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Abstract In numerical computations the question how much does a function
change under perturbations of its arguments is of central importance. In this
work, we investigate sensitivity of Gauss-Christoffel quadrature with respect
to small perturbations of the distribution function. In numerical quadrature,
a definite integral is approximated by a finite sum of functional values eval-
uated at given quadrature nodes and multiplied by given weights. Consider
a sufficiently smooth integrated function uncorrelated with the perturba-
tion of the distribution function. Then it seems natural that given the same
number of function evaluations, the difference between the quadrature ap-
proximations is of the same order as the difference between the (original
and perturbed) approximated integrals. That is perhaps one of the reasons
why, to our knowledge, the sensitivity question has not been formulated and
addressed in the literature, though several other sensitivity problems, mo-
tivated, in particular, by computation of the quadrature nodes and weights
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from moments, have been thoroughly studied by many authors. We sur-
vey existing particular results and show that even a small perturbation of a
distribution function can cause large differences in Gauss-Christoffel quadra-
ture estimates. We then discuss conditions under which the Gauss-Christoffel
quadrature is insensitive under perturbation of the distribution function,
present illustrative examples, and relate our observations to known conjec-
tures on some sensitivity problems.

1 Introduction

The computation of orthogonal polynomials and Gauss-Christoffel quadra-
ture draws upon several fields from classical analysis and approximation the-
ory as well as modern numerical linear algebra. It has been intensively studied
by many generations of mathematicians.

Here we consider linear functionals in the form of the Riemann-Stieltjes
integral and restrict ourselves to distribution functions that are nondecreas-
ing on a finite interval [a, b] on the real line. By the k-point Gauss-Christoffel
quadrature we mean the approximation of a given Riemann-Stieltjes integral

Iω(f) =

∫ b

a

f(x) dω(x) (1)

by the discrete linear functional

Ik
ω(f) =

k
∑

j=1

ϑjf(tj) ,

determined by nodes a ≤ t1 < · · · < tk ≤ b and positive weights {ϑ1, . . . , ϑk}
such that Ik

ω(f) = Iω(f) whenever f is a polynomial of degree at most 2k−1
[18], [6, Section 2.7]. The recent encyclopedic book by Gautschi [23], his
surveys [18,24] and the survey by Laurie [40] describe the state-of-the-art
of Gauss-Christoffel quadrature computation, and can be recommended as
fundamental reading for anyone interested in related problems.

In this paper we investigate sensitivity of Gauss-Christoffel quadrature
with respect to small perturbations in the distribution function. Suppose we
have two distribution functions ω(x) and ω̃(x) which are nondecreasing on the
finite interval [a, b] and close to each other. We are interested in estimating
the two integrals

Iω =

∫ b

a

f(x) dω(x) , Iω̃ =

∫ b

a

f(x) dω̃(x) . (2)

Although it seems natural to expect that the Gauss-Christoffel quadrature
estimates of the same degree will be close when f is sufficiently smooth (and
also uncorrelated with the difference between the given distribution func-
tions), it is not clear that this is true. If we use Gauss-Christoffel quadrature
to compute the estimates, then ω(x) and ω̃(x) induce different sequences of
orthogonal polynomials. Therefore, the quadrature weights and nodes for the
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same degree of the quadrature might be different from each other and in fact
can be sensitive to small perturbations to the distribution function. Indeed,
in Section 2 we present an example in which small changes in the distri-
bution function produce large changes in the nodes, weights and quadrature
approximations, even though the value of the approximated integral does not
change much. This motivates our further considerations.

In Section 3, we review particular subproblems arising from different
methods for computing Gauss-Christoffel quadrature formulas, with the em-
phasis on the sensitivity of maps from (modified) moments to the nodes and
weights of the computed quadrature. For earlier results, refer to [15, p. 252
and Section 2], and for recent analysis to [1,40,23]. Despite the vast litera-
ture on related subjects, the problem of sensitivity of the Gauss-Christoffel
quadrature has, to our knowledge, not been posed or examined in the litera-
ture. That problem certainly is of theoretical importance, and it is desirable
to investigate its relationship with the subproblems studied in the literature.
Section 4 recalls some basics about the error in Gauss-Christoffel quadrature
approximations. In Section 5 we present discussion and further examples that
lead to some understanding of the sensitivity of Gauss-Christoffel quadrature
approximations. Section 6 gives a summary and open questions.

Our interest in this problem originated in analysis of the conjugate gradi-
ent method for solving linear systems and of the Lanczos method for solving
the symmetric eigenvalue problem. The close relationship of these methods
of numerical linear algebra to Gauss-Christoffel quadrature of the Riemann-
Stieltjes integral has been known since their introduction; see [31, § 14-18],
[59, Chapter III]. In particular, the conjugate gradient method generates a
sequence of Gauss-Christoffel approximations to the piecewise constant dis-
tribution function that has jumps at the eigenvalues of the linear operator
equal in magnitude to the squared components of the normalized initial resid-
ual along the corresponding eigenfunctions. Moreover, the size of the A-norm
of the error at the kth step of the conjugate gradient method has a natu-
ral interpretation as the scaled remainder of the kth order Gauss-Christoffel
quadrature approximation of the Riemann-Stieltjes integral; see [5] and [42,
Sections 2.2 and 3.3] for a recent review of related results and bibliography.
There is also an interesting relationship of the sensitivity of Gauss-Christoffel
quadrature to the convergence properties of the conjugate gradient and Lanc-
zos algorithms in finite precision arithmetic. Its detailed investigation is,
however, out of the scope of this paper.

All experiments in this paper were performed using matlab on a com-
puter with machine precision ≈ 10−16.

2 Motivating examples

We now present an example of a nondecreasing discontinuous distribution
function ω(x) with finite points of increase, and a perturbation of this func-
tion, for which the Gauss-Christoffel quadrature estimates can be quite sen-
sitive. We use a distribution function from [53] with the value between a and
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the first point of increase zero, and points of increase λ1 < · · · < λn,

λi = λ1 +
i − 1

n − 1
(λn − λ1) γn−i, i = 2, . . . , n − 1,

where 0 < a < λ1, λn < b and γ ∈ (0, 1) is a properly chosen parameter. The
sizes of the individual jumps δi, i = 1, . . . , n are randomly generated using
the matlab command rand and normalized so that

∫ b

a

dω(x) =
n

∑

i=1

δi = 1 .

We construct the related “perturbed” distribution function ω̃(x) to have
two points of increase for each single point of increase of ω(x). Given a
positive perturbation parameter ζ, where ζ ≪ λ1 and ζ ≪ λ2 − λ1, we
replace each point of increase λi of ω by two close points λ̃2i−1 ≡ λi − ζ and

λ̃2i ≡ λi + ζ. We proportion the jumps δ̃2i−1 and δ̃2i randomly (again using

the matlab function rand), scaling so that δ̃2i−1 + δ̃2i = δi. For a small ζ
the distribution functions ω and ω̃ are close to each other.

We consider a smooth function f(x) = x−1 and demonstrate that the
difference between the Gauss-Christoffel quadrature estimates of the same
degree for Iω and Iω̃ can for some values of k become much larger than the
difference between the integrals themselves.

In our experiment we take λ1 = 0.1, λn = 100, a = λ1 − 10−5, b =
λn + 10−5, n = 24, γ = 0.55, and ζ = 10−8. The Jacobi matrices containing
the recurrence coefficients of the corresponding orthogonal polynomials were
computed from the spectral data using the algorithm of Gragg and Harrod
implemented in the matlab routine rkpw.m; see [29,23,24].1 The Gauss-
Christoffel quadrature nodes and weights were computed as the eigenvalues
and the squared first components of the corresponding normalized eigenvec-
tors of the Jacobi matrices using the matlab routine gauss.m, see [23,24].2

In this first example, the Jacobi matrices could also be computed via the
double-reorthogonalized Lanczos process (conjugate gradient algorithm) ap-
plied to the diagonal matrix A = diag(λ1, . . . , λn) with the starting vector

v1 = [(δ1)
1

2 , . . . , (δn)
1

2 ]T ; see [54,29]. Similarly, one could use the Lanczos pro-

cess (CG algorithm) on Ã = diag(λ̃1, . . . , λ̃2n) and ṽ1 = [(δ̃1)
1

2 , . . . , (δ̃2n)
1

2 ]T

to compute the perturbed nodes and weights. In this way the close rela-
tionship between the Gauss-Christoffel quadrature and the Lanczos process
(conjugate gradient method) could be exploited. For small values of n the
computational cost is negligible and the cost of reorthogonalization, consid-
ered in [29, p. 325], does not play a role. In the matlab routine pftoqd.m

we have also implemented the algorithm by Laurie which requires no sub-
tractions, see [38]. We emphasize that the same sensitivity phenomenon can

1 Please note that in [23,24] the same implementation is called lanczos.m. Since
that might cause a confusion with the implementation of the Lanczos process, we
use the original name from [29, p. 328].

2 An interested reader can find all m-files used for generating our figures, in-
cluding the extended precision implementations, at http://www.cs.cas.cz/mweb,
section “Applications”.
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Fig. 1 Sensitivity of the Gauss-Christoffel quadrature for distribution functions
with finite points of increase, ζ = 10−8. The top graph shows the error of the
Gauss-Christoffel quadrature approximation for f(x) = x−1 corresponding to the
original stepwise distribution function ω (dash-dotted line) and to its perturbation
ω̃ with doubled points of increase (dashed line). The bottom graph displays the
absolute value of difference in the estimates (solid line) and the difference between
the approximated integrals (dots).

be observed, with differences which are here insignificant, using various com-
putations of the recurrence coefficients from the spectral data.3

In the top of Fig. 1 we plot the error of the Gauss-Christoffel quadrature
approximations |Ek

ω| ≡ |Iω − Ik
ω| (dash-dotted line) and |Ek

ω̃| ≡ |Iω̃ − Ik
ω̃|

(dashed line), and in the bottom we plot the difference between the Gauss-
Christoffel approximations |Ik

ω̃ − Ik
ω | (solid line) and the difference between

the approximated integrals |∆| ≡ |Iω−Iω̃ |≈ 3.443 × 10−9 (dots). (Both Iω ≈
5.50658692032301 and Iω̃ were computed as finite sums of positive numbers
to a relative accuracy close to machine precision). For k ≥ 8 the Gauss-
Christoffel approximations of the integrals Iω̃ and Iω start to differ very
dramatically, and the size of that difference exceeds 10−1 for k = 10. After
that it is approximately equal to the error |Iω̃ − Ik

ω̃| until that quantity drops
below the size of the difference between the approximated integrals for k =
21.

This dramatic change in the estimates of the integral can be linked to
a corresponding sensitivity in the orthogonal polynomials. Though the dis-
tribution functions ω and ω̃ seem very close, the corresponding systems of
orthogonal polynomials are quite different. This is illustrated in Fig. 2, which

3 That has been confirmed independently by Dirk Laurie, who computed, with
the data from the motivating example, the Jacobi matrices, nodes and weights of
the quadrature to full 16 digits of accuracy using his software package [37]. Other
valuable independent experiments were performed by Jarda Kautský [33].
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Fig. 2 Top left: Diagonal and off-diagonal entries of the Jacobi matrices corre-
sponding to the distribution functions ω (solid line and dashed line, respectively)
and ω̃ (dots and stars, respectively). The other plots depict the quadrature nodes
corresponding to the distribution function ω (circles) and ω̃ (plusses) vs. the num-
ber of nodes k in the quadrature. Top right : all nodes. Bottom left: nodes near λn.
Bottom right: nodes near λ1.

shows the entries of the Jacobi matrices and the quadrature nodes (the
zeros of the corresponding orthogonal polynomials) for ω, ω̃ for iterations
k = 5, . . . , 15. In the top left part the diagonal entries of the Jacobi matrices
for ω, ω̃ are plotted by the solid line and by dots, respectively. Similarly, the
off-diagonal elements are plotted by the dashed line and by stars, respectively.
Up to k = 7 the computed Jacobi matrices are very close with their difference
close to the square root of the machine precision. For k = 8, 9 the difference
grows very rapidly (though in the figure the entries are still graphically in-
distinguishable). The corresponding entries suddenly completely depart at
k = 10. The same is true for some quadrature nodes. Up to k = 8 they are
graphically indistinguishable. For k = 9 the nodes corresponding to ω (cir-
cles) and ω̃ (plusses) close to λ1 start to visually differ, and eventually there
are many fewer nodes for ω̃ near λ1 than there are for ω. The missing nodes
for ω̃ can be found close to λn, where they lie in pairs near the nodes for
ω. We can see that for ω̃, λ̃2n−1 and λ̃2n are approximated to full accuracy
starting from k = 13. Results are similar for different values of ζ, providing
that ζ ≪ λ1, ζ ≪ λ2 − λ1.

This first example motivates our investigation. In this paper we ask when,
as illustrated in Fig. 1 and Fig. 2, Gauss-Christoffel quadrature is sensitive to
small perturbations of the distribution function, and under what conditions it
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is guaranteed to be insensitive. Such conditions exist, which can be verified
using the following second example. Construct the perturbed distribution
function ω̃(x) for ω(x) given above by placing a single (positive) λ̃i randomly

in the interval of size 2ζ centered at λi, i = 1, . . . , n, with δ̃i = δi. (Here we do

not specify the position of λ̃1 and λ̃n relative to the centers of the intervals
λ1 and λn; it can be arbitrary.) Then, in contrast to the results shown in
Fig. 1, the difference between the Gauss-Christoffel quadrature estimates for
f(x) = x−1 seems for all k bounded by the size of the difference between the
approximated integrals |Iω − Iω̃|, independently of the choice of 0 < ζ < 0.1.

We will see that similar phenomena can be observed for continuous and
even analytic distribution functions: Gauss-Christoffel quadrature can be
highly sensitive to some small changes of a given distribution function, and
insensitive to others. Next we describe such situations and relate them to
theoretical results in the literature.

3 Literature Review

As mentioned above, although the question on sensitivity of Gauss-Christoffel
quadrature has not, to our knowledge, been addressed in the literature, some
related problems have been thoroughly investigated. In this section we sum-
marize what is known about the sensitivity of generating the coefficients of
the three-term recurrence satisfied by polynomials orthogonal with respect
to the integral (1) and then computing the quadrature nodes and weights
from the recurrence coefficients. The richness of the mathematical roots of
this field is evidenced in the fact that the same problems have been described
independently in many different ways and analyzed using many different tech-
niques in literature that has little cross-reference. It would be very useful to
relate in detail all of the existing results, but in this section we give just a
brief overview.

3.1 Sensitivity in Computation of the Recurrence Coefficients

Analytic expressions for the recurrence coefficients are explicitly known for
some classical distribution functions and the corresponding orthogonal poly-
nomials; see, e.g., [24, p. 217], [40, p. 203], [55]. In practical applications,
though, an analytic knowledge of the recurrence coefficients is exceptional,
and one has to calculate them. Gautschi [24] presented four techniques. Using
our terminology these are:

T1. A modified Chebyshev algorithm.
T2. Discretization of the distribution function.
T3. Computation of the recurrence coefficients for the discrete Riemann-

Stieltjes integral.
T4. Computation of the recurrence coefficients for one distribution function

from known coefficients for another distribution function.
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The technique T4 is not generally applicable, restricted to the case in
which the original distribution function is multiplied by a rational nonneg-
ative function [24, Section 2.5], [23, Section 2.4]. The problem of changes in
orthogonal polynomials with respect to certain classes of modifications to
the distribution function has been studied in many papers; see, e.g. [58,34],
and [23, Section 2.4]. For a description of an old general result attributed
to Markov concerning the dependence of the zeros of orthogonal polynomials
on the parameter in the distribution function we refer to [57, Section 6.12,
pp. 111-112]. Though such results are somewhat related to the problem of
sensitivity of the Gauss-Christoffel quadrature, they are either of restricted
applicability or merely qualitative. They do not lead to a general perturba-
tion theory.

The modified Chebyshev algorithm T1 represents an example of a more
general approach based on knowledge of the recursion coefficients for some
classical orthogonal polynomials determined by an auxiliary distribution func-
tion [24, Section 2.2]. Assume that the modified moments of the chosen
(auxiliary) orthogonal polynomials with respect to the original distribution
function can be determined accurately. From these moments and the known
recurrence coefficients of the auxiliary polynomials, the modified Chebyshev
algorithm determines the unknown recurrence coefficients of the desired or-
thogonal polynomials. The difficulties are the possibly large computational
cost (not important in the context of our paper) and the possible inaccuracy
in the computed results. The last difficulty has been thoroughly studied by
Gautschi; see [15–17,19], and Section 2.1 of the book [23]. Subsection 2.1.3
defines the following maps:

Kk : the map from the modified moments to the recurrence coefficients;
Gk : the map from the modified moments to the nodes and weights of the

computed quadrature;
Hk : the map from the nodes and weights of the computed quadrature to

the recurrence coefficients.

Then Kk can be represented as a composition of the other two maps,

Kk = Hk ◦ Gk .

The condition numbers attributed to Gk and Kk were studied in [23, Sec-
tions 2.1.4, 2.1.5 and 2.1.6, pp. 59-75]. If monomials are used as the auxiliary
polynomials, the modified moments reduce to ordinary moments and the
maps Gk and Kk are notoriously ill-conditioned. Even for a good choice of
the auxiliary polynomials (such as the Chebyshev polynomials) and modi-
fied moments the situation is not simple. There are distribution functions for
which the condition numbers are small, but there are other distribution func-
tions for which the condition numbers grow exponentially with the number
of nodes k. Moreover, the assumption that the modified moments are known
accurately is difficult to satisfy; see [40, Section 3.2].

The general question of how to choose the auxiliary distribution function
was analyzed by Beckermann and Bourreau in the remarkable paper [1]. They
showed, among other results, that if the original and auxiliary distribution
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functions have different supports, i.e. the sets of all points of their increase,
[23, p. 3], then the condition number of Kk grows exponentially with k;
see [1, Theorem 11, p. 93]. The authors further conjectured on the same page
that the condition number of Kk is linked with the condition numbers of the
matrices of modified and mixed moments.

The map Hk is said to be generally well-conditioned in [23, p. 59], though
numerically stable computation of the entries of the Jacobi matrix from the
quadrature nodes and weights is not easy; see [23, §3.1.1, pp. 154-155, §3.5,
pp. 253-254 and Notes to §1.3, p. 50] with references to [38, Theorem on p.
168], [39], [40] and [1, Theorem 1 and Corollary 8]. (See also the last two
paragraphs of this section, which explain in detail history of that problem
and the fact that the algorithmic construction of Laurie in [38] also gives the
perturbation result.) Further results on the condition numbers of the map
Hk (and also of its inverse H−1

k ) can be found in [1, relation (7), Section 2
and Appendix], see also [14, Section 4, pp. 190-193]. (We address the map
H−1

k , in particular sensitivity of the nodes and weights and their computation
from the entries of the Jacobi matrix, in Section 3.2). The approach from [14]
is based on a remarkable result by Nevai on modification of the recurrence
coefficients when adding a single point of increase to the given distribution
function; see [45, Section 7, Lemma 15, p. 131], [14, Section 3, Lemma 1,
p. 187]. For an instructive algebraic description and application of the same
idea we refer to [12] and [13]. It is interesting that essentially the same prob-
lem of sensitivity of the entries in the Jacobi matrix to small perturbations
of the nodes and weights of the corresponding distribution function (i.e. the
eigenvalues and the first components of the normalized eigenvectors respec-
tively) has recently been studied in a different way (independently of the
results mentioned above) in [11]; see also [44] and the earlier paper [61]. A
related more general problem of sensitivity of the Lanczos reduction has been
thoroughly investigated in [47], see also [4,35].

The maps Kk,Hk and Gk are interesting to study. However, as we will
see in Section 5, they do not represent a relevant tool for investigation of sen-
sitivity of Gauss-Christoffel quadrature. Their detailed discussion has been
included here in order to explain the differences between the sensitivity prob-
lems studied previously and the sensitivity question posed and investigated
in this paper.

The techniques T2 and T3 couple into one approach. The basic idea
behind the discretization methods (see [24, Section 2.4], [23, Section 2.2,
p. 90]) is an approximation of the given distribution function by a suitable
discrete distribution function, computation of the recurrence coefficients for
the discrete distribution function, and approximation of the desired recur-
rence coefficients by the computed (discrete) ones. Gautschi identified in
[23, p. 90] two important issues which must be considered: the appropriate
choice of discretizations and convergence of the discrete orthogonal polyno-
mials (recurrence coefficients) to the desired ones. Both issues are tightly re-
lated. In the simple case when the original distribution function is composed
of several components for which the analytic formulas for the orthogonal
polynomials (Legendre, Chebyshev, ...) are known, discretization by a suit-
able combination of the N -point Gauss-type quadratures (Gauss-Legendre,
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Gauss-Chebyshev, ...) for a sufficiently large N ≫ k gives the result. Assum-
ing exact arithmetic, the first N − 1 polynomials orthogonal with respect to
the original distribution function are then also orthogonal with respect to
the discretized distribution function, and the desired recurrence coefficients
are determined accurately; see [24, p. 222]. Practical cases can be much more
complicated, and finding an appropriate discretization is a rather involved
procedure [23, Section 2.2.4].

There is one additional very important issue not mentioned in [23,24].
Convergence N → ∞ describes the limiting case. In order to evaluate the
accuracy of the methods based on discretization, one must be able to esti-
mate the discretization error for a finite N . In other words, one must inves-
tigate how fast the discrete orthogonal polynomials converge to the desired
ones, or, in a more complex way, sensitivity of the Gauss-Christoffel quadra-
ture under small perturbations of the original distribution function. It seems
that sensitivity is indeed a fundamental issue which cannot be omitted from
consideration. If the Gauss-Christoffel quadrature is sensitive to small per-
turbations of the distribution function, then the computation based on the
discretization may in general fail even if the discrete orthogonal polynomi-
als, and, subsequently, the nodes and weights of the discrete quadrature, are
determined accurately. A particular discretization procedure is not justified
without proving that the results of the Gauss-Christoffel quadrature are in-
sensitive with respect to the perturbation of the original distribution function
represented by its discretization.

Finally, we discuss computation of the recurrence coefficients for the dis-
crete Riemann-Stieltjes integral. This is an inverse problem: given nodes and
weights of the N -point discrete Gauss-Christoffel quadrature formula, com-
pute the entries of the corresponding Jacobi matrix.4 In order to find the
approximation to the desired k-point Gauss-Christoffel quadrature, we ac-
tually do not need the whole N by N Jacobi matrix, so we stop when we
obtain its k by k left principal submatrix, k ≪ N . In the classical language of
orthogonal polynomials, the problem is solved by the discrete Stieltjes pro-
cess [23, Section 2.2.3.1, p. 95]. In the language of numerical linear algebra,
the Stieltjes process (implemented with modified Gram-Schmidt orthogonal-
ization and normalization of the orthogonal polynomials) is equivalent to
the Lanczos algorithm (see, e.g., [29, p. 322]), which is numerically unstable.
This fact has been noted in the orthogonal polynomial literature (see, e.g.,
[19,20], [14, Section 2]), and reorthogonalization has been rejected as too
costly [29, p. 325]. When k is small, however, the cost of reorthogonalization
is negligible. Moreover, the analysis of the Lanczos algorithm behavior in
finite precision arithmetic by Paige, Parlett, Scott, Simon, Greenbaum and
others (reviewed, for example, in [42]) is almost unknown in the literature of
orthogonal polynomial community, despite some notable work [28,3,34,2,26,
22] which emphasizes the interplay between the classical polynomial and vec-
tor algebraic formulations. The analysis can supply, at least, very convincing
examples for illustrating and testing numerical instabilities.

4 Note that the inverse problem corresponds in the literature to the map Hk ,
not to H−1

k
.
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In order to overcome the numerical instability of the Lanczos algorithm,
Gragg and Harrod suggested in their beautiful paper [29] a new algorithm
based on ideas of Rutishauser. For an interesting experimental comparison,
see [50, Section 2]. An alternative approach, based on the above mentioned
results of Nevai [45], along with an experimental comparison, can be found
in [14]. From numerical results Gragg and Harrod spotted a curious phe-
nomenon: close nodes and weights can give two very different k × k Jacobi
matrices. They concluded that the problem of reconstructing a Jacobi matrix
from the weights and nodes is ill-conditioned [29, p. 330 and p. 332]. This
conclusion has been examined by Laurie [38], who pointed out that the nega-
tive statement is linked to the use of the max-norm for vectors. He suggested
instead measuring the perturbation of the weights in the componentwise rel-
ative sense [38, p. 179], [40, Section 6]. The main part of [38] is devoted to the
constructive proof of the following statement [38, Theorem on p. 168]: given
the weights and the N −1 positive differences between the consecutive nodes,
the main diagonal entries of the corresponding Jacobi matrix (shifted by the
smallest node) and the off-diagonal entries can be computed in 9

2N2 + O(N)
arithmetic operations, all of which can involve only addition, multiplication
and division of positive numbers. Consequently, in finite precision arithmetic
they can be computed to a relative accuracy no worse than 9

2N2ε + O(Nε),
where ε denotes machine precision. This result bounds also the conditioning
of the problem. If the weights and the N − 1 positive differences between the
consecutive nodes are perturbed, with the size of the relative perturbations of
the individual entries bounded by some small ǫ, then such perturbation can
cause a relative change of the individual entries of the shifted main diagonal
and of the individual off-diagonal entries of the Jacobi matrix not larger than
9
2N2ǫ + O(Nǫ). The resulting algorithm combines ideas from earlier works
from approximation theory, orthogonal polynomials, and numerical linear
algebra.

3.2 Sensitivity and Computing of the Quadrature Nodes and Weights

Computing the quadrature nodes and weights is of great interest on its own.
If the recurrence coefficients are used to construct a symmetric tridiago-
nal matrix with positive subdiagonals (Jacobi matrix), then, as mentioned
above, the quadrature nodes are the eigenvalues and the weights are the first
components of the normalized eigenvectors; see, e.g., [23, Section 3.1.1.1,
pp. 152-154; Section 3.5, pp. 253-254]. In some special cases such as Gauss-
Legendre quadrature, it is useful to consider also different ways of computing
the quadrature nodes and weights; see [56]. It should be noted, however, that
the comparison given in [56] does not refer to the recent developments in
eigensolvers for Jacobi matrices recalled below. In most cases, computing the
quadrature nodes and weights reduces to computing eigenvalues and the first
components of eigenvectors of Jacobi matrices.

It is well known that two Jacobi matrices that are close to each other
also have close eigenvalues and eigenvectors in the absolute sense, where the
closeness is measured by the absolute values of the differences between the
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corresponding individual eigenvalues and the corresponding individual eigen-
vectors; see, e.g., [27, Chapter 8], [34, p. 454], [11, p. 104], and [1, relation (7)
and Appendix] mentioned above. For eigenvectors, the proportionality con-
stant depends on the relative gaps between the eigenvalues of the unperturbed
matrix. However, two close Jacobi matrices do not necessarily have eigenval-
ues that are close in a relative sense. A small perturbation of the entries of
the Jacobi matrix can cause a large relative change in the eigenvalues and
the eigenvector entries; see [8, pp. 71-72] and [41]. It is worth noting that
Kahan has shown that small relative changes in the entries of the Cholesky
factors of a positive definite Jacobi matrix do cause small relative changes in
the eigenvalues of the Jacobi matrix [48, p. 123]; see also [7]. The thesis [8]
gives also a comparison of different numerically stable algorithms for com-
puting eigenvalues and eigenvectors of Jacobi matrices; see also the survey
and comments in [40, Section 2], and the recent work [9,10,30,60]. We can
conclude that the computation and perturbation theory of quadrature nodes
and weights from the recurrence coefficients is well understood. The main dif-
ficulty in perturbation analysis and in computation of the Gauss-Christoffel
quadrature lies in generating the recurrence coefficients.

Given this vast literature and our motivating example from the previous
section, we focus our attention on the sensitivity of the quadrature formulas
to changes in the distribution function.

3.3 Application to motivating examples: when larger support matters

The main difference between the first example at the beginning and the sec-
ond example at the end of Section 2 consists in whether or not the number
of points of increase (i.e. the ‘size’ of the support) is changed when ω is
perturbed to form ω̃. We will show that if there is no change in the num-
ber of points of increase, then a result by Laurie [38] explains the observed
insensitivity of Gauss-quadrature for small enough perturbations.

Suppose we perturb the (discrete) ω of Section 2, resulting in ω̃ with the
same number of points of increase. Then, by Laurie’s result, the corresponding
shifted Jacobi matrices are close to each other in the componentwise relative
sense. Using a classical perturbation result for eigensystems of symmetric
matrices, the resulting Gauss-Christoffel quadrature nodes and weights for
ω and ω̃ must also be close to each other, with individual differences pro-
portional to the perturbation parameter ζ. Consequently, for the (smooth
and monotonic) function f(x) = x−1 with ζ sufficiently small, the difference
between the quadrature estimates must be proportional to the difference be-
tween the approximated integrals |Iω − Iω̃ |.

There are two limitations of this argument. First, it does not apply to
the first motivating example, since Laurie’s result cannot be applied when
the number of points of increase changes. Second, it does not apply to the
second motivating example either, since the value of ζ = 10−8 was chosen too
large. It does, however, provide quantitative sensitivity results for smaller ζ,
or when ω and ω̃ coincide at all points of increase, except for, say, λn, which
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is well separated from λ1, . . . , λn−1. We next prove a result that does predict
the difference in behavior of our two examples.

4 Quadrature differences in terms of approximation error

We present a slight generalization of a result found in the classic textbook of
Isaacson and Keller [32] in Theorem 3 (p. 329) and in the second line of the
identity (6) on p. 334.

The standard approach to Gauss quadrature of the Riemann integral and
to Gauss-Christoffel quadrature of the Riemann-Stieltjes integral is based
on Hermite interpolation and is attributed to Markov; see, e.g. [18, p. 82].
Here we take advantage of results based on Lagrange interpolation. This
allows us to retain k free parameters in the remainder term for the kth order
quadrature, which will later prove convenient in evaluation of the quadrature
differences. In our exposition we follow the presentation of Gauss-Christoffel
quadrature given by Lanczos in [36, Chapter VI, §10], cf. also [21, Theorem
3.2.1].

Choose k distinct points x1, . . . , xk inside the interval [a, b], and let qk(x) =
(x−x1) . . . (x−xk). Then the Lagrange polynomial interpolating f(x) at the
points x1, . . . , xk can be written as

Lk(x) =
k

∑

j=1

f(xj)
qk(x)

q′k(xj)(x − xj)
,

and

f(x) = Lk(x) + qk(x)f [x1, . . . , xk, x] ,

where f [x1, . . . , xk, x] is the kth divided difference of f with respect to
x1, . . . , xk, x, see e.g. [32, Section 6.1]. We can derive a corresponding in-
terpolatory quadrature formula

∫ b

a

f(x) dω(x) =

k
∑

j=1

ϑjf(xj) +

∫ b

a

qk(x)f [x1, . . . , xk, x] dω(x) , (3)

where the last term represents the error and

ϑj =
1

q′k(xj)

∫ b

a

qk(x)

(x − xj)
dω(x) , j = 1, . . . , k . (4)

Up to now x1, . . . , xk were arbitrary distinct nodes inside [a, b]. The
beauty of the Gauss-Christoffel quadrature is in setting the interpolatory
nodes equal to the roots of the kth orthogonal polynomial corresponding to
ω(x). Then we can consider k additional distinct nodes inside [a, b] which
we need not even know and show that the interpolatory quadrature on k
nodes is as accurate as if 2k nodes had been used. This elegant consequence
is summarized in the following theorem.
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Theorem 1 Consider a nondecreasing function ω(x) on a finite interval [a, b].
Let pk(x) = (x− t1) . . . (x− tk) be the kth monic orthogonal polynomial with
respect to the inner product defined by the Riemann-Stieltjes integral on the
interval [a, b] with the distribution function ω(x). Choose k arbitrary distinct
points µ1, . . . , µk in [a, b]. Let

Iω =

∫ b

a

f(x) dω(x) , (5)

where f ′′ is continuous on [a, b], and let Ik
ω be the approximation to Iω ob-

tained from the k-point Gauss-Christoffel quadrature rule. Then for m =
1, . . . , k, the error of this approximation is given by

Ek
ω(f) ≡ Iω − Ik

ω =

∫ b

a

pk(x)f [t1, . . . , tk, x] dω(x) (6)

=

∫ b

a

pk(x)(x − µ1) . . . (x − µm)f [t1, . . . , tk, µ1, . . . , µm, x] dω(x) ,(7)

where f [t1, . . . , tk, µ1, . . . , µm, x] is the (k + m)th divided difference of the
function f(x) with respect to the nodes t1, . . . , tk, µ1, . . . , µm, x .

Proof Assume, for the moment, that the nodes µ1, . . . , µk are distinct from
the nodes t1, . . . , tk. If we derive the quadrature rule (3)-(4) using t1, . . . , tk,
then we have

∫ b

a

f(x)dω(x) =
k

∑

j=1

ϑjf(tj) +

∫ b

a

pk(x)f [t1, . . . , tk, x] dω(x),

where the continuity of f ′ guarantees the finiteness of the divided difference as
x varies. If f(x) is a polynomial of degree at most 2k−1, then f [t1, . . . , tk, x]
is a polynomial in x of degree at most k − 1 and the rule is exact, since the
orthogonality of pk(x) to all such polynomials makes the error term equal
to zero. Consequently, the resulting interpolatory quadrature represents the
Gauss-Christoffel quadrature. If we derive a quadrature rule using the points
tj plus the new nodes µi, then for m = 1, . . . , k,

∫ b

a

f(x) dω(x) =

k
∑

j=1

ϑ̂f(tj) +

m
∑

i=1

ξ̂if(µi)

+

∫ b

a

pk(x) (x − µ1) . . . (x − µm)f [t1, . . . , tk, µ1, . . . , µm, x] dω(x) .

We observe from (4) that for i = 1, . . . , m the weight ξ̂i of each additional
node is proportional to

∫ b

a

pk(x)ri(x) dω(x) = 0 ,
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where ri(x) = (x − µ1) . . . (x − µm)/(x − µi) is a polynomial of degree at
most k − 1, and therefore the orthogonality of pk(x) to all such polynomials
results in a zero weight. Consequently, the contribution of the additional
nodes µ1, . . . , µm to the integration formula vanishes, i.e.

m
∑

i=1

ξ̂if(µi) = 0 .

It follows from uniqueness of the Gauss-Christoffel quadrature rules that

ϑj = ϑ̂j and the statement is proved.
If some µi is equal to some tj , then replacing the Lagrange interpolant

by the Hermite interpolant (cf. [43, p. 175] and [32, p. 330]), and using the
continuity of f ′′ finishes the proof in an analogous way.

For analytic functions f(x) it is possible to express the error of the Gauss-
Christoffel quadrature rule without using derivatives or divided differences.
Letting pk(x) be as above, the function

ρk(z) =

∫ b

a

pk(x)

z − x
dω(x)

is analytic in the complex plane outside the interval [a, b]. Suppose that f(z)
is analytic in a simply connected domain containing [a, b] in its interior, and
let Γ be a simple closed positively oriented curve in that domain encircling
[a, b]. Then

Ek
ω(f) =

1

2π
√
−1

∫

Γ

Kk(z)f(z) dz , Kk(z) =
ρk(z)

pk(z)
; (8)

see [23, Theorem 2.48], [6, p. 303, relation (4.6.18)]. This identity has been
applied to estimate the error and to study its decrease with k for some par-
ticular classes of distribution functions ω(x) [18,25,23], [6, Section 4.6]. The
kernel Kk(z) depends through pk(z) and ρk(z) on the given distribution func-
tion ω(x). The question of sensitivity of Ek

ω(f) with respect to perturbations
of the distribution function ω(x) is thus reduced to the question of sensitivity
of Kk(z), where z lies on a properly chosen curve Γ in the complex plane,
with respect to small perturbations of ω(x).

An application of Theorem 1 gives the following important result, an
expression for the difference between the Gauss-Christoffel quadrature ap-
proximations.

Theorem 2 Let pk(x) = (x−x1) . . . (x−xk) be the kth orthogonal polynomial
with respect to dω on [a, b], and let p̃k(x) = (x − x̃1) . . . (x − x̃k) be the kth
orthogonal polynomial with respect to dω̃. Denote by p̂s(x) = (x− ξ1) . . . (x−
ξs) the least common multiple of the polynomials pk(x) and p̃k(x). If f ′′ is
continuous on [a, b], then the difference between the approximation Ik

ω to Iω
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and the approximation Ik
ω̃ to Iω̃, obtained from the k-point Gauss-Christoffel

quadrature rule, is bounded as

|Ik
ω − Ik

ω̃ | ≤
∣

∣

∣

∣

∣

∫ b

a

p̂s(x)f [ξ1, . . . , ξs, x] dω(x) −
∫ b

a

p̂s(x)f [ξ1, . . . , ξs, x] dω̃(x)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ b

a

f(x) dω(x) −
∫ b

a

f(x) dω̃(x)

∣

∣

∣

∣

∣

. (9)

Proof Consider the difference between the two Gauss quadrature approxima-
tions:

Ik
ω − Ik

ω̃ = Iω − Ek
ω − (Iω̃ − Ek

ω̃) = (Ek
ω̃ − Ek

ω) + (Iω − Iω̃) . (10)

Let the polynomials pk(x) and p̃k(x) have k − m common zeros, numbered
so that xm+1 = x̃m+1, . . . , xk = x̃k. Let s = k + m and use the last equality
in Theorem 1 twice. For Ek

ω set the points t1, . . . , tk in the theorem to be the
zeros of pk(x), and set the points µ1, . . . , µm to be the first m zeros x̃1, . . . , x̃m

of p̃k(x). For Ek
ω̃ , set the points t1, . . . , tk to be the zeros of p̃k(x), and set the

points µ1, . . . , µm to be the first m zeros x1, . . . , xm of pk(x). The statement
will immediately follow.

Note that from (10) the difference between the Gauss-Christoffel quadra-
ture approximations is of order of the difference between the integrals (or
smaller) if and only if the first term in the bound (9) is of order of the sec-
ond term or smaller. Please note that the integrands in the first term in the
bound (9) are identical. This simplifies the situation in comparison with a
possible use of the standard quadrature error formulas known from the lit-
erature, from which it seems very difficult to get insight into the sensitivity
phenomenon.

We state an analogous result for the weighted Riemann integral with
nonnegative weight function that is (for simplicity) continuous on the finite
interval [a, b]. The continuity assumption is not essential but simplifies the
exposition.

Corollary 1 Let w(x) and w̃(x) be nonnegative and continuous functions
on the finite interval [a, b]; let

ω(x) =

∫ x

a

w(t) dt, ω̃(x) =

∫ x

a

w̃(t) dt, x ∈ [a, b]

be the corresponding distribution functions. Then the integrals Iω and Iω̃ in
(2) represent the weighted Riemann integrals. Using the notation and as-
sumptions of Theorem 2,

|Ik
ω − Ik

ω̃ | ≤
∣

∣

∣

∣

∣

∫ b

a

p̂s(x)f [ξ1, . . . , ξs, x](w(x) − w̃(x)) dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ b

a

f(x)(w(x) − w̃(x)) dx

∣

∣

∣

∣

∣

. (11)
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Proof The statement follows immediately as a special case of Theorem 2.

If f(x) is analytic, we can get identities which do not contain divided
differences. Using the kernel expression of the error (8),

|Ik
ω − Ik

ω̃| ≤
1

2π

∣

∣

∣

∣

∫

Γ

(Kk(z) − K̃k(z))f(z)dz

∣

∣

∣

∣

+ |Iω − Iω̃|

=
1

2π

∣

∣

∣

∣

∫

Γ

ρk(z)p̃k(z) − ρ̃k(z)pk(z)

pk(z)p̃k(z)
f(z) dz

∣

∣

∣

∣

+ |Iω − Iω̃ | . (12)

5 Discussion and numerical illustrations

The previous section presents simple bounds for the size of the difference
|Ik

ω − Ik
ω̃ | between the results of the k-point Gauss-Christoffel quadrature

which immediately follow from the identity (10) and the quadrature error
formulas. As shown in Theorem 2, the crucial first term on the right hand
side of (10) represents a difference between two integrals with the same inte-
grand p̂s(x)f [ξ1, . . . , ξs, x] and different distribution functions ω and ω̃. We
will explain why for some distribution functions ω and nearby ω̃, with f
sufficiently smooth and uncorrelated with the difference ω − ω̃, this term
must inevitably become large, while for slightly different nearby distribution
functions the term remains small. We will start with a closer look at our
motivating examples from Section 2.

5.1 Discrete distribution functions: Motivating example revisited.

First, for clarity of exposition, we simplify the motivating examples from
Section 2: in both examples keep the first n − 1 points of increase of ω̃(x)
equal to λ1, . . . , λn−1, with the corresponding weights δ1, . . . , δn−1. Thus, in
both examples, ω̃(x) differs from ω(x) only near λn. In the first example, λn

is replaced by two points of increase λ̃n = λn − ζ and λ̃n+1 = λn + ζ, with

the (positive) weights δ̃n respectively δ̃n+1, δ̃n + δ̃n+1 = δn. In the second

example λn is perturbed to λ̃n = λn + ζ with δ̃n = δn.
For f(x) = x−1 we get f [ξ1, . . . , ξs, x] = (−1)s(x ξ1 . . . ξs)

−1, which holds,
by induction, for any s ≤ 2k. Therefore the integrand in the first part of the
bound (9) for the k-point quadrature simplifies to

gk(x) ≡ p̂s(x)f [ξ1, . . . , ξs, x] =
p̂s(x)

xp̂s(0)
= f(x)

p̂s(x)

p̂s(0)
, (13)

where the last term represents a polynomial having value one at zero. Using
(7) we find that

Ek
ω̃ − Ek

ω ≡ hk

where
hk ≡ δ̃n (gk(λ̃n) − gk(λn)) + δ̃n+1 (gk(λ̃n+1) − gk(λn)).
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Therefore, using (10) we have

Ik
ω − Ik

ω̃ = hk + ∆, ∆ = Iω − Iω̃ .

In the second example, the second term in hk is nonexistent.
In the first example, Ek

ω̃ − Ek
ω = hk corresponds to the replacement of

the single λn by two nearby points λ̃n and λ̃n+1. With the given distribution
functions ω and ω̃ and for some values of k ≪ n, the term hk becomes much
larger in magnitude than |∆|.

For small k, the Gauss-Christoffel quadrature approximation Ik
ω̃ does not

recognize λ̃n and λ̃n+1 as two distinct points, and hk is small. For larger k, λn

becomes closely approximated by the largest node from the Gauss-Christoffel
quadrature approximation Ik

ω of Iω, and gk(λn) becomes very small. At

the same time, λ̃n and λ̃n+1 are approximated by a single quadrature node

from Ik
ω̃ , placed in between them. Then gk(x) has in between λ̃n and λ̃n+1

two roots, with one of them very close to λn. As k grows, this will soon
become not enough to keep hk small, since gk(λ̃n) and gk(λ̃n+1) will grow
in magnitude and are of the same sign, while gk(λn) is small due to the
closeness of the quadrature node for Ik

ω to λn. Consequently, the differences

gk(λ̃n)− gk(λn) and gk(λ̃n+1)− gk(λn) will also grow in magnitude and are
of the same sign. Inevitably, for some value of k, Ik

ω̃ has to place a second

node, so that both λ̃n and λ̃n+1 are sufficiently closely approximated and
the size of the term hk is kept under control. For that k, then, compared to
the quadrature formula for Ik

ω , the quadrature formula for Ik
ω̃ has one fewer

node in some other part of the interval of integration. Therefore |Ik
ω̃ − Ik

ω|
will suddenly become large. The missing node appears in the (k + 1)st step
of the Gauss-Christoffel quadrature approximation. Therefore, from then on,
although |Ik

ω̃ − Ik
ω| may not be small, the difference shifted by one step, i.e.,

|Ik+1
ω̃ − Ik

ω |, is small.
The situation is illustrated in Figure 3. In the top part the quadrature

errors Ek
ω and Ek

ω̃ are plotted by the solid and dashed line, respectively.
They cannot be visually distinguished until k = 9. Starting from k = 11,
the convergence of Ik

ω̃ is delayed by one step in comparison to Ik
ω . Entries

of the corresponding Jacobi matrices behave in an interesting way, which
is illustrated by plotting the off-diagonal entries in the bottom part of the
figure, with the solid line corresponding to Ik

ω and the dashed line to Ik
ω̃. Until

k = 9 the lines coincide. For k = 10, 11 the corresponding entries separate,
and, starting from k = 12, the dashed line is just delayed (shifted to the
right) by one step.

The dash-dotted lines in both parts of Figure 3 correspond to an ad-
ditional example where λn is replaced by four close points λ̃n = λn − ζ,
λ̃n+1 = λn − ζ/3, λ̃n+2 = λn + ζ/3, λ̃n+3 = λn + ζ, while the new points
share the original weight δn. The situation is fully analogous. Starting from
k = 14 and k = 18, the convergence of Ik

ω̃ is delayed by two and three steps,
respectively.

The behavior of gk(x) is illustrated in Figure 4. For clarity we plot
sign(gk(x)) log10(1 + |gk(x)|). The left part plots the behavior in the whole
interval of integration for k = 10. The right part plots the behavior near λn
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Fig. 3 Sensitivity of the Gauss-Christoffel quadrature for distribution functions
with finite points of increase which differ only near λn, ζ = 10−8. The top graph
shows the error of the Gauss-Christoffel quadrature approximation for f(x) = x−1

corresponding to the original stepwise distribution function ω (solid line), to its
perturbation ω̃ with two points of increase near λn (dashed line), and to its per-
turbation ω̃ with four points of increase near λn (dash-dotted line). The bottom
graph displays the off-diagonal entries of the corresponding Jacobi matrices.
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Fig. 4 The behavior of gk(x), see (13) (for better graphical view we plot
sign(gk(x)) log10(1+|gk(x)|)). The left part shows the behavior in the whole interval

of integration for k = 10. The points of increase λ̃n and λ̃n+1 are approximated by
a single node of Ik

ω̃ between them (the node close to 90 is still far away). The right
part displays the behavior near λn for k = 9 (dash-dotted line), k = 11 (dashed

line) and k = 12 (solid line). For k = 12 both nodes λ̃n and λ̃n+1 are very closely
approximated by the nodes of Ik

ω̃.
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for k = 9, 11, 12. For k = 9 the line is close to the horizontal axis. For k = 11
we can observe the increasing gradient of gk(x) (ζ = 10−8), and for k = 12

both λ̃n and λ̃n+1 are closely approximated by quadrature nodes of Ik
ω̃.

This phenomenon is closely related to the fact that the presence of close
eigenvalues affects the rate of convergence of the conjugate gradient method;
see the beautiful explanation given by van der Sluis and van der Vorst [51,
52]. Similarly, it is closely related to the convergence of the Rayleigh quotient
in the power method and to the so-called ‘misconvergence phenomenon’ in
the Lanczos method see [49,46]. In exact arithmetic in the presence of very
close eigenvalues, a Ritz value in the Lanczos and the CG method initially
converges to the cluster as fast as if the cluster were replaced by a single
eigenvalue with the combined weight. Within a few further steps it converges
very fast to one of the eigenvalues, with another Ritz value converging si-
multaneously to approximate the rest of the cluster. In the presence of more
than two eigenvalues in a cluster, the story repeats until all eigenvalues in a
cluster are approximated by individual Ritz values.

Now we consider the second modified example, where λn is perturbed to
λ̃n = λn + ζ, δ̃n = δn. Then Ik

ω̃ converges to Iω̃ with the same speed as Ik
ω

to Iω, there is no delay, and the fact that |Ek
ω − Ek

ω̃| is small can be proved
using the result by Laurie [38]; see Section 3.3.

In the original motivating examples from Section 2 the situation is quite
analogous, with the effects described on the simplified examples now taking
place (for different values of k) near λn, λn−1, . . . . A steep increase of |Ik

ω−Ik
ω̃|

significantly above |∆| is well pronounced in the presence of well-separated
rightmost points λn, λn−1, . . . , because they are fast approximated to high
accuracy by the quadrature nodes. The phenomenon is almost independent of
the position of the eigenvalues within the individual clusters (here 0 < ζ < 0.1

in order to ensure λ̃1 > 0); see a similar statement in [51, Section 6.7, point
(d), p. 559]. When λn is well-separated, the phenomenon must take place
even for very small ζ.

The sensitivity of the Gauss-Christoffel quadrature is a consequence of
the fact that ω̃ has more points of increase (here two) close to the single
points of increase of ω. The Gauss-Christoffel quadrature is sensitive because
the number of points {λ̃1, . . . , λ̃m} in the support of ω̃ is larger than the
number in the support {λ1, . . . , λn} of ω. More precisely, ω̃ has more points
of increase in the area where the gradient of gk(x) becomes very large as k
increases. The second example, with the same number of points of increase,
shows that moving each point of increase slightly does not cause sensitivity
if the number of points is kept the same.

5.2 A continuous analog of the motivating example.

Consider the analytic function Φ(x; σ) ≡ ∑n

i=1 δiϕ(x; σ, λi), where 0 < a <
λ1 < · · · < λn < b, δ1, . . . , δn are as above and

ϕ(x; σ, t) ≡
[

1 + e−
x−t

σ

]

−1

(14)
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is the strictly increasing sigmoid function with values between 0 and 1. Define
the distribution function

Ω(x; σ) ≡ c0 Φ(x; σ) ,

b
∫

a

dΩ(x; σ) = 1 , (15)

where c0 is the normalization constant. Clearly, Ω(x; σ) approximates the
step function from the motivating example:

lim
σ→0

Ω(x; σ) = ω(x) ,

for all a ≤ x ≤ b except for x = λi, i = 1, . . . , n, and the value of the
parameter σ determines how closely Ω(x; σ) approximates ω(x).

In order make our computations accurate, we use the following lineariza-
tion of Ω(x; σ). Divide the interval [t−10σ, t+10σ] into 2m equal subintervals,
with m = 50. Define ϕ̂(x; σ, t) to be the piecewise linear continuous function
that interpolates Ω(x; σ) at the endpoints of the subintervals and is constant

on (−∞, t− 10σ] and [t+10σ,∞). Then, using Φ̂(x; σ) ≡
∑n

i=1 δiϕ̂(x; σ, λi) ,
we obtain a linearized distribution function

Ω̂(x; σ) ≡ c1 Φ̂(x; σ) ,

b
∫

a

dΩ̂(x; σ) = 1, (16)

with c1 the normalization constant.

The Riemann-Stieltjes integral I
Ω̂

(x−1) =
∫ b

a
x−1dΩ̂(x; σ) can be com-

puted analytically. The recurrence coefficients of the orthogonal polynomials
were computed by the double-reorthogonalized Lanczos process, with the cor-
responding integrals computed numerically. Using the partitioning described
above and the fact that Ω̂(x; σ) is linear on each subinterval, we conveniently
use on each subinterval the Gauss-Legendre quadrature of sufficient order, im-
plemented in matlab by Laurie in the file r jacobi.m; see [24, Section 2.1].
For determining the quadrature nodes and weights we then use the standard
approach implemented in the file gauss.m by Gautschi [23, pp. 153-154], [24,
Section 2.4]. We use σ = 10−8 and σ = 10−6, a = λ1 − 10−5 = 10−1 − 10−5

and b = λn + 10−5 = 100 + 10−5. Results for the original distribution func-
tion Ω̂(x; 10−8) and its perturbation Ω̂(x; 10−6), analogous to Figures 1 and
2, are presented in Figures 5 and 6. We can observe the same phenomena as
in the motivating example, and the explanation is analogous. Since now the
distribution functions are continuous, many quadrature nodes are eventually
placed close to the rightmost λn, λn−1, . . . for both σ = 10−8 and σ = 10−6.

We emphasize that the observed Gauss-Christoffel quadrature sensitivity
is a consequence of the fact that the support of Ω̂(x; 10−6), which is the
union of intervals of length 2× 10−5 around the points λi, is larger than the
corresponding support of Ω̂(x; 10−8). If the supports were different (with the
difference of a similar scale as before) but of the same size, no sensitivity

would occur. Indeed, computation confirms that if Ω̃(x; 10−8) is a pertur-

bation of the original distribution function Ω̂(x; 10−8) obtained by shifting
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Fig. 5 Sensitivity of the Gauss-Christoffel quadrature for the continuous distri-
bution function Ω̂(x;σ). The top graph shows the error of the Gauss-Christoffel
quadrature approximation for f(x) = x−1 corresponding to the original distribution
function with σ = 10−8 (dash-dotted line) and to its perturbation with σ = 10−6

(dashed line). The bottom graph displays the absolute value of difference in the
estimates (solid line) and the difference between the approximated integrals (dots).
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Fig. 6 Quadrature nodes corresponding to the distribution function Ω̂(x;σ) with
σ = 10−8 (circles) and σ = 10−6 (plusses) in two subintervals close to λn (top) and
λ1 (bottom). The horizontal axis is the number of nodes k in the quadrature.
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the individual sigmoids randomly 10−6 to the left or right, with subsequent
normalization, then the quadrature nodes and weights change proportionally
to the shifts of the individual sigmoids. The size of the difference between
the Gauss-Christoffel quadrature estimates for f(x) = x−1 and Ω̂(x; 10−8)

and Ω̃(x; 10−8) remains below or close to the size of the difference between
the estimated integrals. In short, in agreement with our discussion above, no
sensitivity of the Gauss-Christoffel quadrature appears.

5.3 Discussion: Relationship to modified moments

We will explain that the sensitivity of the Gauss-Christoffel quadrature de-
scribed above cannot be analyzed by investigation of modified moments. Our
point is that the Gauss-Christoffel quadrature can be highly sensitive to some
small changes of the original distribution function but insensitive to others,
and this principal difference cannot be captured by the conditioning of the
map Kk from the modified moments to the recurrence coefficients studied
by Gautschi [23] and Beckermann and Bourreau [1]; see Section 3.1. In order
to justify our claim, we will use the example with continuous distribution
functions given above.

Using the previous notation, consider the original distribution function
Ω0(x) ≡ Ω̂(x; 10−8) and two perturbations Ω1(x) ≡ Ω̂(x; 10−6), Ω2(x) ≡
Ω̃(x; 10−8). We will now consider Ω1(x) and Ω2(x) two different auxiliary
distribution functions in the sense of the modified Chebyshev algorithm; see
Section 3.1. We know that the Gauss-Christoffel quadrature is sensitive to
change from Ω0 to Ω1, and insensitive to change from Ω0 to Ω2. We might
intuitively expect that the sensitivity in the first case would be reflected

by the ill-conditioning of the map K
(1)
k , which corresponds to the original

distribution function Ω0 and the auxiliary distribution function Ω1, and that
the insensitivity is in the second case would perhaps be accompanied by well-

conditioning of the map K
(2)
k , which corresponds to the original distribution

function Ω0 and the auxiliary distribution function Ω2. But this is not true.
The support of Ω0 is different from the supports of Ω1 and Ω2, and using [1,

Theorem 11, p. 93], we find that both maps K
(1)
k and K

(2)
k are notoriously

ill-conditioned.
In order to illustrate this numerically, we consider the conjecture [1, p.

93] that there is a link between the condition number of Kk and that of
the matrix of mixed moments of the polynomials orthogonal with respect to
the original and auxiliary distribution functions (where the mixed moments
are computed using the original distribution function; see [1, the matrix of
transmission coefficients Tn(σ, s) on p. 93]. The mixed moments appear in
the modified Chebyshev algorithm as intermediate quantities; see [23, p. 76,
relation (2.1.101)]). With a reference to the habilitation thesis of Becker-
mann, it is argued that the condition number GMk of the matrix of modified
moments and the condition number MMk of the matrix of mixed moments
grow exponentially if the supports of the original and the auxiliary distribu-
tion functions do not coincide. This is illustrated in Figure 7. Here GMk is
plotted by the solid line, MMk by the dashed line. The left part corresponds
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Fig. 7 Condition numbers of the matrix of the modified moments (GMk, solid
line) and of the matrix of mixed moments (MMk, dashed line). The left graph
corresponds to the distribution functions Ω0 and Ω1, and the right graph to the
distribution functions Ω0 and Ω2.

to the distribution functions Ω0 and Ω1, the right part to Ω0 and Ω2. We
can see the condition numbers GMk and MMk are growing essentially expo-
nentially with k in both cases. (The staircase character of the plots is yet to
be analyzed.) Using the conjecture in [1, p. 93], the fast growth of MMk can

be linked with the ill-conditioning of the maps K
(1)
k and K

(2)
k .

In conclusion, the Gauss-Christoffel quadrature for a given distribution
function can be insensitive to some perturbations despite the corresponding
large MMk and the corresponding ill-conditioning of the map Kk.

5.4 Analytic distribution functions with different support.

The phenomena described above can also be observed with analytic distribu-
tion functions. We present experiments with distribution function Ω(x; σ);
see (15). The recurrence coefficients of the corresponding orthogonal poly-
nomials are again computed by the double reorthogonalized Lanczos pro-
cess, where for the numerical computation of the required integrals we use
the matlab adaptive Lobatto quadrature quadl. The quadrature nodes
and weights are then determined as above using the code gauss.m. We set
a = 0.1 and b = 100.2. In order to reduce numerical errors below a no-
ticeable level we take λ1 = 0.3, λn = 100, n = 4, γ = 0.55, and consider
the original distribution function Ω(x; 0.04) and its perturbation Ω(x; 0.08).
Figure 8 shows results of the Gauss-Christoffel quadrature estimates for
k = 1, . . . , 10, f(x) = x−1 (top) and f(x) = 1+sin(x) (bottom). The sensitiv-
ity of the Gauss-Christoffel quadrature is here less pronounced than before.
Still it is observable.

5.5 Analytic distribution functions with the same support.

For slightly perturbed analytic functions with the same support the differ-
ence between the Gauss quadrature approximations |Ik

ω̃ − Ik
ω | is typically of
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Fig. 8 Sensitivity of the Gauss-Christoffel quadrature for the analytic distribu-
tion function Ω(x; σ). The figure shows the absolute value of the difference in the
quadrature estimates (solid line) and the difference between the approximated in-
tegrals (dots) for f(x) = x−1 (top) and f(x) = 1 + sin(x) (bottom), corresponding
to the original distribution function with σ = 0.04 and to its perturbation with
σ = 0.08.

the order |Iω̃ − Iω| . For small values of k, the errors of the correspond-
ing estimates are much larger than the difference between them. Eventually
the estimates must separate because they aim at approximating different
integrals. The value k for which the two estimates separate is essentially de-
termined by the difference between the approximated integrals. The roots
of the corresponding orthogonal polynomials are typically very stable. We
performed experiments, e.g., for the weight function w(x) =

√
x − x2 for the

shifted Chebyshev polynomials of the second kind, for the highly oscillatory
weight function w(x) = 1 + cos(10πx), and for the Jacobi weight functions
w(x) = (1 − x)α(1 + x)β with various values of the exponents and various
perturbations.

We observed two characteristics in these experiments. First, the rate of
decrease of the quadrature error was exponential, which can be explained
using the Cauchy integrating kernels; see (8). Second, when perturbation of
the distribution function preserves its support (here the whole interval), the
quadrature is not sensitive. For an interesting example where the preservation
of the support is linked with the analysis of the conditioning of the map Kk

we refer to [1, Example 15, p. 96].



26 Dianne P. O’Leary et al.

6 Conclusions

Literature about Gauss-Christoffel quadrature and about its computational
aspects is extensive. This paper raises the following points which seem, how-
ever, new:

1. Gauss-Christoffel quadrature for a small number of quadrature nodes can
be highly sensitive to small changes in the distribution function. In par-
ticular, the difference between the corresponding quadrature approxima-
tions (using the same number of quadrature nodes) can be many orders
of magnitude larger than the difference between the integrals being ap-
proximated.

2. This sensitivity in Gauss-Christoffel quadrature can be observed for dis-
continuous, continuous, and even analytic distribution functions, and for
analytic integrands uncorrelated with changes in the distribution func-
tions and with no singularity close to the interval of integration.

3. The sensitivity of the Gauss-Christoffel quadrature illustrated in this pa-
per is related to the difference in the size of the support of the original and
of the perturbed distribution functions. For a discrete distribution func-
tion, the size is the number of points of increase, and for a continuous
distribution function it is the length (measure) of the union of intervals
containing points at which the distribution function increases. In general,
different supports of the same size do not exhibit sensitivity in quadrature
results.

4. The sensitivity of Gauss-Christoffel quadrature cannot be explained using
existing analysis based on modified moments. In our examples, if the sup-
port of the original distribution function differs in size from the support of
the auxiliary (perturbed) distribution function, then the matrices of both
modified and mixed moments become highly ill-conditioned. The same is
true if the supports are different but of the same size. But only in the
case of different size of the supports are the recurrence coefficients (i.e.,
the entries of the Jacobi matrix) and the Gauss-Christoffel quadrature
estimates highly sensitive to the perturbation.

Many open questions remain. We give several examples of sensitivity of
the Gauss-Christoffel quadrature. It would certainly be of great interest to
describe the classes of problems for which the Gauss-Christoffel quadrature is
sensitive to small perturbations of the distribution function, and determine
which of them are of practical importance. Application of these results to
theory of the conjugate gradient and Lanczos methods in finite precision
arithmetic will be considered in our future work. Another highly relevant
question is how to measure differences between distribution functions.
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53. Strakoš, Z.: On the real convergence rate of the conjugate gradient method.
Linear Algebra Appl. 154–156, 535–549 (1991)
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