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One of the most powerful tools for solving large and sparse systetireaf algebraic equa-
tions is a class of iterative methods called Krylov subspace methods. Sipeificant ad-
vantages like low memory requirements and good approximation propertike them very
popular, and they are widely used in applications throughout sciencerajideering. The
use of the Krylov subspaces in iterative methods for linear systems isoeeeted among
the “Top 10" algorithmic ideas of the 20th century. Convergence anabyslsese methods
is not only of a great theoretical importance but it can also help to armwaetically relevant
questions about improving the performance of these methods. Asome thte question about
the convergence behavior leads to complicated nonlinear problempit®ie¢ense research
efforts, these problems are not well understood in some cases. cahefghis survey is to
summarize known convergence results for three well-known Kryltwggace methods (CG,
MINRES and GMRES) and to formulate open questions in this area.
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1 Introduction

Krylov subspace methods represent one of the most imparasges of iterative methods for
solving linear algebraic systems. Their main common inigrgidare the Krylov subspaces,
which are spanned by the initial residual and by vectors &ty repeated multiplication
of the initial residual by the system matrix. These subspéicst appeared in a paper by the
Russian scientist and navy general Aleksei Nikolaevichldtry1863—1945), published in
1931 [44]. Motivated by an application in naval science, [&wwas interested in analyzing
oscillations of mechanical systems, and proposed a metiratbfnputing the minimal poly-
nomial of a given matrix (see, e.g., [21, Section 42], [25after VII], or [38, Chapter 6]
for detailed accounts of Krylov's method). Independenfi)Koylov's work, the first Krylov
subspace methods for solving linear algebraic systemsaaggpdéwo decades later with the
publication of the conjugate gradient (CG) method for h&emipositive definite matrices by
Hestenes and Stiefel [36], and the closely related methedslaped by Lanczos [45, 46].
Driven by the need to solve linear systems of vastly increpadimension and the accompa-
nying rapid development of computational resources, tiegv subspace methods were
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4 J. Liesen and P. Tigh Analysis of Krylov Subspace Methods

used in many applications, particularly in the engineedogmunity. In the numerical linear
algebra community, the potential of Krylov subspace mesheas fully recognized only after
an influential paper of Reid appeared in 1971 [58]. Subsettyi@umerous additional Krylov
subspace methods were developed, with focus on indefinitxanhermitian matrices. To-
day, the use of the Krylov subspaces in iterative methodirfear systems is counted among
the “Top 10" algorithmic ideas of the 20th century [10]. Orfetlee main reasons for this
success is that the Krylov subspaces can be build up usiygaduinction that computes the
multiplication of the system matrix and a vector, so thatshstem matrix itself never has to
be formed or stored explicitly. Hence Krylov subspace meashare particularly well suited
for application to large and sparse linear systems, whidhyt@re commonplace throughout
applications in science and engineering.

Mathematically, Krylov subspace methods are based on gfojemethods. Instead of
solving the potentially very large linear system, the ide#oi approximate the systems’ so-
lution from Krylov subspaces of small dimension. The goath& convergence analysis of
these methods is escribe the convergence of this process in terms of ingatafahe given
problem i.e. in dependence on properties of the system matrix,dihe nand side vector and
the initial guess. Understanding the convergence of Krglavspace methods is particularly
important to answer the practically relevant questions tmaccelerate the convergence (in
particular how to precondition the system), and how to chqustential restart parameters.

The goal of this paper is to survey the known theory of coreecg of Krylov subspace
methods that are based on two basic types of projection migthamely the Galerkin (orthog-
onal residual (OR)) method and the minimal residual (MR)hodt Both types of methods
have been implemented in various commonly used algoritim&xample of the OR Krylov
subspace method is the CG method [36] for hermitian positafaite matrices. Implemen-
tations of the MR Krylov subspace method are the MINRES nfls6] for nonsingular
hermitian indefinite matrices and the GMRES method [62] femeyal nonsingular matrices.
The distinction between OR and MR methods made in this papeoti new. In fact it has
been extensively used in the past to derive relations betteeconvergence quantities (e.g.
error or residual norms) of different methods, see, e.@, 14, 37]. Here our focus is on
giving bounds for the convergence quantities of each mesbpdrately.

For normal system matriced, the (worst-case) convergence behavior of CG, MINRES
and GMRES is completely determined by the spectrum.of he convergence analysis then
reduces to analyzing a certain min-max approximation gmobbn the matrix eigenvalues.
In the nonnormal case, however, the convergence behavibedEMRES method may not
be related to the eigenvalues at all. As a consequence, ptbperties of the input data
must be considered to describe the convergence. Desmtesmefforts to identify descriptive
properties, understanding the convergence of GMRES in ¢#mergl nonnormal case still
remains a largely open problem.

After a brief introduction to the mathematical backgrouridoylov subspace methods
(Section 2), we survey in Section 3 the theory of convergarfdbese methods. We dis-
tinguish between the normal (Section 3.1) and the nonno(8etdtion 3.2) case. Section 4
contains concluding remarks. We point out that all convecgeresults we state in this paper
were derived assuming exact arithmetic. A recent survei@htimerical stability of Krylov
subspace methods that also discusses effects of finitesfmearithmetic on the convergence
is given in [65].
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2 Krylov subspace methods

In this section we briefly describe the mathematical baakggmf the Krylov subspace meth-
ods for solving linear algebraic systems of the form

Az = b, 1)

whereA is a real or complex nonsinguldf by N matrix, andb is a real or complex vector of
length N. Suppose that is an initial guess for the solution, and define the initial residual
ro = b— Axy. As shown originally by Saad [59, 60] (see his book [61] foumsary), Krylov
subspace methods can be derived from the follovarggection method The nth iteratex,,,
n=1,2,...,is of the form

Ty € $O+Sna (2)

wheresS,, is somen-dimensional space, called the search space. Because nfdbgrees
of freedom,n constraints are required to make unique. This is done by choosing an

dimensional spacé,,, called the constraints space, and by requiring thatitheresidual is
orthogonal to that space, i.e.,

rp, = b—Ax, € rq+ AS,, r, L C,. 3)

Orthogonality here is meant in the Euclidean inner produttsimilar type of projection
process appears in many areas of mathematics. As an exaiop$ider the Petrov-Galerkin
framework in the context of the finite element method for diizing partial differential equa-
tions, see e.g. [57, Chapter 5]. There the notions of testr@adpaces correspond to search
and constraints spaces in (2)—(3).

In this paper we concentrate on the projection method (28 two basic relations be-
tweens,, andC,,, that to our mind are among the most important ones:

Cn=5n (Galerkin method) 4)
C, =AS, (Minimal residual method) . (5)

The Galerkin and the minimal residual (MR) method are cadle€irylov subspace method
when the so-called Krylov subspadés (A, o) are used as search spaces, i.e.

S, = Kn(A,ro) = sparrg, Arg,..., A" trg}, n=1,2,.... (6)

Using these spaces in the Galerkin method, we construduasir,, = b — Ax,, that are
orthogonal to all previous residuats_, ..., 7. That is why, in the context of Krylov sub-
spaces, the Galerkin method is often called orthogonadues{OR) method.

There are many possible choices of Krylov subspaces andvidméants (e.gAK,, (A, 7o),
Ko (AH rg), AHK, (A ry), etc.) in the projection process (2)—(3). This fact cetyain
contributes to the overabundant supply of these method® mdte that for each mathematical
description there may be several different implementattbat in exact arithmetic satisfy (2)—
(3) for given search and constraint spaces, but that masrdiiftheir finite precision behavior.
Particularly comprehensive and systematic surveys ofiegi&rylov subspace methods can
be found in [4, 9] and [14].
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6 J. Liesen and P. Tigh Analysis of Krylov Subspace Methods

The Krylov subspaces form a nested sequence that ends withspace of maximal di-
mensiond = dim Ky (4, 79), I.€.,

’Cl(A,To) Cc---C ICd(A,T()) == ’CN(A,T'()).

The number of steps of the OR/MR Krylov subspace method igdahby the maximal Krylov
subspace dimensiah We say that a projection procds®aks dowrin stepn if no iteratex,,
exists, or ifz,, is not unique. Naturally, we are interested in projectiorthods that ensure
existence and uniqueness of their iteratggor each stem < d. Suchwell-definedmethods
terminate with the exact solution in the stépwhich is called thdinite termination property
If a method is well-defined or not, depends on the properfiéiseomatrix A.

In general, the OR Krylov subspace method yields uniquefindé iterates for each
whenever zero is outside tfield of valuef A, which is defined as

F(A) = {v7Av : |v| =1, veCV}. (7)

However, in this paper we limit our discussion to the OR Kw$ubspace method for her-
mitian positive definite matrices, since only in this casegiven system matrix defines a norm
in which the errors are minimized (see Section 3.1.1 foritdgtaA particular implementation
in this case is the CG method [36].

The MR Krylov subspace method is well defined whenetés nonsingular. This feature
makes this method very popular, since it can be used for genmatrices. The most well-
known implementations are the MINRES method [56] for helanitindefinite matrices and
the GMRES method [62] for general nonsingular matrices.

Finally, note that the conditions,, € z¢ + KC,,(A, o) andr,, € rq + AK, (A, ro) imply
that the errorr — z,, and the residuat,, can be written in the polynomial form

L —Tp = pn(A)(x - (Eo), T'n = pn(A)Tov 8

wherep,, is a polynomial of degree at mostand with value one at the origin. For a well-
defined OR/MR Krylov subspace method, the polynormijais uniquely determined by the
constraint conditions (3).

3 Convergence analysis

In exact arithmetic, well-defined Krylov subspace methamtnate in a finite number of
steps. Therefore no limit can be formed, and terms like “eogence” or “rate of conver-
gence” loose their classical meaning; see, e.g., [35, @nh&p4] for a cautioning in this di-
rection. This situation requires approaches that are antislly different from the analysis of
classical fixed point iteration methods such as Gaul3-Serd8OR. The convergence of the
latter methods has typically been described asymptofjaaith the “asymptotic convergence
factor” of the iteration matrix being the central concepir8isingly, this principal difference
between the Krylov subspace methods and the classicdiaenmmethods is still not always
accepted. For example, the classical convergéocmdfor the CG method that is based on
the matrix condition number (see equation (15) below) isesimes confused with the actual
convergencéehaviorof the method. Hence the actual convergence is identifiddavitound
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based on the asymptotic convergence factor of the convéxhille spectrum, without con-
sidering any other properties of the given data. Clearlg,dpproach can be very misleading
in some situations.

A related difficulty in the convergence analysis is the tapiequirement of finding an
acceptable approximate solutiep in n < N steps. Therefore it is important to understand
the convergence from the very beginning, i.e., in the ctat$erminology, to understand the
“transient” behavior. This early stage of convergence, dva@x, can depend significantly on
the right hand sidé and the initial guess,. In general, the non-existing limiting process,
the relevance of the transient phase, and the dependenicis phase o andz, make the
convergence analysis of Krylov subspace methods a difffauitinear problem — although
the system to be solved is linear.

We divide our discussion about the convergence of Krylovspabe methods into two
parts. In the first part (Section 3.1) we consider normalesysinatricesA and show that in
this case the spectral information is important for analgzhe convergence. The second part
(Section 3.2) shows the difficulties with estimating thevargence in the nonnormal case.

3.1 Convergence analysis for normal matrices

Consider a nonsingular ambrmalmatrix A, and let
A=VAVH, where VAV =1, A = diag(\i,...,  \n),

be its eigendecomposition. The orthogonality of the eigetor basis lead s to a significant
simplification in the convergence analysis of Krylov sultspanethods: Considering™ in
the formV A"V H and using (8), the errors and residuals of a Krylov subspatbad satisfy

T — T, = Vpn(A)VH(a: — 1), Ty = Vpn(A)VH’I“O . 9)

Because the projection property usually refers to somedssaptimality, we can expect that
Krylov subspace methods for normal matrices solve somehteaigpolynomial minimiza-

tion problem on the matrix spectrum. In the following suliiets we explain that in the
worst-case, the convergence speed of well-known Krylowsgabe methods (CG, MINRES,
GMRES) is determined by the value

min max [p(Ae)]|, (20)

PETy

wherem,, denotes the set of polynomials of degree at moand with value one at the ori-
gin. Note that the value (10) represents a min-max appraiémgroblem on the discrete
set of the matrix eigenvalues. The value (10) depends in glcated (nonlinear) way on
the eigenvalue distribution. Consider, for simplicityathall eigenvalues are real and dis-
tinct. The results in [26, 51] show that there exists a subbet+ 1 (distinct) eigenvalues
{1,y s ttns1t € {A1,..., An}, such that

—1

n+1ln+1
. ||
min max |p(A\x)| = _— . (11)

k#j
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8 J. Liesen and P. Tigh Analysis of Krylov Subspace Methods

If at least one eigenvalue of is complex, the equality (11) does not hold in general, cf].[5
Nevertheless, in [51] we formulate a conjecture, suppdrtedumerical experiments and by
some theoretical results, that there exist a set #f1 eigenvalues such that the value on the
right hand site of (11) is equal to (10) up to a factor betweend4 /.

Of course, except for model problems and special situatiooisall eigenvalues ofl are
known, and hence an analysis based on (11) cannot be appfieithe following we will
concentrate on the practically more relevant approach timate the value of (10) using
only a partial knowledge of the spectrum, in particular oshme set that contains all the
eigenvalues (a so-called inclusion set). An inclusion saifien known a priori or can be
easily estimated. We discuss the resulting convergencedsoior CG (hermitian positive
definite A), MINRES (hermitiand) and GMRES (general normall).

3.1.1 Convergence analysis for CG

Consider ahermitian positive definitenatrix A. Each such matrix defines a norm (the so-
called A-norm),

N

lulla = (uHAu) , (12)

and it is well known (see, e.g., [27]) that the OR Krylov subspiterates:,, are in this case
uniquely defined in each iterative steand can be computed using the CG method. The CG
iteratesr,, satisfy

lz = @nfla = min [lp(A)(@ — o)l (13)

In other words, the CG method constructs an approximatiprirom the affine subspace
20+, (A4, ro) with minimal A-norm of the error. It can be shown that thenorm of the error
is strictly monotonically decreasing, i.e., tHat — x,||a < ||z — xp—1]|aforn =1,...,d.
The A-norm of the error often has a counterpart in the underly@sj-world problem. For
example, when the linear system comes from finite elememoajppations of self-adjoint
elliptic PDEs, then thed-norm of the error can be interpreted as the discretized uneax
energy which is to be minimized; see, e.g., [1, 2].

A simple algebraic manipulation shows that the value (1pyasents an upper bound on
the relativeA-norm of the error,

[l = @nlla < min max |p(Ay)|. -

|l — xo0lla pET,

This convergence bound is sharp, i.e., for each iteratigprsthere exist a right hand side

or an initial guess:, (depending om and A) such that equality holds in (14), see [26]. In
this sense, the bound (14) completely describesmhiest-case behavioof the CG method.
When the whole spectrum of is known, one can try to determine the value of the right hand
side of (14) using the formula (11). However, it is in generalopen problem which subset
of n + 1 eigenvalues leads to equality in (11).

Obviously, the bound (14) depends only on the matrix eigeigaand not on any other
properties ofA, b, or z(. If a particular right hand sid&is known, it is sometimes possible
to incorporate the information aboluinto the analysis, and thus to obtain a better estimate of
the actual convergence behavior.
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Estimating the bound (14). Often, the largest and smallest eigenvalue (or at least esti
mates for them) are known. Then the classical approach isplage the discrete set of the
matrix eigenvalues by an interval containing all eigengaland to use Chebyshev polynomi-
als of the first kind to estimate the min-max approximatiof) (T his results in the following
well-known upper bound based on the condition numbet dfe. the ratio of the largest and
the smallest eigenvalue (see, e.g., [27]),

b - 1 " max
le = zulla 2<ﬁ ) , k= Dmex (15)
Hx_xOHA \/E+1 )\min
We stress that there is a principal difference between thad® (14) and (15). The bound
(14) represents a min-max approximation problem ordikerete sef\, ..., Ay, and it de-

scribes the convergence behavior in the worst-case semsthe@ther hand, the bound (15)
represents an estimate of the min-max approximation omteeval [Ayin, Amax] CONtaining

all eigenvalues ofd. It therefore bounds the worst-case behavior for all pdsgigenvalue
distributions in the given interval. In other words, the hds (14) and (15) describe differ-
ent approximation problems, and thus their values canrdifgmificantly. Clearly, the bound
(15) cannot be identified with the CG convergence, and itasgmts an overestimate even of
the worst-case behavior except for very special eigenvdisteébutions in the given interval
(see [50] for further discussion of this fact). The bound)(&bows, however, that a small
condition number (close tb) implies fast convergence of the CG method. This justifies th
classical goal of “preconditioning”, namely to decreasedbndition number of the given sys-
tem matrix. On the other hand, the bound (15) doesshow that a large condition number
implies slow convergence of the CG method.

Example 3.1 Consider two example eigenvalue distributions in the irgtkef1/400, 1].
The first eigenvalue set, given by

\e = k%/400, k=1,...,20, (16)
has a cluster close to zero, whereas the second set, given by
A =log(k)/log(20), k=2,...,20, A = 1/400, a7

has a cluster close to one. Each hermitian and positive teefimitrix having the eigenval-
ues (16) or (17) has the (moderate) condition numlgér Fig. 1 shows that the worst-case
CG convergence behavior differs significantly for the eigdme set (16) (solid) and for the
eigenvalue set (17) (dashed). Since the bound (15) (dasbellaepresents an upper bound
on the worst-case CG behavior for any eigenvalue distobuiti the given interval, it cannot
describe the actual CG convergence for a particular eidees®t like (17). 0

An alternative estimate for the value (10), based on the tarithmetic and geometric
averages of the eigenvalues (the so-calle@ondition number), was introduced by Kaporin
[41]. This and other related estimates can also be found,i€f@apter 13]. In [6], Axels-
son and Kaporin propose convergence estimates for the Cochbased on a generalized
condition number ofd, which also depends on the initial error.

Superlinear convergence of CGIn many applications it has been observed that4he
norm of the error in the CG method converges “superlineamyiiich means that speed of
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10 J. Liesen and P. Tigh Analysis of Krylov Subspace Methods
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Fig. 1 For a particular eigenvalue distribution (17), the worst-case CG beh@lashed) can signifi-
cantly differ from the bound15) (dash-dotted).

convergence increases during the iteration. Some attelmapts been made to explain this
behavior using the convergence of Ritz values in the Lanprosess that underlies the CG
method. An intuitive explanation of the superlinear bebg\wiven in the early paper [11], is
that when the extremal eigenvaluesAfare well approximated by the Ritz values, then the
CG method proceeds as if the corresponding eigenvectoes natrpresent . This leads to a
smaller “effective” condition number of, which in turn might explain the faster convergence.
This situation is discussed and analyzed, for example,2n T4, 69]; see [70, Chapter 5.3]
for a recent summary.

The results just mentioned attempt to explain the behavidhe CG method using in-
formation that is generated during the run of the method. fleint, and certainly not less
interesting problem is to identify (a priori) propertiestbe input datad, b andz, that im-
ply superlinear convergence behavior. This problem isidensd in an asymptotic setting
by Beckermann and Kuijlaars [7, 8]. They show that supealir@G convergence can be ob-
served when solving a sequence of linear systems with hanbsitive definite matrices
whose eigenvalue distributions are far from an equilibrilistribution [7] (see, e.qg., [22] for
an introduction to these asymptotic concepts). Such fé@lemrigenvalue distributions occur,
for example, when the system matrices come from the starfierghoint finite difference
discretizations of the two-dimensional Poisson equatiorother situation where superlinear
convergence is observed despite an equilibrium distobutif the eigenvalues is when the
components of the initial error in the eigenvector basihefdystem matrices strongly vary in
size [8]. In a finite dimensional setting, analytic examgtashis phenomenon in the context
of the discretized one-dimensional Poisson equation &sngn [50].

Example 3.2 Consider theV by N tridiagonal symmetric and positive definite Toeplitz
matrix A = tridiag(—1,2,—1) for N = 120, that arises by the central finite difference
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approximation of the one-dimensional Poisson equationpraged asymptotically by Beck-
ermann and Kuijlaars [8], CG may for this model problem cogeesuperlinearly when the
initial error exhibits certain distributions of compongin the eigenvector basis df.

For particular initial errors, the superlinear convergeran in this model problem even
be proved in a finite dimensional setting. In particular,sidar an initial error whose com-
ponents in the eigenvector basis 4fare given byysin?(kn/(2N +2)), k = 1,..., N,
where~y represents a nonzero scaling factor; cf. the solid line énright part of Fig 2. Ap-
parently, these components strongly vary in size, withdaxgpmponents corresponding to
smaller eigenvalues aofl. Using the results of Naiman et al. [54], it can be shown by an
elementary computation [50], that the CG errors for thigaherror satisfy

oo als _ (N )”2 LN
|z — Zp_1lla N-n+3 ’ e

The right hand side in the above equation is a strictly destmgafunction of the iteration
stepn, which gives an analytic proof for the superlinear CG cogeeace forA and this initial
error. The superlinear CG convergence curve is shown asliddiee in the left part of Fig. 2.
For comparison, we use an initial error with eigencompaosémt are equally distributed; cf.
the dashed line in the right part of Fig 2. As shown by the daddine in the left part of Fig 2,
no superlinear convergence can be observed in this case. 0

Fig. 2 CG convergence curves (left part) for two distributions of eigencamapts of the initial error
(right part).

In summary, the convergence behavior of the CG method isivelya well understood,
but some open problems still remain. The right approachrfeestigating the convergence
behavior is to use all information about the eigenvaluerithistion we have at our disposal.
If a particular right hand side and initial guess:y are given, they should be incorporated in
the analysis. An example for such an approach for the modélgm of the one-dimensional
Poisson equation is given in [50].

3.1.2 Convergence analysis for MINRES and GMRES

In this subsection we consider nonsingular andnalmatricesA. It is well known (see, e.g.,
[27]) that the iterates,, of the MR Krylov subspace method are for any such matrix ugligu
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12 J. Liesen and P. Tigh Analysis of Krylov Subspace Methods

defined in each iterative step and that theath residual-, = b — Ax,, satisfies

[l = min [lp(A)rol| (18)
PETY

The residual norms decrease strictly monotonically whengero is outside the field of val-
ues of A, see [15, 33] for different proofs. However, in general nacstmonotonicity is
guaranteed. In fact, any (finite) nonincreasing sequencemibers represents a convergence
curve of the MR Krylov subspace residual norms applied toestinear system with a normal
system matrix [3, 32, 48]. The normal matrix can even be andsdnave all its eigenvalues
on the unit circle.

In the normal case, the relative residual norm of the MR Krydabspace method can be
bounded similarly as in (14),

[[7n]l

[[roll = pema &

and again, the bound (19) is sharp [31, 40]. In other words,bibund (19) describes the
worst-case behavior of the MR Krylov subspace method. Ifftilespectral information is
available, then the approach in [51] (cf. the discussionoofiula (11)) can be used for
estimating the worst-case convergence behavior. Otheraime can try to estimate the worst-
case bound (19) similarly as in the hermitian positive defigiase, i.e., by replacing the
discrete spectrum by a continuous inclusion set. Howegewewill see, the estimation of
the min-max approximation becomes much more complicated no

< min max [p(\g)| (29)

The hermitian indefinite case.When A is hermitian indefinite, the MR Krylov subspace
method MINRES can be used. An estimate on the min-max appedian (19) that represents
the worst-case MINRES convergence behavior, can be obtayneeplacing the discrete set
of the eigenvalues by the union of two intervals containiigpfthem andexcluding the
origin, sayZ~ U 1™ = [Amin, As) U [Ast15 Amax) With Apin < A < 0 < Asp1 < Apax-
Note that if zero would be contained in the inclusion etU I, then the optimal min-max
polynomial fromr,, on this set would be the constant polynomia(z) = 1 for all n, and the
resulting convergence bounds would be useless.

When both intervals are of the same length, Ngax — As+1 = As — Amin, the following
bound for the min-max value can be found,

i )| < mi 20
min max [p(Ax)] < min  max |p(z)| (20)

[k/2]
9 \/|)\min)\max‘ - \/'As)\s-ﬁ—ll (21)
\/|)\min)\max‘ + \/|)\s)\s+l| ’

where[k/2] denotes the integer part &f/2, see [27, Chapter 3]. For an illustration of this
bound suppose th@k ,in| = Amax = 1 @and|A\s| = As41. Then the condition number of is
K= /\;}1, and the right hand side of (21) reduces to

[k/2]
k—1
2 . 22
(H—‘rl) (22)

Apparently, (22) corresponds to the value of right hand sfd&5) at stepk /2] for a hermitian
positive definite matrix having all its eigenvalues in theeiwal[\Z__;, 1], and thus a condition
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number ofA} %, . Hence the convergence bound for an indefinite matrix witidd@n number

k needs twice as many steps to decrease to the value of the Bmumdiefinite matrix with
condition number?2. Although neither of the two bounds is sharp, this cleartji¢ates that
solving indefinite problems represents a significant chgke In the general case when the
two intervals/~ and /™ are not of the same length, the explicit solution of the miaxm
approximation problem oh~ U I becomes quite complicated, see, e.g., [22, Chapter 3], and
no simple and explicit bound on the min-max value is knowne @ray of course extend the
smaller interval to match the length of the larger one, aildagiply (21). But this usually
results in a significantly weaker convergence bound, whadlk fo give relevant information
about the actual convergence behavior. Similar as in the chthe CG method we stress
that there is a principal difference between the bounds&hél)(21). These bounds describe
different approximation problems, and thus their valugsdiffer significantly.

The general normal case. If A is a general normal matrix, the MR Krylov subspace
method GMRES can be used. Again, an estimate of the right$ideaf (19) can be obtained
by replacing the discrete set of the eigenvalues bff some (compact) inclusion fetc C on
which (nearly) optimal polynomials are explicitly knownsuhally one works with connected
inclusion sets, since polynomial approximation on disemied sets is not well understood
(even in the case of two disjoint intervals; see above). Bseaf the normalization of the
polynomials at zero, the setshould not include the origin.

The simplest result is obtained when the spectrum @& contained in a disk in the com-
plex plane (that excludes the origin), say with radius- 0 and center at € C. Then the
polynomialp,,(z) = ((¢ — z)/¢)™ € m, can be used to show that

n

. T
min max [p(Ae)| < ‘E
In particular, a disk of small radius that is far from the aniguarantees fast convergence of
the GMRES residual norms.

More refined bounds can be obtained using the convexthafian ellipse instead of a disk.
For example, suppose that the spectrum is contained inigsesllvith center at € R, focal
distancel > 0 and major semi axig > 0. If 0 ¢ &, it can be shown that

Cn(a/d) _ [a++Va*—d? !
c+vVeE—az )’

whereC',(z) denotes thexth complex Chebyshev polynomial, see, e.g., [59]. We remark
that, as shown by Fischer and Freund [23], the polynondigls:)/C,,(0) are in general not
the optimal min-max polynomials from,, on £. However, these polynomials are asymptoti-
cally optimal and hence predict the correct rate of converg®f the min-max approximation
problem onr€. For more details we refer to [61].

Of course, one would like to find a s&t in the complex plane that yields the smallest
possible upper bound on the right hand side of (19). Both laalisl the convex hull of an
ellipse are convex, so one can probably improve the conmeggeound by using the smallest
convex set containing all the eigenvalues, i.e., the comkof the eigenvalues. Sincé
is assumed normal, this set coincides with the field of valieéd). Hence the bound (28)
studied below in the context of nonnormal matrices can ingpie be used in the normal

i )| < ~
R POWLS 1 Cra)
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14 J. Liesen and P. Tigh Analysis of Krylov Subspace Methods

Fig. 3 Tight inclusion of the eigenvalues of the GRCAR matrix by two elements of les of sets
introduced in [43, 47].

case as well. However, all convex inclusion s@tsre limited in their applicability by the
strict requirement that ¢ 2. In particular, if zero is inside the convex hull of the eigalues
of A, then no convex inclusion set for these points can be usededer, if the convex hull
is close to the origin, then any bound derived from this sdit lvd poor, regardless of the
distance of the eigenvalues to the origin. Another difficwith using the convex hull of the
eigenvalues (or any other inclusion set bounded by a polyigdhat the boundary of this set
in not smooth and hence the computation of (nearly) optimginomials on these sets such
as the Faber polynomials is complicated, see, e.qg., [64].

To overcome such difficulties, a parameterized class of qonvex sets with analytic
boundaries is constructed in [47] (also see [43]), for whith Faber polynomials are ex-
plicitly known. These polynomials give rise to analytic aakily computable bounds for the
min-max approximation problem; see [47] for details. Twamyples of the inclusion sets
are show in Fig. 3. The plus signs in this figure show the eiglei®s of the so-called Grcar
matrix of order 250, generated by the MATLAB commagel | ery(’ grcar’, 250, 6).
Obviously, the convex hull of these eigenvalues contaiatigin (indicated by the star). On
the other hand, none of the eigenvalues is particularlyectoshe origin, which should be
exploited by the choice of the inclusion set. The boundarigle two example inclusion sets
are shown by the dashed and the solid curves.

3.2 Convergence analysis for nonnormal matrices (GMRES)

In this section we consider the case of a general nonsingmi@nonnormalmatrix A. In
this general case, an MR Krylov subspace method such as GMRESS uniquely defined
iteratesr,, so that thenth residualr,, = b — Ax,, satisfies

[[7n]l = min [[p(A)ro]|. (23)
PETR
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Similarly to the convergence analysis for normal matricesented above, we are interested
in finding a (sharp) bound on the right hand side of (23).

Eigenvalues and convergencdf A is diagonalizabled = VAV 1, A = diag(\1,..., An),
then the following convergence bound easily follows fror)(2

Irnll _[Vp(A)V |
= min ——~————
HTOH PETn ||7“0H pETH  k

< k(V) min max [p(Ag)], (24)
see, e.g., [62]. Here(V) = ||[V|||[V | denotes the condition number of the eigenvector
matrix V. A bound similar to (24) can be derived for nondiagonalieabhtrices.

The bound (24) frequently is the basis for discussions ofGMRES convergence be-
havior. As mentioned in Section 3.1.2, this bound is sharprwd is normal. Wherx (V)
is small, the right hand side of (24) typically representoadyconvergence bound, and its
value can be estimated using the tools described above.\ldowehenV is far from unitary,
the bound (24) may fail to provide any reasonable infornmatibout the GMRES conver-
gence. To see this, note that when the eigenvector métris ill-conditioned, then some
components of the vectdi 17, can be very large, potentially much larger tHag||. On the
other hand||r,, || in (24) is bounded from above Hy||. Therefore, the linear combination
V [p(A)V ~1rg] can contain a significant cancellation, which is not reflédtethe minimiza-
tion problem on the right hand side of (24). Apart from thet fécat the factor: (1) can be
very large in case of ill-conditioned eigenvectors, thegipal weakness of the bound (24) is
that the min-max problem on the matrix eigenvalues need aa¢ lany connection with the
GMRES convergence for the given nonnormal matrix. As a oqursece, the curve produced
by the min-max approximations on matrix eigenvalues canuiistantially different from
the (worst-case) GMRES convergence curve and the boundadaio fjive any reasonable
convergence information.

Example 3.3 For a numerical illustration consider the two by N tridiagonal Toeplitz
matrices

Ay = tridiag(—1,\,—1) and B, = tridiag(—\,\,—1/}\),

where) > 2 is a real parameter. Both, and B, havethe same eigenvalugsamely\ —
2cos(kr/(N + 1)), k = 1,..., N. While A, is symmetric positive definitel3, is highly
nonnormal (e.g. a MATLAB computation yieldgV) ~ 10?7 for N = 40 and\ = 3). The
relative GMRES residual norms faf, = 0 and the order 40 system,z = [1,0,...,0]”
andByz = [1,0,...,0]T, for A = 3,4,...,18, are shown in Fig. 4. The relative residual
norms for the systems witH ,, are plotted by solid lines (faster convergence corresptmds
larger)), and for the systems witB), they are plotted by dashed lines (essentially the same for
all \). We observe that the GMRES convergence speedi foincreases when the spectrum
moves away from the origin. On the other hand, #y spectral information is obviously
useless for describing the GMRES convergence. In this ebeegsentially nothing happens
during the firstN — 1 steps, and then termination occurs in the final stepMoreover, the
spectrum ofB, gives no information about the convergence behavior aieres“transient
delay”, which some authors attribute to the potentiallgéaconstant (V) in (24). 0

The above example for the matric&s clearly shows that in the nonnormal case eigen-
value information is not sufficient for describing the comence behavior of GMRES. In
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Fig. 4 Relative GMRES residual norms for the normal matridgs(solid) and the nonnormal matrices
B, (dashed) for\ = 3,4, ... 18 andro = [1,0,...,0]".

fact, in this case the eigenvalues may have nothing to do tivé#thconvergence behavior at
all. As shown in [3, 32], any nonincreasing convergence ewfsrelative GMRES residual
norms is attainable for a system matrixhaving any prescribed eigenvalues. On the other
hand, it needs to be stressed that from an analytic pointeat ¥ine principal difficulty of
nonnormality isnotthe often met belief that the convergence is slower for nomabthan for
normal matrices. This belief is incorrect because for eamimormal matrixA there exists

a normal matrixB for which the same convergence behavior can be observethmame
initial residualry), cf. [33, 48]. Unfortunately, the mapping from the matrxto the normal
matrix B is highly nonlinear, and it depends strongly gn Hence it is not suitable for an a
priori analysis of the GMRES convergence behavior for thvergid andr.

The idea to analyze the given nonnormal problem using aeetladrmal problem is also
used by Huhtanen and Nevanlinna [39]. They propose to $@ittatrix4 into A = A + E,
whereA is normal andE is of smallest possible rank. Using such splitting, lowenrbs for
the quantitymin,c, ||[p(A4)] (cf. (26) below) can be given in terms of certain eigenvalfes
A; see [39] for details.

Worst-case GMRES analysis in the nonnormal caselt should be clear by now that
in the nonnormal case the GMRES convergence behavisigisficantly more difficult to
analyzethan in the normal case. A general approach to understanddtst-case GMRES
convergence in the nonnormal case is to replace the cortgalicainimization problem (23)
by another one that is easier to analyze and that, in some,sapproximates the original
problem (23). Natural bounds on the GMRES residual nornednysexcluding the influence
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of the initial residual,

l[oll pemn|[roll
< Hm”aX1 1’Ieli1’l [lp(A)v]] (worst-case GMRES) (25)
v||=1PCTn
< min [[p(4)]| (ideal GMRES) (26)

PETy

The bound (25) corresponds to therst-case€GMRES behavior and represents a sharp upper
bound, i.e. a bound that is attainable by the GMRES residoahn In this sense, (25) is
the best bound ofir,, ||/||ro|| that is independent afy,. Despite the independence xf, it

is not clear in general, which properties 4finfluence the bound (25); see, e.g., [20]. The
expression (25) can be bounded by tteal GMRES approximation problem (26), which
was introduced by Greenbaum and Trefethen [34]. To justiérelevance of the bound (26),
several researchers tried to identify cases in which (2&Qigl to (26). The best known result
of this type is that (25) is equal to (26) whenevkrs normal [31, 40]. Despite the existence
of some counterexamples [20, 67], it is still an open quastibether (25) is equal or close to
(26) for larger classes of nonnormal matrices. In [66] wesider this problem for a Jordan
block, a representative of a nonnormal matrix, and provakgof the expressions (25) and
(26) in some steps.

A possible way to approximate the value of the matrix appr@tion problem (26) is to
determine set§) c C and{) c C, that are somehow associated with and that provide
lower and upper bounds on (26),

c1 min max [p(z)] < min [[p(A)]] < ez min max Ip(2)]-
Herec; andc; should be some (moderate size) constants dependingasmd possibly om.
This approach represents a generalization of the idea fonalanatrices, where the appro-
priate set associated with is the spectrum off andc; = ¢o = 1.
Trefethen [68] has suggested takifigo be thee-pseudospectrurf A,

A(A)={z€C: |(zI-A)Y>e}.

Denoting byL the arc length of the boundary 4 (A), the following bound can be derived,

. L .
min [[p(A)] < 5= min _max ip(2)]l, @7)

see, e.g., [53]. The parametggives some flexibility, but choosing a good value can be yrick
Note that in order to make the right hand side of (27) readgrehall, one must choose
large enough to make the constdnt2re small, but small enough to make the get(A)
not too large. The bound (27) works well in some situatior®(®.g., [17]), but it is easy
to construct examples for which no choicecofives a tight estimate of the ideal GMRES
approximation problem (see, e.g., [33]).

Another approach is based on tfield of valuesof A, cf. (7). Denote by (F(A)) the
distance otF (A) from the origin,v(F(A)) = min.c #(4) |2/, then

min [p(4)] < (1 vFWFA))". 28)
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see, e.g., [14]. Suppose thit = (A + AfT)/2, the hermitian part ofi, is positive definite.
Then a special case of (28) is

. )\min(M) n/2
m < - 7
e = (1 /\maX(AHA)> ’

which is one of the earliest convergence results for the MRd&r subspace method [15,
16]. SinceF(A) is a convex set that contains the convex hull of the eigergabf A, the
requiremen® ¢ F(A) makes the bound (28) useless in many situations. Howe\efiglld of
values analysis can be very useful when the given lineaesysbmes from the discretization
of elliptic PDEs by the Galerkin finite element method. Intswases the coefficients of the
N by N system matrix4 are given byA;; = a(¢i, ¢;), wherea(u,v) is the bilinear form
from the weak formulation of the PDE, and, ..., ¢y are the nodal basis functions. Let
Vi, denote the finite element space. Then a functigne V}, is represented by a vector
uy € RY that contains the values af, at the nodes of the triangulation. The matex
satisfiesu’ Avy = a(up,vy) for all up, v, € Vi,. These relations can be exploited to give
bounds for the quantity(x —z,,, z—z,,) = (r—2,)T A(x—z, ), wherez is the exact solution
of the discretized PDE, and, is a Krylov subspace iterate. This leads naturally to bounds
of the type (28) involving the smallest real parts®BfA) and F(A~1); see, e.qg., [42, 63]
for more details. Note that under the usual assumption tieabilinear form is coercive, the
smallest real parts oF (A4) and.F(A~1) are both positive. In a more abstract setting, the field
of values has been used in the convergence analysis by Fiarfh3].

A generalization of the field of values of is the polynomial numerical hullintroduced
by Nevanlinna [55], and defined as

Hn(A) ={z€C : [[p(A)]| = |p(z)| forall p € P} ,

whereP,, denotes the set of polynomials of degreer less. It can be shown th&(A) =
H1(A). The setH,,(A) provides a lower bound on (26),

min ma z)| < min A)ll. 29
min | max Ip(2)| < min lp(A)]l (29)

In some way,H,,(A) reflects the complicated relation between the polynomialegfreen
and the matrix4, and provides often a very good estimate of the value of thaliGMRES
approximation (26). Greenbaum and her co-workers [19, 283@] have obtained theoretical
results about{,,(A) for Jordan blocks, banded triangular Toeplitz matrices lelndk diag-
onal matrices with triangular Toeplitz blocks. Clearly; olarger applicability of the bound
(29), the class of matrices for whidH,, (A) is known needs to be extended. But in general,
the determination of these sets represents a nontrivial ppblem.

The bounds stated above are certainly useful to obtain a poovergence estimates in
terms of properties ofi, and possibly to analyze the effectiveness of preconditgptech-
nigues. However, the worst-case behavior of GMRES for nonabmatrices is still not well
understood. We again point out that the bound (26) is nofpstaend that it is in many situa-
tions unclear how closely the ideal GMRES approximates thiestacase GMRES. Moreover,
none of the bounds stated above is ableharacterizesatisfactorily in terms of matrix prop-
erties, which approximation problem is solved by the woete GMRES in the nonnormal
case.
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The influence of the initial residual: A model problem. Users of Krylov subspace meth-
ods usually want to solve a particular linear system, anctéenworst-case analysis may
be of lesser interest to them. In such context one needs terstatid also how the conver-
gence is influenced by the particular right hand side orahigsidualr,. It seems to be well
known that the initial residual may have a significant inflceeon the GMRES convergence,
in particular in the nonnormal case. However, no systensatidy of this influence exists, and
given the lack of understanding of even the worst-case behavis unlikely that a complete
understanding of the influence af on the convergence will be obtained in the near future.

In the context of discretized PDEs, is directly related to the boundary conditions and/or
the source terms. It is of great importance to understandsumli PDE data influences the
convergence of an iterative solver like GMRES, as undedstarof these relations will pave
the way to efficient preconditioning techniques. Receritlis topic was addressed in an
analysis of the GMRES convergence behavior for a well knoamvection-diffusion model
problem [49], that was introduced in [24]. Here the convamgeof GMRES applied to the
discretized system is characterized by an initial phasdas¥ sonvergence, followed by a
faster decrease of the residual norms. The length of thialiplhase depends on the initial
residual, which is determined by the boundary conditions fmplicity, the source term in
the PDE and the initial guess) are chosen equal to zero in [49]). Typical examples for the
convergence behavior are shown in Fig. 5. The GMRES conmeggeurves in this figure
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Fig. 5 Relative GMRES residual norms for the discretized convection-diffusiodel problem consid-
ered in [49]. Different behavior corresponds to the same discretipetator but to different boundary
conditions.

correspond to the same discretized operator but to diffe@mdary conditions. For the con-
sidered model problem, the convergence analysis confirmaaidier conjecture of Ernst [18],
that the duration of the initial phase is governed by the fitekes for boundary information
to pass from the inflow boundary across the domain followhglongest streamline of the
velocity field. The paper [49] also discusses the question tive convergence in the second
phase accelerates. Numerical results show that the speedwdrgence after the initial delay
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is slower for larger mesh Peclet numbers, but a completetjative understanding of this
phenomenon remains a difficult open problem.

4 Concluding remarks

The worst-case convergence behavior of many well knownd¢rgubspace methods (CG,
MINRES, GMRES) for normal matrices is described by the miaxrapproximation problem
on the discrete set of the matrix eigenvalues,

min max |p(Ax)]| . (30)
pET, k
In this sense, the worst-case convergence behavior is nadirstood. Still, for a given eigen-
value distribution the min-max value is often not known, &ad to be estimated. Such esti-
mation is of course always necessary, when only a partiatimdtion about the spectrum is
known. A general approach tries to find inclusion sets fog @ktimate of) the spectrum, and
uses (close to) optimal polynomials on these sets to appiateithe min-max value. However,
this approach solves a different kind of approximation pgoband can provide misleading
information about the convergence.
For nonnormal matrices, the situation is even less cleabolmd the worst-case GMRES
residual norm, one can use the ideal GMRES approximation

min [[p(A)], (31)
PETR

that represents a matrix approximation problem. Althoughvalue (31) need not describe
GMRES worst-case behavior, it can be considered as a goadamation of the worst-
case approximation in many practical cases. A general apprior approximating this value
consists in finding a set in the complex plain associated thighmatrixA and bounding the
value (31) by the min-max approximation on this set. Howeiegoretical results in this field
are still unsatisfactory.

Finally, it is important to note that the convergence canetielpstrongly on the right hand
side or the initial guess so that the values (30) and (31) earestimate the actual conver-
gence of a Krylov subspace method.
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