal f(x).
o

How to divide the box?

@ Take the widest edge of x, that is

k :=arg max x°.
i=1,...,n

Q@ (Walster, 1992) Choose a coordinate in which f varies possibly mostly

)AX-A.

k :=arg max f(x)"x;

i=1,...,n
O (Ratz, 1992) It is similar to the previous one, but uses

k := arg max (f;i(x)x,-)A.

—dgeeey

v

Remarks
@ by Ratschek & Rokne (2009) there is no best strategy for splitting

@ combine several of them

@ the splitting strategy influences the overall performance
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Contracting and Pruning

Shrink x to a smaller box (or completely remove) such that no global
minimum is removed.

Simple techniques

o if 0 ¢ hj(x) for some i, then remove x
o if 0 < gj(x) for some j, then remove x
o if 0 < £ (
° (

x) for some i, then fix x; := x;

if 0 > £, (x) for some /, then fix x; := X;

v

Optimality conditions

@ employ the Fritz—John (or the Karush—-Kuhn—Tucker) conditions

uVF(x) 4+ u"Vh(x) + v Vg(x) =0,
h(x) =0, vege(x) =0V¢, [|(uo,u,v)| =1.

@ solve by the Interval Newton method

v
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Contracting and Pruning

Inside the feasible region
Suppose there are no equality constraints and gj(x) < 0 V.
@ (monotonicity test) if 0 ¢ £, (x) for some /, then remove x
@ apply the Interval Newton method to the additional constraint
Vi(x)=0
@ (nonconvexity test) if the interval Hessian V2f(x) contains no
positive semidefinite matrix, then remove x
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Contracting and Pruning

Constraint propagation

Iteratively reduce domains for variables such that no feasible solution is
removed by handling the relations and the domains.

Consider the constraint

x+yz=7, x€][0,3], y €[3,5], z€[2,4]
@ eliminate x
x=7—yzeT7—[3,5][2,4 =[-13,1]

thus, the domain for x is [0,3] N [-13,1] = [0, 1]

@ eliminate y

y=(7—x)/z € (7 -1[0,1])/[2,4] = [1.5, 3.5]

thus, the domain for y is [3,5] N [1.5, 3.5] = [3, 3.5]
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Feasibility Test

Find a feasible point x*, and update c* := min(c*, f(x*)).

v

v

@ if no equality constraints, take e.g. x* := x¢

@ if k equality constraints, fix n — k variables x; := x{ and solve system
of equations by the interval Newton method

@ if k =1, fix the variables corresponding to the smallest absolute

values in Vh(x)
\/ i) =0
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Feasibility Test

Aim

Find a feasible point x*, and update c* := min(c*, f(x*)).

if no equality constraints, take e.g. x* := x¢

if k equality constraints, fix n — k variables x; := x7 and solve system

of equations by the interval Newton method

if k =1, fix the variables corresponding to the smallest absolute
values in Vh(x)

in general, if k > 1, transform the matrix Vh(x¢) to a row echelon

form by using a complete pivoting, and fix components corresponding

to the right most columns

we can include f(x) < c* to the constraints
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Lower Bounds

‘ ‘ A\

Given a box x € IR", determine a lower bound to f(x).

21 / 27

o

if £(x) > c*, we can remove x

minimum over all boxes gives a lower bound on the optimal value

Methods

interval arithmetic
mean value form
Lipschitz constant approach

aBB algorithm
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Lower Bounds: aBB algorithm

Special cases: bilinear terms

For every y e y € IR and z € z € TR we have
yz > max{yz +zy —yz, yz+Zy —yZ}.

aBB algorithm (Androulakis, Maranas & Floudas, 1995)

@ Consider an underestimator g(x) < f(x) in the form

g(x) := f(x) + a(x —x)T(x —X), where a > 0.
@ We want g(x) to be convex to easily determine g(x) < f(x).
@ In order that g(x) is convex, its Hessian
V2g(x) = V?f(x) + 2al,
must be positive semidefinite on x € x. Thus we put

o= — EAmin(v2 f(X))
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Example (The COPRIN examples, 2007, precision ~ 107°)
@ tf12 (origin: COCONUT, solutions: 1, computation time: 60 s)

: 1 1
min x; + 5x2 + 3X3

s.t. —x1— #Xz — (#)2X3 —|—tan(#) < O, = ].7 ..., M (m = 101)

@ 032 (origin: COCONUT, solutions: 1, computation time: 2.04s)

min 37.293239x; + 0.8356891x5x; + 5.3578547x% — 40792.141

s.t. —0.0022053x3 x5 + 0.0056858x> x5 + 0.0006262x1 x4 — 6.665593 < 0,
—0.0022053x3 x5 — 0.0056858x> x5 — 0.0006262x1 x4 — 85.334407 < O,
0.0071317x2x5 + 0.0021813x3 + 0.0029955x; xo — 29.48751 < 0,
—0.0071317x2x5 — 0.0021813x% — 0.0029955x; x2 + 9.48751 < 0,
0.0047026x3 x5 + 0.0019085x3 x4 + 0.0012547x; x3 — 15.699039 < O,
—0.0047026x3 x5 — 0.0019085x3 x4 — 0.0012547x1 x3 + 10.699039 < 0.

@ Rastrigin (origin: Myatt (2004), solutions: 1 (approx.), time: 2.07 s)
min 10n 437, (x — 1)* — 10cos(2m(x; — 1))
where n =10, x; € [-5.12,5.12].
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rastriginsfen({x/10,y10])

"jj. “’",u i » "

One of the Rastrigin functions.
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Software
Rigorous global optimization software

@ GlobSol (by R. Baker Kearfott), written in Fortran 95, open-source
exist conversions from AMPL and GAMS representations,
http://interval.louisiana.edu/

@ COCONUT Environment, open-source C++ classes

http://www.mat.univie.ac.at/~coconut/coconut-environment/

@ GLOBAL (by Tibor Csendes), for Matlab / Intlab,
free for academic purposes
http://www.inf.u-szeged.hu/~csendes/linkek_en.html

@ PROFIL /BIAS (by O. Kniippel et al.), free C++ class
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

@ C.A. Floudas (http://titan.princeton.edu/tools/)

@ A. Neumaier (http://www.mat.univie.ac.at/~neum/glopt.html)
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