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Abstract

Least squares problems with multiple right-hand sides naturally arise in many
practical applications. When the system matrix A is large and sparse, it is often
convenient to solve such problems using suitably adapted variants of the block
conjugate gradient method (block CGLS) or the block LSQR method. These
block methods allow efficient use of modern computational architectures, and the
number of iterations needed to achieve the required accuracy is typically much
smaller than that required when solving each system separately and successively.
However, a known limitation of these block methods is, for some problems, the
occurrence of (near) breakdowns caused by (near) rank deficiencies within block
vectors.
Assuming that A has a full column rank, we consider both the block CGLS and
block LSQR algorithms. We show how ideas presented in 2001 by A. Dubrulle for
block CG can be incorporated to prevent numerical instabilities or breakdowns
caused by (near) rank deficiencies within block vectors. For the considered (pre-
conditioned) algorithms, we derive estimates of the ATA-norm of the error for
each individual system, as well as for the trace of the corresponding bilinear form.
These estimates are often well suited for use in stopping criteria. We consider
both lower and upper bounds and show how the estimates can be adaptively
refined to heuristically achieve a prescribed level of accuracy. Numerical experi-
ments clearly illustrate which block algorithms are the most effective for practical
computations and demonstrate that adaptive estimates perform reliably.
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1 Introduction

Let A be an n×m real matrix with n ≥ m and full column rank, i.e., rank(A) = m.
We are interested in solving in the least squares sense s linear systems

Ax(i) = b(i), i = 1, . . . , s, (1)

where b(i) ∈ Rn. The minimization of the norms ∥b(i) −Ax(i)∥ is equivalent to solving
square linear systems

ATAx(i) = AT b(i), i = 1, . . . , s. (2)

This can be written in block form as

ATAX = ATB, X =
[
x(1), . . . , x(s)

]
, B =

[
b(1), . . . , b(s)

]
. (3)

Since the matrix A has full rank m, the matrix ATA is symmetric positive definite
and there is a unique solution X.

When solving only one linear system (s = 1), applying the conjugate gradient (CG)
algorithm to ATAx = AT b was proposed by M.R. Hestenes and E. Stiefel (originally,
as a method to solve nonsymmetric linear systems) [1]. For least squares problems,
this method is called CGLS, and CGNR for square linear systems in [2]. An alternative
is the LSQR algorithm developed by C.C. Paige and M.A. Saunders [3, 4], which is
based on the bidiagonalization process introduced by G.H. Golub and W. Kahan [5].

We would like to solve the linear system (3) with several right-hand sides using
(preconditioned) block conjugate gradient methods. When solving square nonsingular
linear systems, the block conjugate gradient method [6, 7] is known to suffer from rank
deficiency issues in certain cases. Recently in [8], several variants have been revisited
to address these difficulties. Our aim in this paper is to use some of these variants for
the solution of least squares problems like (3). Moreover, we show how to estimate
norms of the error during the iterations as it is done in [9] for square linear systems,
and in [10] for least squares problems with only one right-hand side.

In Section 2 we recall some block CG algorithms for solving square linear sys-
tems with several right-hand sides, along with basic techniques for the error norm
estimation. Section 3 describes how to adapt these block CG methods to solve the
problem (3) without explicitly computing ATA, and introduces the block LSQR algo-
rithm. Section 4 presents strategies for estimating the quantities of interest in block
methods applied to least squares problems with multiple right-hand sides. Precon-
ditioning, an important component of these algorithms, is discussed in Section 5.
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Section 6 describes numerical experiments that demonstrate the effectiveness of the
proposed techniques across a range of problems.

2 Block CG algorithms

In this section we recall block CG methods for solving a block linear system AX = B
where A is a square real symmetric positive definite matrix of order n and B has
s columns. The standard block conjugate gradient (BCG) algorithm was introduced by
D.P. O’Leary [6] in 1980. It is described as Algorithm 1 and is referred to as HS-BCG
to recall its close relationship with the conjugate gradient algorithm of M.R. Hestenes
and E. Stiefel [1].

Algorithm 1 HS-BCG

1: input A, B, X0

2: R0 = B −AX0

3: P0 = R0

4: for k = 1, . . . until convergence do
5: Υk−1 = (PT

k−1APk−1)
−1(RT

k−1Rk−1)
6: Xk = Xk−1 + Pk−1Υk−1

7: Rk = Rk−1 −APk−1Υk−1

8: Ξk = (RT
k−1Rk−1)

−1(RT
kRk)

9: Pk = Rk + Pk−1Ξk

10: end for

In Algorithm 1, it is assumed that the s× s matrices PT
k−1APk−1 and RT

k−1Rk−1

are nonsingular. However, in practical computations, the columns of the n × s block
vectors Rk−1 or Pk−1 may become linearly dependent or nearly linearly dependent.
In that case, the inverses of PT

k−1APk−1 or RT
k−1Rk−1 cannot be reliably computed,

and this may lead to a delayed convergence or even to a breakdown of the algorithm.
To address this issue, D.P. O’Leary [6] proposed the use of scaling matrices to

enhance the numerical stability of the algorithm. While this approach can mitigate
some problems, it does not fully resolve the issue. A BCG algorithm designed to
handle rank deficiencies was proposed by H. Ji and Y. Li [11]. It is referred to as
the breakdown-free block CG (BF-BCG) algorithm. In the presence of (near) rank
deficiency, this algorithm selectively removes dependent vectors from the direction
blocks Pk. This is sometimes called “deflation”. However, as discussed in [8], it is not
always easy to choose which columns to discard.

Other ideas to overcome the rank deficiency problems were proposed by A. Dubrulle
[12]. Some of Dubrulle’s algorithms are studied in [8, 9]. The most promising method is
Algorithm 2 which was renamed DR-BCG in [8]. It was obtained by changing variables
in HS-BCG; see [8, 9]. A key advantage of DR-BCG is that it avoids computing the
inverses of RT

kRk, in contrast to HS-BCG, and eliminates the need for deflation. It uses
a QR factorization of the residual block vectors such that the Q-factor of size n×s has
full column rank, while the upper triangular R-factor of size s× s may eventually be

3



Algorithm 2 Dubrulle-R BCG (DR-BCG)

1: input A, B, X0

2: [Q0,Σ0] = qr(B −AX0)
3: S0 = Q0

4: for k = 1, . . . until convergence do
5: Πk−1 = (ST

k−1ASk−1)
−1

6: Xk = Xk−1 + Sk−1Πk−1Σk−1

7: [Qk,Ψk] = qr(Qk−1 −ASk−1Πk−1)
8: Sk = Qk + Sk−1Ψ

T
k

9: Σk = ΨkΣk−1

10: end for

singular. This type of QR factorization can be computed using Householder reflections,
for example, in MATLAB using the command qr with the parameter ’econ’. As a
result, in Algorithm 2, the vectors within a block Qk are always linearly independent
even if the matrices Ψk are singular. We observe that the inverse of the matrix Ψk is
not needed in the algorithm. Therefore, deflation and the reduction of block size are
not necessary.

In [13], it is proved that the matrices ST
k−1ASk−1 are always nonsingular. Therefore,

DR-BCG cannot breakdown, even if some matrices Ψk are singular. Note that the
residual blocks Rk are not explicitly available in Algorithm 2; however, they can always
be reconstructed using the relation Rk = QkΣk.

When solving a symmetric positive definite linear system Ax = b with the conju-
gate gradient algorithm, it is natural to consider the A-norm of the error ∥x − xk∥A
defined by

∥x− xk∥2A = (x− xk)
TA(x− xk),

since it is minimized at each CG iteration. Lower and upper bounds of the A-norm of
the error can be cheaply computed during the iterations using Gauss and Gauss-Radau
quadrature rules; see an overview in [14].

To measure the convergence of block CG algorithms, we can consider the s × s
matrices

Ek = (X −Xk)
TA(X −Xk) (4)

and estimate either their diagonals or their traces. As shown in [9], it is possible to
compute bounds for these quantities when solving square linear systems. Let us define

Θk−1 = Ek−1 − Ek.

The s × s matrix Θk−1 is readily computable in all block CG variants we consider.
This matrix is positive (semi-)definite and its diagonal entries are lower bounds on the
squares of the A-norms of the columns of the error block vectors at iteration k − 1,
that is, we have

∥x(i) − x
(i)
k−1∥

2
A ≥ [Θk−1]i,i, i = 1, . . . , s.
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The lower bounds can be improved by going back to previous iterations. As in [14, 15],
we have

∥x(i) − x
(i)
ℓ ∥2A ≥

k−1∑
j=ℓ

[Θj ]i,i, i = 1, . . . , s, (5)

with ℓ ≤ k − 1. Hence, we go back a few iterations. This is called the delay, see [14].
As we will see later, this quantity may depend on both the system index i and the
iteration number ℓ.

In HS-BCG, the s× s matrix Θk−1 is given by

Θk−1 = (RT
k−1Rk−1)Υk−1, (6)

while in DR-BCG it takes the form

Θk−1 = ΣT
k−1Πk−1Σk−1,

as shown in [9].

Computing upper bounds is a little more tricky. Let µ be a lower bound for the
smallest eigenvalue λ1 of A. In [9] we show how to define block Gauss-Radau quadra-
ture rules. Following an approach analogous to the single-vector case, we modify
the block tridiagonal matrix Tk+1 arising from the underlying block Lanczos algo-

rithm such that T
(µ)
k+1 has µ as an eigenvalue with multiplicity s. Note that the initial

block Lanczos vector V1 is obtained via the QR factorization of R0 = B − AX0,
[V1,Σ0] = qr(R0). We then consider the s× s matrix

Θ
(µ)
k ≡ ΣT

0 ([(T
(µ)
k+1)

−1]1:s,1:s − [T−1
k ]1:s,1:s)Σ0,

whose diagonal entries can be used to construct Gauss–Radau upper bounds on the
squared A-norms of the errors. As in the single-vector case, this matrix does not need
to be computed via the above formula during the block CG iterations. Instead, it can
be updated recursively. As shown in [9], it satisfies the recurrence

Θ
(µ)
k = Rk [µ(Θ

(µ)
k−1 −Θk−1) +Rk]

−1 (Θ
(µ)
k−1 −Θk−1), (7)

with the initial value given by Θ
(µ)
0 = R0/µ, where Rk is defined as

Rk = (B −AXk)
T (B −AXk). (8)

It is straightforward to show that

Rk = RT
kRk in HS-BCG, and

Rk = ΣT
kΣk in DR-BCG.

Observe that if the matrices Θ
(µ)
j −Θj are symmetric and positive definite, then the

recurrence formula (7) is well defined even if the matrices Rj are singular. In [9,
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Lemma 7.5] we have shown that if the matrices Rj , for j = 0, . . . , k − 1, have full

column rank, then the matrices Θ
(µ)
j − Θj are symmetric and positive definite. A

detailed analysis of the behavior of DR-BCG in the rank-deficient case and the impact
of finite precision arithmetic will be the subject of our forthcoming work [13].

As shown in [9], the diagonal entries of Θ
(µ)
k provide upper bounds on the squared

error norms
∥x(i) − x

(i)
k ∥2A ≤ [Θ

(µ)
k ]i,i, i = 1, . . . , s.

Moreover, improved upper bounds can be obtained for previous iterations by intro-
ducing a delay, as proposed in [14]. In particular, to compute Gauss–Radau upper
bounds at iteration ℓ < k, one obtains

∥x(i) − x
(i)
ℓ ∥2A ≤

k−1∑
j=ℓ

[Θj +Θ
(µ)
k ]i,i, i = 1, . . . , s.

3 Block algorithms for least squares problems

The block CG algorithms described in the previous section can be modified in an
easy way to solve the block linear system (3) without explicitly computing the matrix
ATA. This modification follows the same principles as in the derivation of the classical
CGLS algorithm for a single right-hand side; see [16, p. 282]. This was done for HS-
BCG and BF-BCG by H. Ji and Y. Li [17] who adapted their previous algorithm [11,
Alg. 2] to least squares problems. For the sake of simplicity, we do not present the
algorithm from [17] here.

Algorithm 3 HS-BCGLS

1: input A, B, X0

2: R0 = B −AX0

3: R̃0 = ATR0

4: P0 = R̃0

5: for k = 1, . . . until convergence do
6: Υk−1 = [(APk−1)

TAPk−1]
−1(R̃T

k−1R̃k−1)
7: Xk = Xk−1 + Pk−1Υk−1

8: Rk = Rk−1 −APk−1Υk−1

9: R̃k = ATRk

10: Ξk = (R̃T
k−1R̃k−1)

−1(R̃T
k R̃k)

11: Pk = R̃k + Pk−1Ξk

12: end for

The standard algorithm HS-BCGLS is described as Algorithm 3. At each iteration
this algorithm requires two matrix-block vector multiplications: one with A and one
with AT . The block vectors R̃k and Pk are m×s matrices. For this algorithm to work,
we have to assume that (APk−1)

TAPk−1 and R̃T
k−1R̃k−1 are nonsingular. As in the
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Algorithm 4 Dubrulle-R BCGLS (DR-BCGLS)

1: input A, B, X0

2: R0 = B −AX0

3: [Q0,Σ0] = qr(ATR0)
4: S0 = Q0

5: for k = 1, . . . until convergence do
6: Yk−1 = ASk−1

7: Πk−1 = (Y T
k−1Yk−1)

−1

8: Xk = Xk−1 + Sk−1Πk−1Σk−1

9: [Qk,Ψk] = qr(Qk−1 −ATYk−1Πk−1)
10: Sk = Qk + Sk−1Ψ

T
k

11: Σk = ΨkΣk−1

12: end for

block CG case, (near) rank deficiency problems may arise and lead to instability or
breakdown.

By applying DR-BCG to the block linear system (3) we derive the DR-BCGLS
algorithm (Algorithm 4). To avoid using the matrix ATA, we introduce new block
vectors Yk = ASk, which are n× s matrices. As HS-BCGLS, the new algorithm DR-
BCGLS requires two matrix-block vector multiplications per iteration: one with A and
one with AT . Although the block coefficients Ψk may become (nearly) singular, the
columns within a block Qk remain linearly independent. As for DR-BCG, DR-BCGLS
cannot break down because ST

k−1A
TASk−1 = Y T

k−1Yk−1 is nonsingular. There is only
one economy-size QR factorization of an m× s matrix at each iteration.

Note that the residual blocks Rk are not explicitly available in Algorithm 4. We can
only reconstruct the block vectors R̃k = ATRk, using R̃k = QkΣk. It is worth noting
that the numerical stability of the algorithm can be slightly improved by performing
a QR factorization of the m × s matrix Yk−1. In this variant, lines 6, 7, and 9 of
Algorithm 4 are replaced by

[Ỹk−1, Π̃k−1] = qr(ASk−1),

Πk−1 = (Π̃T
k−1Π̃k−1)

−1,

[Qk,Ψk] = qr(Qk−1 −AT Ỹk−1(Π̃k−1Πk−1)),

respectively. In most cases, this modification has a negligible effect on the overall
convergence of the algorithm. For this reason, we adopt Algorithm 4 in our numerical
experiments. However, there are cases where this variant, which requires one additional
QR factorization, can lead to a faster convergence. We refer to this variant as DR-
BCGLS-Stab.

Let us now describe a block algorithm for least squares problems that generalizes
the LSQR algorithm [3]. The algorithm is based on the block Golub–Kahan bidiago-
nalization process [18] and was derived in [19] by S. Karimi and F. Toutounian who
introduced two variants of block LSQR. The first variant, BL-LSQR 1, minimizes
the norms of the individual columns of the block residual vector, while the second
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variant, BL-LSQR 2, minimizes the Frobenius norm of the entire block residual. The
first variant very much resembles the standard LSQR algorithm, replacing the scalar
coefficients by s× s blocks.

Algorithm 5 KT-BLSQR

1: input A, B, X0

2: [U1, β1] = qr(B −AX0)
3: [V1, α1] = qr(ATU1)
4: Set W1 = V1, Φ̄1 = β1, ρ̄1 = αT

1

5: for k = 1, 2, . . . until convergence do
6: [Uk+1, βk+1] = qr(AVk − Ukα

T
k )

7: [Vk+1, αk+1] = qr(ATUk+1 − Vkβ
T
k+1)

8:

[
GT

k ,

[
ρk
0

]]
= QR

([
ρ̄k

βk+1

])
9:

[
Φk Ωk+1

Φ̄k+1 ρ̄k+1

]
= Gk

[
Φ̄k 0
0 αT

k+1

]
10: Xk = Xk−1 +Wk

(
ρ−1
k Φk

)
11: Wk+1 = Vk+1 −Wk

(
ρ−1
k Ωk+1

)
12: end for

Algorithm 5 corresponds to the BL-LSQR 1 algorithm from [19]. We present it
in a compact form and incorporate three important modifications. First, the original
paper [19] contains a typographical error: it defines ρ̄1 as α1, omitting the transpo-
sition. Second, we allow for a nonzero initial approximation X0. Finally, unlike the
original work [19], which assumes that the matrices βi are nonsingular, we follow
Dubrulle’s approach from [12]. We assume that the QR factorizations in lines 6 and
7 are computed such that the Q-factor of size n × s has full column rank, while the
upper triangular R-factor of size s×s may be singular. This modification results in an
algorithm without deflation and with a constant block size. However, the occurrence
of breakdowns may not be fully resolved and requires a more thorough theoretical
analysis which is outside the scope of this paper. In particular, while ρk must be non-
singular whenever βk+1 is nonsingular, see line 8 in Algorithm 5, it is not clear that
ρ−1
k exists in the rank deficient case. Note that in line 8 we compute a full QR fac-

torization of a (2s) × s matrix. As a result, the Q-factor (the matrix GT
k ) is of size

(2s)× (2s), and the R-factor is of size (2s)× s. To distinguish this from the economy-
size QR factorization, we denote the procedure for computing the full QR factorization
by QR. We refer to the modified version presented in Algorithm 5 as KT-BLSQR. In
Algorithm 5, both lowercase and uppercase Greek letters are used to denote s × s
blocks. This slightly deviates from the overall notation used throughout this paper.
The reason for this choice is a limited availability of distinct uppercase Greek letters.

Note that KT-BLSQR is slightly more expensive per iteration than DR-BCGLS,
both in terms of computational cost and memory requirements. KT-BLSQR performs
two QR factorizations of block vectors per iteration, whereas DR-BCGLS requires only
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one. Additionally, KT-BLSQR must store one more block vector in memory compared
to DR-BCGLS.

Let us briefly recall the idea behind the block LSQR algorithm. As already men-
tioned, Algorithm 5 is based on the block Golub–Kahan bidiagonalization process [18].
Suppose that there are no issues with rank deficiency; that is, both αk+1 and βk+1

are nonsingular. Define the matrices

Vk = [V1, V2, . . . , Vk] , Uk = [U1, U2, . . . , Uk] ,

and the block bidiagonal matrix

Bk =


αT
1

β2 αT
2

. . .
. . .

βk αT
k

βk+1

 .

Then, the block Golub–Kahan process satisfies

AVk = Uk+1Bk, ATUk+1 = VkBT
k + Vk+1αk+1E

T
k+1, (9)

where Ek+1 = [0, 0, . . . , 0, Is]
T
is (k+1)s×s. Assuming exact arithmetic, the matrices

Vk and Uk have orthonormal columns, VT
k Vk = Iks = UT

k Uk. Moreover, from the
recurrence defining Wk (line 11) we can write

Wk = Vk +

k−1∑
i=1

ViC
(k)
i

for some s× s matrices C
(k)
i . Using the orthogonality condition V T

i Vj = δi,jIs, where
δi,j is the Kronecker delta, we easily obtain

V T
k Wk = Is and V T

k+1Wk = 0. (10)

The approximations Xk are sought in the form

Xk = X0 + VkYk, Yk ∈ R(ks)×s,

such that each column-wise residual r
(i)
k = b(i) − Ax

(i)
k , i = 1, . . . , s, has minimal

Euclidean norm. Since

Rk = B −AXk = R0 −AVkYk

= U1β1 − Uk+1BkYk

= Uk+1 (E1β1 − BkYk) , (11)

9



where E1 = [Is, 0, . . . , 0, 0]
T
is (k+1)s×s, the block vector Yk ∈ R(ks)×s is the solution

of the (block) normal equations

BT
k BkYk = BT

k E1β1. (12)

In block LSQR, this system is solved by updating the QR factorization of the extended
matrix [Bk, E1β1]; see [19] and the proof of the forthcoming Theorem 1 for more details.

We now prove that AT (B −AXk) is equal to Vk+1 multiplied by an s× s matrix.
We then identify this matrix explicitly. These relations will be used in Section 4 in the
context of error estimation.

Theorem 1 Suppose that Algorithm 5 is applied to solve the systems (3), and assume that
the block coefficients αj and βj are nonsingular for j = 1, . . . , k + 1. Then, it holds that

AT (B −AXk) = −Vk+1Ω
T
k+1Φk (13)

and
ρTk Φk = −ΩT

k Φk−1. (14)

Proof The proof of (13) follows the proof of [10, Lemma 1], using the analogous relationships
for blocks; see [19, Section 3]. From (9), (11), and (12), we get

AT (B −AXk) = ATUk+1 (E1β1 − BkYk)

=
(
VkBT

k + Vk+1αk+1E
T
k+1

)
(E1β1 − BkYk)

= Vk

(
BT
k E1β1 − BT

k BkYk

)
+ Vk+1αk+1E

T
k+1 (E1β1 − BkYk)

= Vk+1αk+1E
T
k+1 (E1β1 − BkYk) .

Using the block QR factorization

[Bk, E1β1] = QT
k

[
R̃k Fk

0 Φ̄k+1

]
(15)

and R̃kYk = Fk, we obtain

E1β1 − BkYk = QT
k

[
R̃k Fk

0 Φ̄k+1

] [
−Yk
Is

]
= QT

k

[
0

Φ̄k+1

]
.

Therefore,

AT (B −AXk) = Vk+1αk+1E
T
k+1Q

T
k

[
0

Φ̄k+1

]
. (16)

The matrix Qk in (15) is a (k + 1)s × (k + 1)s unitary matrix, which can be updated
using the previously computed ks× ks unitary matrix Qk−1 as follows

Qk =

[
I(k−1)s 0

0 Gk

] [
Qk−1 0
0 Is

]
, Q1 = G1,

where Gk ∈ R2s×2s is unitary. For ease of presentation, we partition Gk from line 8 of
Algorithm 5 into s× s blocks and rewrite lines 8 and 9 as[

ρk
0

]
=

[
α̃k β̃k
γ̃k δ̃k

] [
ρ̄k

βk+1

]
, (17)
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[
Φk Ωk+1

Φ̄k+1 ρ̄k+1

]
=

[
α̃k β̃k
γ̃k δ̃k

] [
Φ̄k 0

0 αT
k+1

]
. (18)

Observe that by considering the identity GT
k Gk = I2s and examining the (2, 1)-block, we

obtain the relation β̃T
k α̃k + δ̃Tk γ̃k = 0.

From (16), AT (B −AXk) is equal to Vk+1 multiplied by the s× s matrix

αk+1E
T
k+1Q

T
k

[
0

Φ̄k+1

]
= αk+1δ̃

T
k Φ̄k+1.

Using (18) and δ̃Tk γ̃k = −β̃T
k α̃k we obtain

αk+1δ̃
T
k Φ̄k+1 = αk+1δ̃

T
k γ̃kΦ̄k = −αk+1β̃

T
k α̃kΦ̄k = −ΩT

k+1Φk, (19)

which proves (13).
To show (14), let us multiply (17) by GT

k to obtain the relation ρ̄k = α̃T
k ρk. From (19)

for k − 1,
−ΩT

k Φk−1 = αk δ̃
T
k−1Φ̄k = ρ̄Tk Φ̄k = ρTk α̃kΦ̄k = ρTk Φk,

where we have used (18) and ρ̄k = α̃T
k ρk. □

4 Adaptive error norm estimates

Before discussing the block case, let us first recall the adaptive error estimation strate-
gies developed in [20] for CG and applied to least squares problems with a single
right-hand side in [10]. For a summary and several minor refinements, see the book [14].
We will then extend these results to the block setting.

4.1 The single-vector case

Assume that A ∈ Rn×m has full column rank. For a least squares problem of the form

min
y

∥b−Ay∥,

it is often natural to measure the quality of an approximate solution using the ATA-
norm norm of the error, as it is directly related to the residual norm being minimized.
Let b|R(A) denotes the orthogonal projection of the right-hand side b onto the range
of A, and define the residual r = b − b|R(A). This is the component of b orthogonal
to the range of A, and it corresponds to the residual associated with the least squares
solution x. Then, for the iterates xk and the corresponding residual vector rk = b−Axk,
it holds that

∥x− xk∥2ATA = ∥rk∥2 − ∥r∥2.
In the consistent case, where b ∈ R(A), the residual r vanishes, and the norm of rk
directly gives the ATA-norm of the error. However, when b ̸∈ R(A), the residual r is
nonzero, and estimating or bounding ∥x− xk∥ATA becomes more subtle. Approaches
to handle such situations, particularly for problems with a single right-hand side, have
been studied in [10].
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Note that the estimates of ∥x − xk∥ATA can be used in stopping criteria, which
often depend on the specific context or application in which the least squares problems
are solved. In particular, as discussed in [10], we may wish to stop the iterations when

∥rk∥2 − ∥r∥2

∥r∥2
≤ ε,

where ε is a user-specified tolerance. This condition is equivalent to

∥x− xk∥2ATA ≤ ε

1 + ε
∥rk∥2.

Another stopping criterion can be based on the concept of backward error; see [21].
Specifically, we may wish to stop the iterations when xk satisfies the perturbed system
of normal equations

(A+ E)T (A+ E)xk = (A+ E)T (b+ f), (20)

where E ∈ Rn×m and f ∈ Rn are small in some sense. For instance, the iterations can
be terminated when the normwise relative backward error for the system of normal
equations

ηk ≡ min
E,f

{ξ : (20) holds with
∥E∥
∥A∥

≤ ξ,
∥f∥
∥b∥

≤ ξ},

satisfies ηk ≤ ε for a user-specified tolerance ε. Unfortunately, no explicit analytical
expression for ηk is known. However, it has been shown in [21] that

ηk ≤ ∥x− xk∥ATA

∥A∥∥xk∥+ ∥b∥
,

and that this upper bound becomes asymptotically tight as xk approaches the least
squares solution; see [21, Theorem 5.2]. Therefore, instead of the idealized stopping
criterion ηk ≤ ε , one may use the stricter, computable criterion

∥x− xk∥ATA

∥A∥∥xk∥+ ∥b∥
≤ ε,

where both ∥x − xk∥ATA and ∥A∥ are replaced by their respective estimates. Note
that ∥A∥ can be efficiently estimated during the solution process; see [14, Section 5.3].
More generally, one can consider the criterion

∥x− xk∥ATA ≤ α∥A∥∥xk∥+ β∥b∥,

where 0 ≤ α, β ≪ 1 are prescribed tolerances; see [21, 22].
Let us now focus on techniques to estimate the ATA-norm of the error. Building

on earlier results from [14, 20] on adaptive error estimation in the conjugate gradient
method, an analogous strategy for the CGLS and LSQR algorithms was proposed
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in [10]. In more detail, the adaptive estimation exploits a computable quantity that
captures the reduction in the squared ATA-norm of the error between consecutive
iterations. Specifically, we use the identity

∥x− xk−1∥2ATA − ∥x− xk∥2ATA = θk−1,

and θk−1 is easily computable in both CGLS and LSQR, which yields

∥x− xℓ∥2ATA = θℓ:k−1 + ∥x− xk∥2ATA, θℓ:k−1 ≡
k−1∑
j=ℓ

θj , (21)

for 0 ≤ ℓ < k. Given a prescribed tolerance τ ∈ (0, 1) (typically τ = 0.25), the goal
of the adaptive error estimation strategy is to determine the largest index ℓ, with
0 ≤ ℓ < k, such that

∥x− xk∥2ATA

∥x− xℓ∥2ATA

=
∥x− xℓ∥2ATA − θℓ:k−1

∥x− xℓ∥2ATA

≤ τ, (22)

i.e., such that the relative accuracy of the estimate θℓ:k−1 does not exceed the pre-
scribed tolerance. From the previous discussion, it is clear that θℓ:k−1 yields a lower
bound for ∥x− xℓ∥2ATA. We also observe that inequality (22) is equivalent to

∥x− xℓ∥2ATA ≤ θℓ:k−1

1− τ
.

This implies that whenever (22) is satisfied, we also obtain an upper bound on the
ATA-norm of the error.

Using (21), the numerator in (22) corresponds to the squared ATA-norm of the
error at iteration k. Thus, our goal is to find the (largest possible) index ℓ such that
the squared ATA-norm of the error has sufficiently decreased from iteration ℓ to itera-
tion k. To approach this goal, we first replace the original criterion (22) with a stricter
but more tractable one:

∥x− xk∥2ATA

∥x− xℓ∥2ATA

<
∥x− xk−1∥2ATA

∥x− xℓ∥2ATA

≤ τ.

The idea used in [14, 20] is to replace both the numerator ∥x−xk−1∥2ATA and denom-
inator ∥x − xℓ∥2ATA in the criterion with suitable bounds. For the denominator, we
use the lower bound θℓ:k−1. An upper bound for the numerator is not easily available.
Therefore, we introduce a safety factor Sk−1 that should satisfy

∥x− xk−1∥2ATA ≤ Sk−1θk−1.

13



Then, we choose ℓ as the largest index such that

Sk−1θk−1

θℓ:k−1
≤ τ. (23)

It remains to explain how to heuristically determine Sk−1. We define it as

Sk−1 = max
p≤j≤k−1

θj:k−1

θj
.

For a given i, the integer p is the largest integer satisfying

θj:k−1

θp:k−1
≤ 10−4.

The choice of p is done to only use information from the latest iterations that caused
a significant decrease of the square of the error norm. The adaptive strategy aims at
keeping the delay as small as possible. For a detailed description and derivation, we
refer the reader to [10, 14, 20].

Algorithm 6 adaptive

1: input k, d, ℓ, {θj}k−1
j=0 , τ , h

2: if k = 0 then
3: d = 0; ℓ = 0; h = [ ]; return
4: end if
5: set p as the largest index j, 0 ≤ j < k − 1, such that

θℓ:k−1

θj:k−1
≤ 10−4

if such an p does not exist, set p = 0
6: determine

S = max
p≤j<k−1

θj:k−1/θj

7: while (d ≥ 0 and Sθk−1/θℓ:k−2 ≤ τ) do

8: hℓ = θ
1/2
ℓ:k−1

9: ℓ = ℓ+ 1, d = d− 1
10: end while
11: d = d+ 1
12: output d, ℓ, h

In [10, Algorithm 2] we present a function named adaptive, which implements the
above error estimation strategy and can be used in any iterative algorithm that com-
putes the quantities θk. A MATLAB implementation of this function is available in the
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GitHub repository1. Here, in Algorithm 6, we provide a slightly modified version of the
function from [10], adapted to be more consistent with the MATLAB implementation
available in the repository.

Before starting the iterative process, we initialize the quantities required for
adaptive error estimation by calling [d, ℓ, h] = adaptive(0). Subsequently, the function

[d, ℓ, h] = adaptive(k, d, ℓ, {θj}k−1
j=0 , τ, h)

should be called within the main loop of the algorithm, after the scalar θk−1 has been
computed. The function adaptive takes as an input the current iteration index k, the
indices d and ℓ determined in the previous iteration k − 1, the vector of scalars θj ,
j = 0, . . . , k − 1, the prescribed tolerance τ (as introduced in (22)), and the vector h,
which stores the adaptive estimates of the ATA-norm of the error. The function returns
updated values of d, ℓ, and the vector h. The indices d and ℓ may either remain
unchanged or be updated. If the returned value is ℓ = 0, it indicates that no adaptive
estimate has yet been determined, i.e., the current iteration k is not large enough for
the criterion (22) to be heuristically satisfied for any ℓ ≥ 0. If ℓ > 0, then

hℓ−1 ≈ ∥x− xℓ−1∥ATA

provides an adaptive estimate of ∥x− xℓ−1∥ATA.
The case of the Gauss–Radau upper bound is easier to handle; see [14, Section 8.2].

In analogy with the approach described above, we define

θ
(µ)
ℓ:k = θℓ:k−1 + θ

(µ)
k ,

where θ
(µ)
k can be updated by the scalar version of the formula (7). Our goal is to

ensure that
θ
(µ)
ℓ:k − ∥x− xℓ∥2ATA

∥x− xℓ∥2ATA

≤ τ.

As shown in [14, p. 87], it is sufficient to choose ℓ as the largest integer such that

θ
(µ)
k

θℓ:k−1
≤ τ.

4.2 The block case

The formulas for the bounds derived in [14] and recalled in Section 2 for HS-BCG
and DR-BCG depend only on the residual blocks and the block coefficients, and not
directly on the matrix or the right-hand sides. Therefore, they can also be used for
HS-BCGLS and DR-BCGLS without any modification.

Let us denote
Ek = (X −Xk)

TATA(X −Xk).

1https://github.com/JanPapez/CGlike-methods-with-error-estimate
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Analogously to the block CG algorithms (Section 2), we define the s× s matrices

Θk−1 = Ek−1 − Ek and Rk = (B −AXk)
TAAT (B −AXk), (24)

which will be used for error estimation. We will show that both of these matrices are
readily computable within all of the considered block algorithms, as follows:

(HS-BCGLS) Θk−1 = (R̃T
k−1R̃k−1)Υk−1,

(DR-BCGLS) Θk−1 = ΣT
k−1Πk−1Σk−1,

(KT-BLSQR) Θk−1 = ΦT
kΦk,

and

(HS-BCGLS) Rk = R̃T
k R̃k,

(DR-BCGLS) Rk = ΣT
kΣk,

(KT-BLSQR) Rk = ΦT
kΩk+1Ω

T
k+1Φk.

The proof for HS-BCGLS and DR-BCGLS is straightforward. For KT-BLSQR, we
build on Theorem 1, and, analogously to [10, Lemma 1], establish the following result.

Theorem 2 Suppose that Algorithm 5 is applied to solve the systems (3), and assume that
the block coefficients αj and βj are nonsingular for j = 1, . . . , k+1. Then, the matrices Θk−1

and Rk defined by (24) can be computed as

Θk−1 = ΦT
k Φk and Rk = ΦT

k Ωk+1Ω
T
k+1Φk. (25)

Proof The expression for Rk follows immediately from (13) and V T
k+1Vk+1 = Is.

We now focus on the matrix Θk−1 = Ek−1 −Ek. Using a simple algebraic manipulation,
Θk−1 can be written as

Θk−1 = (Xk −Xk−1)
TATA(X −Xk−1) + (Xk −Xk−1)

TATA(X −Xk).

If βk+1 is nonsingular, ρk is also nonsingular, and from the update formula for Xk (see line 10
in Algorithm 5), we have

Xk −Xk−1 = Wkρ
−1
k Φk.

Furthermore, using ATA(X −Xk) = AT (B −AXk), (13), and (14) we obtain

ATA(X −Xk) = −Vk+1Ω
T
k+1Φk,

ATA(X −Xk−1) = Vkρ
T
k Φk.

Substituting into the expression for Θk−1, and using (10), we get

Θk−1 = ΦT
k ρ

−T
k WT

k

(
Vkρ

T
k Φk − Vk+1Ω

T
k+1Φk

)
= ΦT

k Φk,

which finishes the proof. □
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The matrices Θk−1 andRk play a key role both in the computation of lower bounds
and in the recursive evaluation of Gauss–Radau upper bounds in the block setting. To
get the Gauss-Radau upper bounds, we need to update the block coefficient denoted

now as Θ
(µ)
k using an analogue of the formula (7),

Θ
(µ)
k = Rk [µ(Θ

(µ)
k−1 −Θk−1) +Rk]

−1 (Θ
(µ)
k−1 −Θk−1),

where Θ
(µ)
0 = R0/µ.

Since all the quantities required for error estimation in the block case are available

on the diagonals of the block coefficient Θk−1 and Θ
(µ)
k , we can apply the results from

the single-vector case to each individual system. As before, let us index the individual
systems by i, i = 1, . . . , s.

For the adaptive lower bounds, each system will have its own individual indices

d(i), ℓ(i), and vector h(i). Denoting θ
(i)
j ≡ [Θj ]i,i, i.e., the (i, i)-entry on the diagonal

of Θj , the adaptive lower bound for the ith system can be updated using the call

[d(i), ℓ(i), h(i)] = adaptive(k, d(i), ℓ(i), {θ(i)j }k−1
j=0 , τ, h

(i)),

employing the same function adaptive as defined in Algorithm 6.
Analogously, we can determine the adaptive Gauss–Radau upper bounds for each

individual system. More precisely, let us define

θ
(µ,i)
k =

[
Θ

(µ)
k

]
i,i

, θ
(i)
ℓ:k−1 =

k−1∑
j=ℓ

θ
(i)
j .

Then, for the ith system, we choose the index ℓ(µ,i) as the largest integer satisfying

θ
(µ,i)
k

θ
(i)

ℓ(µ,i):k−1

≤ τ.

In summary, for each linear system, we can compute two adaptive delays: one
associated with the Gauss lower bound and another one with the Gauss–Radau upper
bound.

Instead of treating each system individually, one may compute adaptive delays
based on the trace of Ek, thereby providing a global measure of convergence across all
systems. Define

θ
(µ)
k =

s∑
i=1

θ
(µ,i)
k , θj =

s∑
i=1

θ
(i)
j , θℓ:k−1 =

k−1∑
j=ℓ

θj ,

and update the adaptive trace lower bound using

[d, ℓ, h] = adaptive(k, d, ℓ, {θj}k−1
j=0 , τ, h).
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For the adaptive trace upper bounds, we choose the index ℓ(µ) as the largest integer
satisfying

θ
(µ)
k

θℓ(µ):k−1

≤ τ.

5 Preconditioning

In many practical problems, the matrices ATA are badly conditioned, and precondi-
tioning is necessary to ensure an efficient convergence; see, e.g., [23], [16, Sect. 7.5],
[24], [25]. We focus on the class of split preconditioners for the normal equations, which
formally transform the system (3) into(

L−1ATAL−T
)(
LTX

)
= L−1ATB,

where L ∈ Rm×m is a given nonsingular matrix. We assume that linear systems with
L and LT can be solved efficiently. Typical examples of split preconditioners include
incomplete factorizations of the matrix ATA. Efficient implementations that avoid
explicitly forming ATA are available; see, e.g., the routine HSL MI35 from the HSL
library2, which is a collection of Fortran codes for large-scale scientific computation.

The transformed system can be written in the form

ÂT ÂX̂ = ÂTB, (26)

where Â = AL−T and X̂ = LTX. All block algorithms considered in Section 3
can then be formally applied to this preconditioned system (26), generating approxi-

mate solutions X̂k. Using the relation between X̂ and X, we define the corresponding
approximate solutions to the original problem asXk = L−T X̂k. Note that, analogously
to the single-vector case, the following identity holds:

(X̂ − X̂k)
T ÂT Â(X̂ − X̂k) = (X −Xk)

TATA(X −Xk).

This implies that the error estimation techniques discussed in the previous section
remain directly applicable in the preconditioned setting, using the block coefficients
computed within the preconditioned algorithms.

In the following, we present the preconditioned versions of the algorithms dis-
cussed in Section 3. The preconditioned HS-BCGLS algorithm is given as Algorithm 7,
preconditioned DR-BCGLS as Algorithm 8, and preconditioned KT-BLSQR as Algo-
rithm 9. In these three algorithms there are one solve of a linear system with L and
one with LT in every iteration.

In each algorithm, we indicate with arrows the lines where the coefficient matrices
Rj (j = 0, . . . , k) and Θj (j = 0, . . . , k− 1), are computed. As before, if Gauss–Radau

upper bounds are desired, the coefficient matrix Θ
(µ)
j (j = 0, . . . , k) can be computed

using the recurrence formula (7). The diagonal entries of these matrices can then be
used in the adaptive error estimation techniques described in Section 4.

2http://www.hsl.rl.ac.uk/
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Algorithm 7 Preconditioned HS-BCGLS (HS-PBCGLS)

1: input A, B, X0, L, µ
2: R0 = B −AX0

3: R̃0 = ATR0

4: Z0 = L−TL−1R̃0, P0 = Z0

5: → R0 = R̃T
0 Z0

6: for k = 1, . . . until convergence do
7: Υk−1 = [(APk−1)

TAPk−1]
−1(R̃T

k−1Zk−1)
8: Xk = Xk−1 + Pk−1Υk−1

9: Rk = Rk−1 −APk−1Υk−1

10: R̃k = ATRk

11: Zk = L−TL−1R̃k

12: Ξk = (R̃T
k−1Zk−1)

−1(R̃T
k Zk)

13: Pk = Zk + Pk−1Ξk

14: → Θk−1 = Rk−1Υk−1, Rk = R̃T
k Zk

15: end for

Algorithm 8 Preconditioned Dubrulle-R BCGLS (DR-PBCGLS)

1: input A, B, X0, L, µ
2: R0 = B −AX0

3: [Q0,Σ0] = qr(L−1ATR0)
4: S0 = L−TQ0

5: → R0 = ΣT
0 Σ0

6: for k = 1, . . . until convergence do
7: Yk−1 = ASk−1

8: Πk−1 = (Y T
k−1Yk−1)

−1

9: Xk = Xk−1 + Sk−1Πk−1Σk−1

10: [Qk,Ψk] = qr(Qk−1 − L−1ATYk−1Πk−1)
11: Sk = L−TQk + Sk−1Ψ

T
k

12: Σk = ΨkΣk−1

13: → Θk−1 = ΣT
k−1Πk−1Σk−1, Rk = ΣT

kΣk

14: end for

6 Numerical experiments

In this section we describe numerical experiments comparing various algorithms for
solving block least squares problems and experiments on bounding the associated
errors. The experiments are performed in MATLAB R2023b with our implementation
of the algorithms. The scripts for the algorithms and the experiments performed below
are freely available from the GitHub repository [26].
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Algorithm 9 Preconditioned KT-BLSQR (KT-PBLSQR)

1: input A, B, L, µ
2: X̂0 = 0
3: [U1, β1] = qr(B)
4: [V1, α1] = qr(L−1ATU1)
5: W1 = V1, ϕ̄1 = β1, ρ̄1 = αT

1

6: → R0 = βT
1 α

T
1 α1β1

7: for k = 1, 2, . . . until convergence do
8: [Uk+1, βk+1] = qr(AL−TVk − Ukα

T
k )

9: [Vk+1, αk+1] = qr(L−1ATUk+1 − Vkβ
T
k+1)

10:

[
GT

k ,

[
ρk
0

]]
= QR

([
ρ̄k

βk+1

])
11:

[
Φk Ωk+1

Φ̄k+1 ρ̄k+1

]
= Gk

[
Φ̄k 0
0 αT

k+1

]
12: X̂k = X̂k−1 +Wk

(
ρ−1
k Φk

)
13: Wk+1 = Vk+1 −Wk

(
ρ−1
k Ωk+1

)
14: → Θk−1 = ΦT

kΦk, Rk = ΦT
kΩk+1Ω

T
k+1Φk

15: end for
16: Xk = L−T X̂k

As a measure of convergence, we consider the quantity

τk =
√

trace(Ek) =
√

trace((X −Xk)TATA(X −Xk)). (27)

All algorithms are initialized with X0 = 0. Unless otherwise specified, the exact
solution X is tightly approximated using MATLAB’s backslash operator.

6.1 Comparison of the three algorithms

Let us start with an example for which HS-BCGLS does not have difficulties to con-
verge. We use the full-rank sparse matrix illc1850 from the SuiteSparse Matrix
collection3. This matrix is 1850 × 712 with 8, 636 nonzero entries, κ(A) ≈ 1.4 × 103,
and a smallest singular value which is 1.511378× 10−3. The right-hand side matrix B
has two random columns generated using the MATLAB randn command.

For this problem, as shown in Figure 1, the three algorithms converge similarly,
even though DR-BCGLS and KT-BLSQR are slightly faster than HS-BCGLS.

Let us now consider examples for which HS-BCGLS has convergence problems.
Matrices P (n,m, d, p) were defined by Paige and Saunders [3, p. 62] for testing least
squares algorithms. We use P (80, 40, 1, 3) which is a 80 × 40 matrix with κ(A) =
6.4× 104. Let A = USV T be the economy-size SVD of A. The block right-hand side
B with four columns (s = 4) is computed as

B̃ = US−1K,

3https://sparse.tamu.edu/HB/illc1850
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Fig. 1 The quantity τk in (27) for the three algorithms and the matrix illc1850

where K is a 40 × 4 random matrix computed with the MATLAB randn function
after setting rng(’default’). Then, B is obtained by normalizing the columns of B̃.
The matrix B is of full rank with a smallest singular value which is approximately
5.9782×10−2. In Figure 2, we see that HS-BCGLS starts to converge, then slows down
after iteration 20, and finally stagnates after iteration 35. DR-BCGLS and KT-BLSQR
both converge quite similarly around iterations 13-14 and give more or less the same
final accuracy, which is many orders of magnitude better than that of HS-BCGLS.
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Fig. 2 The quantity τk in (27) for the three algorithms and the matrix P (80, 40, 1, 3)
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6.2 An example with initial deficiency

In the next experiment, we use the same matrix P (80, 40, 1, 3), but the right-hand side
is computed as

B̃ = US−1

((
1 1 0
1 0 1

)
⊗ e

)
,

with e = [1, . . . , 1]T ∈ Rm/2. Then, as above, B is obtained by normalizing the columns

of B̃. In this example, we have three columns in the block right-hand side B, but its
rank is only 2. Figure 3 shows that HS-BCGLS stagnates from the beginning, when
DR-BCGLS and KT-BLSQR converge after an initial stagnation phase. The initial
rank deficiency does not prevent their convergence.
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10
-5

10
0

HS-BCGLS

DR-BCGLS

KT-BLSQR

Fig. 3 The quantity τk in (27) for the three algorithms with initial rank deficiency and the matrix
P (80, 40, 1, 3)

In this example, the second system converges fast while the first and third systems
converge more slowly. Figure 4 shows the ATA-norms of the error for the first and sec-
ond systems solved using DR-BCGLS and KT-BLSQR. Clearly, these two algorithms
are not affected by the differences in convergence speed between the various systems.

These two examples show that there are cases for which HS-BCGLS does not
converge or converges slowly and could stagnate before delivering accurate approxi-
mations to the solutions. From now on, we therefore only concentrate on DR-BCGLS
and KT-BLSQR.

6.3 A polynomial fitting problem

We now describe a simple polynomial fitting problem that will later be used to test the
algorithms. Suppose we are given distinct points xi, i = 1, . . . , n, in the interval [−1, 1],
and let m < n be a given integer. We observe the values of functions fj , j = 1, . . . , s,
at these points xi, and our goal is to find polynomial approximations that best fit
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Fig. 4 ATA-norms of the errors for the first (right curves) and second systems (left curves) for
DR-BCGLS (dashed) and KT-BLSQR (dot-dashed) with initial rank deficiency and the matrix
P (80, 40, 1, 3)

these values in the least squares sense. Using the basis of Chebyshev polynomials, we
seek polynomials pm,j of degree m,

pm,j(x) =
m∑
i=0

αi,jCi(x),

where Ci is the i-th Chebyshev polynomial, such thatf1(x1) . . . fs(x1)
...

f1(xn) . . . fs(xn)

 ≈ A

 α0,1 . . . α0,1

...
αm−1,1 . . . αm−1,2

 ,

with an n×m matrix

A =

C0(x1) . . . Cm(x1)
...

C0(xn) . . . Cm(xn)

 .

In our experiments, we choose equispaced points and consider the example functions

fj(x) =
cos(4jx)

1 + 0.1 sin(1000x)2
, j = 1, . . . , s.

To approximate these functions uniformly in Chebfun [27], we would require polyno-
mials of degree several thousands. However, to approximate only the basic shapes,
given by the terms cos(4jx), it suffices to use polynomials of relatively low degrees,
such as 20, 30, 40, and 50.
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6.4 Computation of upper bounds

In the experiments of this subsection we test the upper bound in block algorithms.
As discussed in Section 4.2, the error norms in solving individual systems can be
estimated as well as the trace quantity τk in (27). Due to space limitations, we present
here only the results for τk. The codes, however, allow to also compute bounds of the
error norms for individual systems.

For these experiments, we consider two test problems: the polynomial fitting prob-
lem described in Section 6.3, and the matrix sls of size 1, 748, 122 × 62, 729 with
6, 804, 304 nonzero entries from the SuiteSparse Matrix collection4 preconditioned
using an incomplete factorization computed with the HSL MI35 code from the HSL
library5. The right-hand sides for sls are generated as follows. The first right-hand
side is computed as in [10, Sect. 6], i.e.,

x = ones(size(A,2) ,1);

x(2:2: end) = -2;

x(5:5: end) = 0;

b_tmp = A * x;

b_1 = b_tmp + randn(size(b_tmp)) * norm(b_tmp);

b_1 = b_1/norm(b_1);

The second, consistent, right-hand side is given as

b_2 = -5 * A(:,5) + 7 * A(:,10); b_2 = b_2/norm(b_2);

When we set s = 4 in the experiments, the third and fourth right-hand sides are
generated with random entries (MATLAB randn function) and normalized to 1.

As above, for the polynomial fitting problem, the exact solution X, only needed
to evaluate the error X −Xk, is computed using MATLAB’s backslash operator. For
the tests with the matrix sls, X is computed using a large number of KT-BLSQR
iterations.

To compute the upper bound, we need a lower bound of the smallest eigenvalue
of ATA. For the polynomial fitting problem, we do not consider preconditioning and
compute an approximation to the smallest singular value σmin(A) of the matrix A by
MATLAB svds function. The parameter µ, a lower bound on λmin(A

TA) = σ2
min(A),

is given as

µ1 = σ2
min(A)(1− 10−4) and µ2 = σ2

min(A)(1− 10−10). (28)

For the choice of parameters n = 3000, m = 50, we have σ2
min(A) = 78.6711. When

setting n = 3000, m = 300, we get σ2
min(A) = 7.4086× 10−7.

For the preconditioned sls matrix, the parameter µ = 6×10−4 is set as the largest
value (with an increment 10−5) such that the upper bound can be computed in all
iterations.6

4https://sparse.tamu.edu/Bates/sls
5http://www.hsl.rl.ac.uk/
6In other words, the upper bound with µ = 6.1× 10−4 failed in some iterations. This typically indicates

that 6.1 × 10−4 > λmin(Â
T Â).
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In our experiments, the bounds behave very similarly for both DR-BCGLS and
KT-BLSQR. We therefore only show the results for one of the algorithms in each of
the experiments.

0 5 10 15 20
10

-15

10
-10

10
-5

10
0

10
5

error

UB (1-1e-10)

UB (1-1e-4)

0 2 4 6 8 10 12
10

-15

10
-10

10
-5

10
0

10
5

error

UB (1-1e-10)

UB (1-1e-4)

Fig. 5 DR-BCGLS: The quantity τk in (27) for the polynomial fitting problem with parameters
n = 3000, m = 50, and s = 2 (left) and with s = 4 (right) together with its upper bounds for two
choices of µ
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Fig. 6 KT-BLSQR: The quantity τk in (27) for the polynomial fitting problem with parameters
n = 3000, m = 300, and s = 2 (left) and with s = 4 (right) together with its upper bounds for two
choices of µ

Figure 5 depicts the results for the polynomial fitting problem with parameters
n = 3000, m = 50, and s = 2, 4 and DR-BCGLS. The upper bounds are quite close
to the measure of the error τk in (27), at least, as long as the maximum attainable
accuracy has not been reached. They do not depend much on the chosen values of µ.

Results with a more difficult problem (from the perspective of error estimation)
with n = 3000, m = 300, s = 2, 4, and KT-BLSQR are displayed in Figure 6. For this
problem, the upper bounds are far from being sharp. Moreover, in some iterations,
the upper bound for the parameter µ2 is not computed due to a numerical singularity
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of the matrix µ(Θ
(µ)
k−1 − Θk−1) +Rk. A similar behavior —where the bound initially

overestimates the error, becomes tight for a few iterations, and then diverges again—
has been observed in both single-system and block CG methods; see, e.g., [28, Sect. 4],
[9, Fig. 9.3].
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Fig. 7 DR-PBCGLS: The quantity τk in (27) for the matrix sls with s = 2 (left) and with s = 4
(right) together with its upper bound with µ = 6× 10−4

For the sls matrix the results for DR-PBCGLS are displayed in Figure 7. The
bound is tight for a few iterations around 22nd, respectively 19th iterations. How-
ever, in most of the iterations, the upper bound overestimates the error by around
two orders of magnitude. The overestimation of the upper bound can be reduced (or
nearly removed) by considering the adaptivity described at the end Section 4.2, which
will be tested in the upcoming section for the lower bound. The codes on GitHub
repository [26] also include the adaptive upper bound.

6.5 Computation of lower bounds with adaptivity

Finally, we test the computation of a lower bound on τk in (27) with an adaptive
choice of the delay. We consider the same test problems as in the previous section. In
the figures, we plot analogous quantities as in [10, 20], i.e., τk with the lower bound in
the upper panel, the prescribed relative tolerance τ = 0.25 from the block analogue to
(22) together with the relative error (middle panel) and the adaptive delay together
with the ideal value, that is, the minimal value that assures (22), in the lower panel.

Figure 8 depicts the results for the polynomial fitting problem with parameters
n = 3000, m = 50, s = 2, 4, and KT-BLSQR. The results with n = 3000, m =
300, and s = 2, 4 are given in Figure 9 with DR-BCGLS. Therein, we observe an
underestimation of the error from the 10th to 20th iterations where the error τk starts
to stagnate. However, in the later iterations where one might want to stop the solver,
the error τk is tightly estimated with a nearly ideal delay.

For the matrix sls, the results are given in Figure 10. Here also, we observe some
(mild) underestimation of the error τk in some iterations at the beginning of the
stagnation phase but for most of the iterations, the adaptively chosen delay is close
to the ideal value and τk is tightly estimated.
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Fig. 8 KT-BLSQR: The quantity τk in (27) for the polynomial fitting problem with parameters
n = 3000, m = 50, and s = 2 (left) and with s = 4 (right) together with the adaptive lower bound
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Fig. 9 DR-BCGLS: The quantity τk in (27) for polynomial fitting problem with parameters n =
3000, m = 300, and s = 2 (left) and with s = 4 (right) together with the adaptive lower bound

Overall, the lower bound with an adaptive choice of the delay provides very sat-
isfactory results, as it enables tight error estimates in most iterations with a nearly
optimal delay. Therefore, we could recommend its use for stopping the iterations of
the solvers.
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7 Conclusions

In this paper, we introduced two algorithms, DR-BCGLS and KT-BLSQR, which
are suitable for efficiently solving least squares problems with multiple right-hand
sides. These algorithms can be viewed as generalizations of the classical CGLS and
LSQR algorithms to the block case. A key ingredient of both algorithms is the use of
what we refer to as Dubrulle’s approach, which maintains a constant block size and
prevents breakdowns even in rank-deficient situations. As a result, no complicated
deflation techniques are needed, and the algorithms remain simple and easy to imple-
ment. Numerical experiments with rank-deficient block right-hand sides confirmed
these expectations.

We have shown how to estimate an important quantity: the ATA-norm of the
error. This quantity serves as a useful measure of the solution’s progress and plays
a key role in stopping criteria based on the normwise backward error for the normal
equations. Building on our previous work on error estimation in CG [14, 20], CG-
like methods [10], and block CG algorithms [9], we derived both lower and upper
bounds for the ATA-norm of the error individually for each system and for the trace
of the associated bilinear form. We demonstrated how these bounds can be adaptively
refined to produce estimates that heuristically attain a prescribed level of accuracy.
These estimates can then be incorporated into practical stopping criteria. Numerical
experiments confirm that the adaptive techniques perform quite well in practice.

To avoid theoretical complications, we assumed that A has full column rank. How-
ever, our experiments indicate that the considered algorithms perform reliably even
when A is rank-deficient. Further analyses and a deeper understanding of the behav-
ior of the considered algorithms that use Dubrulle’s approach – both in exact and
finite-precision arithmetic – remain topics for future investigations.
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