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Abstract. A widely known result of Elman, and its improvements due to Starke, Eiermann and
Ernst, gives a bound on the worst-case GMRES residual norm using quantities related to the field
of values of the given matrix and its inverse. We prove that these bounds also hold for the ideal
GMRES approximation, and we derive some improvements of the bounds.
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1. Introduction. Consider a linear algebraic system Ax = b with a nonsingular
matrix A ∈ Fn×n and a right hand side b ∈ Fn, where F = R or F = C. Given an
initial approximation x0 ∈ Fn and the initial residual r0 ≡ b − Ax0, the GMRES
method of Saad and Schultz [25] iteratively constructs approximations xk such that

‖rk‖ = ‖b−Axk‖ = min
p∈πk(F)

‖p(A)r0‖, k = 1, 2, . . . , (1.1)

where ‖v‖ ≡ 〈v, v〉1/2 denotes the Euclidean norm on Fn, and πk(F) is the set of
polynomials p of degree at most k with coefficients in F, and with p(0) = 1.

The convergence analysis of GMRES has been a challenge since the introduction
of the algorithm; see [19] or [18, Section 5.7] for surveys of this research area. Here
we focus on GMRES convergence bounds that are independent of the initial residual,
i.e., for a given A, we consider the worst-case behavior of the method. It is easy to
see that for each given A, b and x0, the kth relative GMRES residual norm satisfies

‖rk‖
‖r0‖

≤ max
v∈Fn
‖v‖=1

min
p∈πk(F)

‖p(A)v‖. (1.2)

The expression on the right hand side is called the kth worst-case GMRES residual
norm. For each given matrix A and iteration step k, this quantity is attainable by the
relative GMRES residual norm for some initial residual r0. Mathematical properties
of worst-case GMRES have been studied in [11]; see also [20].

Let F = R and let M ≡ 1
2 (A+AT ) be the symmetric part of A. Assuming that M

is positive definite, a widely known result of Elman, stated originally for the relative
residual norm of the GCR method in [9, Theorem 5.4 and 5.9], implies that

max
v∈Rn
‖v‖=1

min
p∈πk(R)

‖p(A)v‖ ≤
(

1− λmin(M)2

λmax(ATA)

)k/2
; (1.3)

see also the paper [8, Theorem 3.3].
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Let F(A) be the field of values of A ∈ Fn×n, and let ν(A) be the distance of F(A)
from the origin, i.e.,

F(A) ≡ {〈Av, v〉 : v ∈ Cn, ‖v‖ = 1}, ν(A) ≡ min
z∈F(A)

|z|.

Then the bound (1.3) can be written as

max
v∈Rn
‖v‖=1

min
p∈πk(R)

‖p(A)v‖ ≤
(

1− ν(A)2

‖A‖2

)k/2
. (1.4)

It can be easily shown (see [3]), that the bound (1.4) holds for general nonsingular
matrices A ∈ Cn×n, without any assumption on the Hermitian part of A.

Starke proved in [26, Section 2.2] and the subsequent paper [27, Theorem 3.2],
that if A ∈ Rn×n has a positive definite symmetric part M , then

max
v∈Rn
‖v‖=1

min
p∈πk(R)

‖p(A)v‖ ≤
(
1− ν(A)ν(A−1)

)k/2
. (1.5)

For a general nonsingular matrix we have

ν(A)

‖A‖2
≤ min
w∈Cn\{0}

∣∣∣∣ 〈Aw,w〉〈w,w〉
〈w,w〉
〈Aw,Aw〉

∣∣∣∣ = min
v∈Cn\{0}

∣∣∣∣∣
〈
A−1v, v

〉
〈v, v〉

∣∣∣∣∣ = ν(A−1), (1.6)

which yields

1− ν(A)ν(A−1) ≤ 1− ν(A)2

‖A‖2
.

Hence, as pointed out by Starke in [26, 27], the bound (1.5) improves Elman’s
bound (1.3). In [7, Corollary 6.2], Eiermann and Ernst proved that the bound (1.5)
holds for any nonsingular matrix A ∈ Cn×n. In particular, no assumption on the
Hermitian part of A is required. Note, however, that the bound (1.5) provides some
information about the convergence of (worst-case) GMRES only when 0 /∈ F(A), or,
equivalently, 0 /∈ F(A−1).

In many situations the convergence of GMRES and even of worst-case GMRES is
superlinear, and therefore linear bounds like (1.4) and (1.5) may significantly overesti-
mate the (worst-case) GMRES residual norms. Nevertheless, such bounds can be very
useful in the practical analysis of the GMRES convergence, since they depend only on
simple properties of the matrix A, which may be estimated also in complicated appli-
cations. For example, Starke used his bound in [26, 27] to analyze the dependence of
the convergence of hierarchical basis and multilevel preconditioned GMRES applied
to finite element discretized elliptic boundary value problems on the mesh size and the
size of the skew-symmetric part of the preconditioned discretized operator. Similarly,
Elman’s bound was used in the analysis of the GMRES convergence for finite element
discretized elliptic boundary value problems that are preconditioned with additive
and multiplicative Schwarz methods [4, 5]. Many further such applications exist.

A straightforward upper bound on the kth worst-case GMRES residual norm is
given by the kth ideal GMRES approximation, originally introduced in [14],

max
v∈Fn
‖v‖=1

min
p∈πk(F)

‖p(A)v‖︸ ︷︷ ︸
worst-case GMRES

≤ min
p∈πk(F)

max
v∈Fn
‖v‖=1

‖p(A)v‖ = min
p∈πk(F)

‖p(A)‖︸ ︷︷ ︸
ideal GMRES

. (1.7)
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As shown by examples in [10, 29] and more recently in [11], there exist matrices A and
iteration steps k for which the inequality in (1.7) can be strict. The example in [29]
even shows that the ratio of worst-case and ideal GMRES can be arbitrarily small.
A survey of the mathematical relations between the two approximation problems in
(1.7) is given in the introductory sections of [28].

The main goal in this paper is to show that the right hand side of the bound
(1.5) also represents an upper bound on the ideal GMRES approximation for general
(nonsingular) complex matrices. This has been stated without proof already in our
paper [19, p. 168] and later in the book [18, Section 5.7.3]. In light of the practical
relevance of Elman’s and Starke’s bounds, and of the fact that the inequality in (1.7)
can be strict, we believe that providing a complete proof is important. This proof
and a further discussion of the bounds are given in Section 2. In Section 3 we derive
some improvements of the considered bounds.

Throughout the rest of this paper we will consider the general setting with F = C.

2. Proof of the ideal GMRES bound. Consider a nonsingular matrix A ∈
Cn×n, a unit norm vector v ∈ Cn, and the minimization problem

min
α∈C
‖v − αAv‖2.

It is easy to show that the minimum is attained for

α∗ ≡
〈v,Av〉
〈Av,Av〉

,

and that

‖v − α∗Av‖2 = 1− 〈Av, v〉
〈v, v〉

〈v,Av〉
〈Av,Av〉

. (2.1)

Another result we will use below is that ideal and worst-case GMRES for any matrix
A ∈ Cn×n are equal in the iteration step k = 1, i.e.,

min
α∈C

max
v∈Cn
‖v‖=1

‖v − αAv‖ = max
v∈Cn
‖v‖=1

min
α∈C
‖v − αAv‖; (2.2)

see [17, Theorem 1] and [13, Theorem 2.5]. This equality has also been shown in the
context of bounded linear operators on a Hilbert space; see [1] or [15, Section 3.2] and
the references given there.

After these preparations we can now state and prove our main result.

Theorem 2.1. If A ∈ Cn×n is nonsingular, then for all k ≥ 1 we have

min
p∈πk(C)

‖p(A)‖ ≤
(
1− ν(A)ν(A−1)

)k/2
. (2.3)

Moreover, if M = 1
2 (A+AH) is positive definite, then

min
p∈πk(C)

‖p(A)‖ ≤
(

1− λmin(M)2

λmax(AHA)

)k/2
. (2.4)

Proof. The ideal GMRES approximation satisfies

min
p∈πk(C)

‖p(A)‖ ≤ min
α∈C
‖(I − αA)k‖ ≤ min

α∈C
‖I − αA‖k. (2.5)
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Using (2.2) and (2.1) we then get

min
α∈C
‖I − αA‖k = min

α∈C
max
v∈Cn
‖v‖=1

‖v − αAv‖k = max
v∈Cn
‖v‖=1

min
α∈C
‖v − αAv‖k

= max
v∈Cn
‖v‖=1

(
min
α∈C
‖v − αAv‖2

)k/2
= max

v∈Cn
‖v‖=1

(
1− 〈Av, v〉

〈v, v〉
〈v,Av〉
〈Av,Av〉

)k/2

=

(
1− min

v∈Cn
‖v‖=1

〈Av, v〉
〈v, v〉

〈v,Av〉
〈Av,Av〉

)k/2

≤

(
1− min

v∈Cn
‖v‖=1

∣∣∣∣ 〈Av, v〉〈v, v〉

∣∣∣∣ min
w∈Cn\{0}

∣∣∣∣ 〈A−1w,w〉〈w,w〉

∣∣∣∣
)k/2

(2.6)

=
(
1− ν(A)ν(A−1)

)k/2
,

which proves (2.3). If M = 1
2 (A+AH) is positive definite, then λmin(M) ≤ ν(A) and

λmin(M)

λmax(AHA)
≤ ν(A−1)

(see (1.6)), and then (2.3) implies (2.4).

The derivation of the bound (2.3) involves several inequalities, which are usually
not tight; see (2.5) and (2.6). We therefore can expect that the right hand side of
(2.3) is in most cases much larger than the left hand side.

Since 0 ≤ ν(A)ν(A−1) ≤ 1 holds for every matrix A ∈ Cn×n, equality holds in
(2.3) when the ideal GMRES approximation stagnates until the iteration step k, i.e.,
when

min
p∈πk(C)

‖p(A)‖ = 1. (2.7)

For this to happen it is necessary that 0 ∈ F(A) ⇔ 0 ∈ F(A−1), and it is necessary
and sufficient that

0 ∈ {z ∈ C : ‖p(A)‖ ≥ |p(z)| for all complex polynomials p of degree ≤ k}.

More information about the relation between the polynomial numerical hull (i.e. the
set stated above) and the stagnation of ideal GMRES can be found in [10, 12]. The
(complete) stagnation of GMRES, which implies the stagnation of worst-case and
ideal GMRES has been analyzed, for example, in [20, 22, 30].

We can also identify some cases when one of the inequalities in (2.5) is an equality.
First note that if the left hand side of (2.5) is larger than zero, then the polynomial
solving this minimization problem, i.e., the kth ideal GMRES polynomial, is unique;
see [14, 21]. Hence, in this case the first inequality in (2.5) is an equality if and only
if the kth ideal GMRES polynomial is of the form (1 − αz)k. One of the very rare
cases where this happens without stagnation is when A = Jλ is an n×n Jordan block
with a sufficiently large eigenvalue λ > 0 and 1 ≤ k < n/2; see [28, Theorem 3.2] for
details. The kth ideal GMRES polynomial then is (1− λ−1z)k, and we obtain

min
p∈πk(C)

‖p(Jλ)‖ = ‖(I − λ−1Jλ)k‖ = λ−k = ‖I − λ−1Jλ‖k.
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In this special case also the second inequality in (2.5) is an equality. For a more
general (sufficient) criterion for equality, recall that a matrix X ∈ Cn×n is called
radial when its numerical radius is equal to its 2-norm, i.e.,

r(X) ≡ max
z∈F(X)

|z| = ‖X‖. (2.8)

This holds if and only if ‖Xk‖ = ‖X‖k for all k ≥ 1. Several other equivalent
characterizations of this property are given in [16, Problem 27, p. 45]; see also [24].
Suppose that the matrix I− α̃A is radial for some α̃ ∈ C that solves the minimization
problem minα∈C ‖(I − αA)k‖. Then

min
α∈C
‖I − αA‖k ≥ min

α∈C
‖(I − αA)k‖ = ‖(I − α̃A)k‖ = ‖I − α̃A‖k ≥ min

α∈C
‖I − αA‖k,

which shows that equality holds throughout and hence also in the second inequality
in (2.5).

Finally, it is clear that in most cases the inequality (2.6) will be strict: When
solving

min
v∈Cn
‖v‖=1

〈Av, v〉
〈v, v〉

〈v,Av〉
〈Av,Av〉

= min
v∈Cn
‖v‖=1

(
|〈Av, v〉|
‖v‖‖Av‖

)2

= min
v∈Cn

cos2 ∠(v,Av)

we try to make the vectors v and Av as close as possible to orthogonal, and hence
only the angle between the vectors plays a role. On the other hand, solutions of

min
v∈Cn
‖v‖=1

∣∣∣∣ 〈Av, v〉〈v, v〉

∣∣∣∣ and min
w∈Cn\{0}

∣∣∣∣ 〈A−1w,w〉〈w,w〉

∣∣∣∣
depend on the cosine of the angle as well as on the length of the vectors.

3. An improvement of Theorem 2.1. Using the numerical radius defined in
(2.8), we can write

ν(A−1)r(A) = min
v∈Cn\{0}

∣∣∣∣ 〈v,Av〉〈Av,Av〉

∣∣∣∣ max
v∈Cn
‖v‖=1

|〈Av, v〉|.

If w ∈ Cn is a unit norm vector that maximizes |〈Av, v〉|, then

min
v∈Cn\{0}

∣∣∣∣ 〈v,Av〉〈Av,Av〉

∣∣∣∣ max
v∈Cn
‖v‖=1

|〈Av, v〉| ≤
∣∣∣∣ 〈w,Aw〉‖Aw‖

∣∣∣∣ ∣∣∣∣ 〈Aw,w〉‖Aw‖

∣∣∣∣ ≤ 1,

so that ν(A−1) ≤ 1/r(A). If we define β ∈ (0, π2 ) by

cosβ =
ν(A)

r(A)
, (3.1)

we obtain

1− cosβ ≤ 1− ν(A)ν(A−1). (3.2)

It is tempting to think that the quantity 1−cosβ yields an improvement of the bound
(2.3). As shown in the following example, however, this is not the case.
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Example. Consider the matrix

A =

[
λ 1
0 λ

]
∈ R2×2 with λ >

1

2
.

We have n = 2 and we are interested in the iteration step k = 1. The set F(A) is a
disk with center at λ and radius 1

2 (independent of λ), so that

ν(A) = λ− 1

2
, r(A) = λ+

1

2
, (1− cosβ)

1/2
=

1√
λ+ 1

2

.

Using [28, Example 2] for n = 2 and k = 1,

min
α∈R
‖I − αA‖ =

1

λ+ 1
4λ

.

For the particular value λ = 2
3 we get

(1− cosβ)
1/2

=

(
6

7

)1/2

≈ 0.9258 < 0.96 = min
α∈R
‖I − αA‖.

The bound (2.3) on the other hand holds with
(
1− ν(A−1)ν(A)

)1/2
= (15/16)1/2 ≈

0.9682.

Next note that for any matrix A ∈ Cn×n with 0 /∈ F(A) we have, possibly after
a suitable rotation that can be done without loss of generality, the inclusion

F(A) ⊆ {z : Re(z) ≥ r(A) cosβ} ∩ {|z| ≤ r(A)}.

This inclusion is potentially tighter than the one used by Beckermann, Goreinov and
Tyrtyshnikov in [3], which is based on ‖A‖ instead of r(A). (Recall that r(A) ≤
‖A‖ ≤ 2r(A) holds for any matrix A ∈ Cn×n.) Using the same techniques as in [3],
and exploiting also that

‖p(A)‖ ≤ (1 +
√

2)‖p‖F(A)

holds for any complex polynomial p (see [6]), we therefore obtain the following im-
proved version of [3, Theorem 2.1].

Theorem 3.1. If A ∈ Cn×n is such that 0 /∈ F(A), and β ∈ (0, π2 ) is given as in
(3.1), then for all k ≥ 1 we have

min
p∈πk(C)

‖p(A)‖ ≤ (1 +
√

2)(2 + ρβ)ρkβ < 8ρkβ , (3.3)

where ρβ ≡ 2 sin
(

β
4−2β/π

)
< sinβ.

Now suppose that A ∈ Cn×n is such that 0 /∈ F(A) and that, possibly after a
suitable rotation, the set F(A) is contained in a disk D with center c and radius δ
given by

c =
ν(A) + r(A)

2
, and δ =

r(A)− ν(A)

2
. (3.4)
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It has been shown in [2], based on results [23], that if F(A) ⊆ D, then

‖p(A)‖ ≤ 2 max
z∈D
|p(z)|

holds for any polynomial p. Moreover, it is well known that the problem

min
p∈πk(C)

max
z∈D
|p(z)|

is solved by the polynomial (1 − 1
c z)

k. This yields the following improvement of
Theorem 2.1.

Lemma 3.2. If A ∈ Cn×n is such that 0 /∈ F(A) ⊆ D as stated above, and
β ∈ (0, π2 ) is given as in (3.1), then for all k ≥ 1 we have

min
p∈πk(C)

‖p(A)‖ ≤ 2

(
1− cosβ

1 + cosβ

)k
< 2(1− ν(A)ν(A−1))k. (3.5)

Proof. We have

min
p∈πk(C)

‖p(A)‖ ≤ 2 min
p∈πk(C)

max
z∈D
|p(z)| = 2 max

z∈D

∣∣∣∣1− 1

c
z

∣∣∣∣k = 2

(
δ

c

)k
= 2

(
r(A)− ν(A)

r(A) + ν(A)

)k
= 2

(
1− cosβ

1 + cosβ

)k
< 2(1− cosβ))k

≤ 2(1− ν(A)ν(A−1))k,

where in the last inequality we have used (3.2).

The bound in Lemma 3.2 with the convergence factor

1− cosβ

1 + cosβ

reminds of the error bound for the classical Richardson iteration or the steepest de-
scent method; see, e.g., [18, Section 5.5.2]. In particular, if A is Hermitian positive
definite, then cosβ = λmin(A)/λmax(A) = 1/κ(A).

Also note that for any β ∈ (0, π2 ) we have

1− cos(β)

1 + cos(β)
< 2 sin

(
β

4− 2
πβ

)
,

which can be verified using a mathematical software, or by a more detailed analysis.
Consequently, the convergence factor in Lemma 3.2 is smaller than the convergence
factor in Theorem 3.1, which however is valid whenever 0 /∈ F(A).

For a numerical illustration of the bounds considered in this paper we use a single
Jordan block Jλ of the size n = 100 and with the eigenvalue λ = 3. In Figure 3.1 we
plot for the first 49 iterations the value of the ideal GMRES approximation (known
to be λ−k in this case), Elman’s bound (1.3), Starke’s bound (1.5), the improved
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Fig. 3.1. Ideal GMRES and the bounds considered in this paper for a 100 × 100 Jordan block
with the eigenvalue 3.

Beckermann-Goreinov-Tyrtyshnikov bound (3.3), and the disk bound, i.e., the first
expression in (3.5). We observe that the convergence factors which determine the
bounds can be quite different from each other, even in this simple case. The disk
bound is by far the best, which is due to the fact that F(Jλ) actually is a disk
centered at λ.
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[18] Jörg Liesen and Zdeněk Strakoš, Krylov subspace methods, Numerical Mathematics and
Scientific Computation, Oxford University Press, Oxford, 2013. Principles and analysis.
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