PROPERTIES OF WORST-CASE GMRES
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Abstract. In the convergence analysis of the GMRES method for a given matrix A, one quantity
of interest is the largest possible residual norm that can be attained, at a given iteration step k, over
all unit norm initial vectors. This quantity is called the worst-case GMRES residual norm for A and
k. We show that the worst case behavior of GMRES for the matrices A and AT is the same, and we
analyze properties of initial vectors for which the worst-case residual norm is attained. In particular,
we prove that such vectors satisfy a certain “cross equality”. We show that the worst-case GMRES
polynomial may not be uniquely determined, and we consider the relation between the worst-case
and the ideal GMRES approximations, giving new examples in which the inequality between the two
quantities is strict at all iteration steps k > 3. Finally, we give a complete characterization of how
the values of the approximation problems change in the context of worst-case and ideal GMRES for
a real matrix, when one considers complex (rather than real) polynomials and initial vectors.
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1. Introduction. Let a nonsingular matrix A € R™*™ and a vector b € R™ be
given. Consider solving the system of linear algebraic equations Az = b with the initial
guess xo = 0 using the GMRES method. This method generates a sequence of iterates
z1, € Ki(A,b) = span{b, Ab,... A*~1b}, k = 1,2,..., so that the corresponding kth
residual 7, = b — Ax;, satisfies

(1.1) 7kl = min |[p(A)b].
PETL

Here || - || denotes the Euclidean norm, and 7y, denotes the set of real polynomials of
degree at most k£ and with value one at the origin; see the original paper of Saad and
Schultz [14] or, e.g., the books [4, 11, 13].

The convergence analysis of GMRES deals with bounding or estimating the right
hand side of (1.1). This is a notoriously difficult problem; see, e.g., the respective
chapters in [4, 11, 13]. One way to simplify this problem is to split off the right hand
side vector b and to bound or estimate the value of the remaining polynomial matrix
approximation problem only, i.e., to consider

(1.2) lrill < or(A)JIBll ;- where ¢ (A) = min [p(A)]].

Greenbaum and Trefethen nicely described the motivation for this approach in [6,
pp. 361-362]. They called ¢r(A) the ideal GMRES value for A and k, and the
(uniquely determined) polynomial that attains this value the ideal GMRES polynomial
for A and k (see [6, 12| for uniqueness proofs).
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Since the majority of the existing GMRES convergence results are (upper or
lower) bounds on the ideal GMRES value ¢ (A), it is natural to ask how far this
value can be from an actual kth residual norm produced by GMRES. This question
was formulated by Greenbaum and Trefethen in [6, p. 366], and it can be approached
by looking at the following sequence of inequalities that holds for any given A € R™*"™,
integer k£ > 1 and unit norm vector b € R™:

7]l = min |[p(A)b]|
PETY

(1.3) < max min ||p(A)v|| = ¥r(A)
lvll=1 pEms
< min max p(AYol] = pi(4).

pEm [Jvf|=1

The value ¢, (A) introduced in (1.3) is called the worst-case GMRES residual norm
for the given A and k. It gives an attainable upper bound on all possible kth GMRES
residual norms for the given matrix A. A unit norm initial vector and a corresponding
polynomial for which the value ¢ (A) is attained are called a worst-case GMRES
initial vector and a worst-case GMRES polynomial for A and k, respectively.

Let us briefly summarize the most important previous results on worst-case and
ideal GMRES (see [15, Sections 1-2| for a more detailed summary). First of all, if
A is singular, then 9,(A) = pr(A) = 1 for all £ > 1 (to see this, simply take v
as a unit norm vector in the kernel of A). Hence only nonsingular matrices A are
of interest in our context. For such A, both 95 (A) and ¢r(A) are monotonically
decreasing sequences, and 15 (A) = @r(A4) = 0 for all & > d(A), the degree of the
minimal polynomial of A. Therefore, we only need to consider 1 < k < d(A) — 1.

For a fixed k, both ¢y (A) and ¢ (A) are continuous functions on the open set of
nonsingular matrices; see |7, Theorem 3.1] or [2, Theorem 2.5|. Moreover, the equality
Yi(A) = @i (A) holds for normal matrices A and any k, as well as for k = 1 and any
nonsingular A [5, 8]. Some nonnormal matrices A are known, however, for which
Yr(A) < pr(A), even i (A) < ¢r(A), for certain k; see [2, 16].

As shown in [18], the ideal GMRES approximation problem can be formulated as
a semidefinite program. Hence the ideal GMRES value ¢ (A) and the correspond-
ing ideal GMRES polynomial can be computed by any suitably applied semidefinite
program solver. In our computations we use the MATLAB package SDPT3, version
4.0; see, e.g., [17]. On the other hand, we are not aware of any efficient algorithm
for solving the worst-case GMRES approximation problem. In our experiments we
use the general purpose nonlinear minimization routine fminsearch from MATLAB’s
Optimization Toolbox.

Our main goal in this paper is to contribute to the understanding of the worst-case
GMRES approximation problem (1.3). In particular, we will derive special properties
of worst-case GMRES initial vectors, and we will show that (in contrast to ideal
GMRES), worst-case GMRES polynomials for given A and k may not be uniquely
determined. Furthermore, we will give some new results on the relation between
worst-case and ideal GMRES, and on the tightness of the inequality ¥ (A) < ¢pr(A).
Finally, we give a complete characterization of how the values of the approximation
problems in the context of worst-case and ideal GMRES for a real matrix change,
when one considers complex (rather than real) polynomials and initial vectors.

In this paper we do not consider quantitative estimation of the worst-case GMRES
residual norm 1 (A), and we do not study how this value depends on properties of A.
This is an important problem of great practical interest, which is largely open. For
more details and a survey of the current state-of-the-art we refer to [11, Section 5.7].
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2. The cross equality. In this section we generalize two results of Zavorin [19].
The first shows that 1, (A) = ¥ (AT) and the second is a special property of worst-
case initial vectors (they satisfy the so-called “cross equality”). Zavorin proved these
results only for diagonalizable matrices using quite a complicated technique based
on a decomposition of the corresponding Krylov matrix. Using a simple algebraic
technique we prove these results for general matrices.

In our derivation we will use the following notation and basic facts about GMRES.
For any given nonsingular A € R"*" and b € R" the sequence of GMRES residual
norms ||rkll, k = 1,2,...,is monotonically decreasing. It terminates with r,, = 0 if and
only if k is equal to d(A,b), the degree of the minimal polynomial of b with respect to
A, where always d(A,b) < d(A). A geometric characterization of the GMRES iterate
x € Kr(A,b), which is mathematically equivalent to (1.1), is given by

(21) % L AICk(A,b)

When we need to emphasize the dependence of the kth GMRES residual r; on A, b
and k we will write

r, = GMRES(A, b, k) or r = pr(A)b,

where py € 7 is the kth GMRES polynomial of A and b, i.e., the polynomial that
solves the minimization problem on the right hand side of (1.1). As long as 7 # 0,
this polynomial is uniquely determined.

LEMMA 2.1. Let A € R" ™ be nonsingular, k > 1, and let b € R™ be a unit norm
vector such that d(A,b) > k. Let

re = GMRES(A,b,k), s, = GMRES (AT, ﬁ k) .
Tk

Then
(2.2) el < skl

with equality if and only if
Sk
Torl =
As a consequence, if d(A,b) > k, then also d(AT ry) > k.

Proof. Consider any unit norm vector b such that 1 < k < d(A,b). Then the
corresponding kth GMRES residual vector rp, = pr(A)b is nonzero. The defining
property (2.1) of 7, means that (A47b,r;) =0 for j = 1,..., k. Hence, for any q € my,

(23)  lrell* = (e (A, 1) = (b, 71) = (a(A)b, i) = (b, a(AT)ri) < [lg(AT)rll,

where the inequality follows from the Cauchy-Schwarz inequality and ||b]| = 1. Taking
the minimum over all ¢ € 7y, in (2.3) and dividing by ||rk|| we get

Tk

q(A")
[k

H — sl

|7l < min
qeETE

Now ||7|| > 0 implies ||s|| > 0 and hence d(AT,ry) > k.
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Next consider s = qk(AT)H:—:” and substitute g for ¢ into (2.3) to obtain

(2.4) el = (b, ar(AT)re) < llar(AT)rell = llrallllsnll-
Therefore, ||| = ||sk|| if and only if

(b, e (AT)ri) = [lae(AT)rx |-
Since ||b]| = 1, this happens if and only if

b — awADry (AD)re s

Nl ATl lsellllrall skl

which finishes the proof. O

We now can show that the worst-case GMRES residual norms for A and A7 are
identical.

THEOREM 2.2. If A € R"*" is nonsingular, then V¥y(A) = ¥ (AT) for all k =
ooy d(A) —1.

Proof. If b is a worst-case GMRES initial vector for A and k, r, = GMRES(A, b, k)
and s, = GMRES(AT, 25 k), then, using Lemma 2.1,

el

(2.5) Ur(4) = [Irell < llsell < wu(AT).

1

Now we can reverse the roles of A and AT to obtain the opposite inequality, i.e.,
Yr(AT) < i (A). O
The following theorem describes a special property of worst-case initial vectors.

THEOREM 2.3. Let A € R™*™ be nonsingular, and let 1 < k < d(A) — 1. If
b € R"™ is a worst-case GMRES initial vector for A and k, and

Tk = pk(A)b = GMRES(A, b, k),
sk = qu(AT) % = GMRES <AT, ”—’“k> ,

el [l
then
Isell = llrll = wn(A), - b=,
and
(2:6) a(A)pr(A)b = VE(A)D.

Proof. By assumption, ||rk| = ¥« (A). Using Lemma 2.1 and Theorem 2.2,

Ue(AT) = ¥r(A) = el < llsll < vu(AT).

Therefore, ||7|| = |||l = ¥x(A). Using Lemma 2.1 we obtain
Sk Sk
lsell ¥r(A4)’
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so that qx(AT)pr(A)b = qr(AT)r = ||rkllsk = w,%(A)b. d

Equation (2.6) shows that b is an eigenvector of the matrix gx (AT )py.(A) with the
corresponding eigenvalue 17(A). In Corollary 3.7 we will show that g = py, i.e., that
b is a right singular vector of the matrix py(A).

To further investigate vectors with the special property introduced in Theorem 2.3
we use the following definition.

DEFINITION 2.4. Let A € R™*™ be nonsingular and k > 1. We say that a unit
norm vector b € R™ with d(A,b) > k satisfies the cross equality for A and k, if

k" where sy = GMRES (AT, ﬁ k) , 7, = GMRES(A, b, k).
Tk

 lsell”

The following algorithm is motivated by this definition. Convergence properties
are shown in the theorem immediately below the algorithm statement.

Algorithm 1 (Cross iterations 1)

b0 =p,

for j=1,2,...do
r?) = GMRES(A, b0~ k)
0 = ||
s) = GMRES(AT, =1 k)
b =2 /|5]

end for

THEOREM 2.5. Let A € R™ ™ be nonsingular and k > 1. If b € R™ is any
unit norm vector with d(A,b) > k, then the vectors generated by Algorithm 1 are well
defined and it holds that

. . - - '
@7 U< 15?1 < Il < sV < dnA), =102,
and the two sequences Hrl(cj)H, ji=12,..., and ||s,(€j)|\, j=1,2,..., converge to the

same limit. Moreover,

lim |69 = U=V =0 and lim ||c¥) — =D =0.
J—ro0 J—0o0

Proof. Using Lemma 2.1 we know that r,(cl) as well as s,(cl) are well defined and

it holds that Hr,(cl) | < ||s§€1) |. Switching the roles of A and A7 and using Lemma 2.1

again, it follows that r,(f) is well defined and that ||s§€1)|\ < ||r,(€2) I. Hence, (2.7) follows
from Lemma 2.1 by induction.
By (2.7) the two sequences ||r,(€J) | and ||s,(j) || interlace each other, are both nonde-
creasing, and are both bounded by 1 (A). This implies that both sequences converge
to the same limit, which does not exceed 1y (A).

The first equality in (2.4) shows that ||r,(€])|| = (U1, s,(cj)>. Using this fact and

bo) = sg)/Hsg)H we obtain

(4)
5 9 UV 2 = 1= 07D 6D = 1 U, ) = 1 :T’&»:i'
Sk
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Since the sequences of norms ||r,(€j ) || and ||s(j ) || converge to the same limit for j — oo,
their ratio converges to 1, so that [|b&) —bU=D|| — 0 for j — 0.
The proof of the property for the sequence ¢/ is analogous. O

The results in Theorem 2.5 can be interpreted as a generalization of a theorem
of Forsythe from 1968 [3, Theorem 3.8] from symmetric positive definite A to general
nonsingular A. As already noticed by Forsythe (for the symmetric positive definite
case), there is a strong numerical evidence that for each initial b(© the sequence b
(resp. the sequence c(j)) converges to a uniquely defined limit vector b (resp. ©).
Unfortunately, we were not able to prove that this must always be the case. Such
proof could be used to settle the conjecture made by Forsythe in [3, p. 66]. For a
recent treatment and historical notes on this open problem we refer to [1].

From the above it is clear that satisfying the cross equality represents a necessary
condition for a vector b(?) to be a worst-case initial vector. On the other hand, we can
ask whether this condition is sufficient, or, at least, whether the vectors that satisfy
the cross equality are in some sense special. To investigate this question we present
the following two lemmas.

LEMMA 2.6. Let A € R™*™ be nonsingular and k > 1. A unit norm vector b € R™
with d(A,b) > k satisfies the cross equality for A and k if and only if b € Kiy1 (AT, 71.),
where r, = GMRES(A, b, k). In particular, if d(A) = n, then each unit norm vector
b with d(A,b) = n satisfies the cross equality for A and k =n — 1.

Proof. The nonzero GMRES residual 1, € b+ AKk(A,b) C Ki+1(A,b) is uniquely
determined by the orthogonality conditions (2.1), which can be written as

0= <A]bvrk> = <b7 (AT)ka>a for .7 = 17"'5k7
or, equivalently,
(2.8) b L ATKL(AT ry).
Now let s, = GMRES(AT 74 /||7k|, k). Then
T
(29) s € Hr—ZII + ATKL(AT 1) C Kr (AT r),  se L ATKR(AT 1y .

We will now prove the equivalence. On the one hand, if b satisfies the cross
equality for A and k, then b = s /||sx| and (2.9) implies that b € Kjy1 (AT, 7).

On the other hand, suppose that b € Kr11(AT, 7). From (2.8) it follows that also
b L ATKk(AT ry). Since AT (AT ry) is a k-dimensional subspace of the (k + 1)-
dimensional subspace Kjy1(AT,7x), b has to be a multiple of sg, i.e. b = si/sk
or b = —si/|skl|. Finally, from (2.9) we get (b, si) = ||re| =2, rx) = ||r&] > 0.
Therefore, b = si./||sk]|-

For k = n — 1, we have Kr11(AT,rr) = R", ie. b € Kpr1(AT ry) is always
satisfied. O

LEMMA 2.7. Let

(2.10) Iy = R e RV, A A0.

—_



Then e, = [0,...,0,1]T satisfies the cross equality for Jy and every k =1,...,n—1.
Proof. From [10, Example 2.3] we know that

(2.11) 75 = GMRES(Jy, 0, k) = |75 ]%[0, ..., 0, (=N, (=N = 1)T.

Using Lemma 2.6, it is sufficient to show that e,, € Ky41(JY, k). We will look at the
nonzero structure of the vectors (Ji )7ry,. First, it holds that

J)Trk = (—1)k||rk ||2)\k+1€n_k.

Consequently, for j =1,...,k—1, (J{ ) 'r, = (JT)7(J{'ry) is a nonzero multiple of
the (n — k)th column of (JI)7. Hence

o .. o
[rk7J;Tk7'--,(J;>ka] = ° L [} ,
e o© .
L . O i

where “o” stands for a nonzero entry and “o” represents a zero entry. From this

structure one can easily see that e, € ICkH(JAT, ri). O

Our numerical tests predict that although e,, satisfies the cross equality for Jy and
every k=1,...,n—1, e, is not a worst-case GMRES initial vector for Jy and any k.
We are able to prove this statement only in special cases, for example if 1 < k <n/2
and A > 2. In this case ¥ (Jy) = A7F (cf. [15, Corollary 3.3]), while (2.11) shows
that rp = GMRES(J), en, k) has the norm

—1/2

k—1
lrell = A2k +Z)\2j < A7k
=0

To give a numerical example for Algorithm 1 we consider A = J; € R
and k = 5. In the left part of Fig. 2.1 we plot the results of Algorithm 1 started

with four random unit norm initial vectors and executed for j = 1,2,---,10. Each

1 1 2 2 10
TS T TS TP TR TS

Hsg In each case we noted that the sequences numerically converge to uniquely
defined limit vectors (cf. our remarks following the proof of Theorem 2.5). Moreover,
in each case we obtain at the end a unit norm vector b('9) that satisfies (up to a small
inaccuracy) the cross equality for J; and k = 5. We can observe that there seems to
be no special structure in the norms that are attained at the end. In particular, none
of the runs results in a worst-case initial vector for J; and k = 5, i.e., none of the
curves attains the value ¥5(Jy) that is visualized by the highest bold horizontal line
in the figure.

As indicated in the left part of Fig. 2.1, the sequences of residual norms generated
by Algorithm 1 usually stagnate after only a few iterations. Unfortunately, this level
is usually far below the worst-case level we want to reach. In order to get closer to

7
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Fic. 2.1. Cross iterations for the 11 x 11 Jordan block Ji, k = 5, and four different random
inatial vectors. The left part shows results for Algorithm 1 and the right part for Algorithm 2. The
bold solid horizontal line represents the worst-case GMRES residual norm for Ji.

that level, we need to disturb the process and try a different initial vector that could
provide a greater GMRES residual norm. This motivates the following modification
of Algorithm 1, where in each step we decide between using A or A” to generate the
next residual norm.

Algorithm 2 (Cross iterations 2)

b0 = p,

for j=1,2,...do
v = GMRES(A4,50U~1 k)
w = GMRES(A”, b0~ k)
if ||v]| < |Jw| then

tkj =w
else
t,(cj) =
end if ‘
b9 =1 /16|
end for

Algorithm 2 is well defined and has similar convergence properties as those stated
in Theorem 2.5 for Algorithm 1. As shown in the right part of Fig. 2.1, the strategy
of Algorithm 2 is a little bit better than the one of Algorithm 1 when looking for a
worst-case initial vector: It generates larger residual norms than Algorithm 1, but
they are still less than the true worst-case norm. While one may use the output of
Algorithm 2 as an initial point for an optimization routine like fminsearch, finding an
efficient algorithm for computing a worst-case initial vector remains an open problem.

3. Optimization point of view. In this section we rewrite the worst-case GM-
RES approximation problem (1.3) in an equivalent form in order to characterize worst-
case GMRES initial vectors and the corresponding worst-case GMRES polynomials
as saddle points of a certain function. This formulation will in particular be used to
show that the worst-case GMRES polynomials for A and AT are identical.

Let a nonsingular matrix A € R™*™ and a positive integer k < d(A) be given.
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For vectors ¢ = [cy, ..., c;]T € RF and v € R™, we define the function

(3.1) fe,v) = [Ip(A; )l = v p(A;¢) p(4; c)o,
where
k .
p(z;e)=1-— chzj.
j=1

Equivalently, we can express the function f(c¢,v) using the matrix
K(v) = [Av, A%, ..., AFv]
as
(3.2) fle,v) = |lv— K@)e|*> =vTv - 207K (v)e + T K(v)T K (v)e.

(Here only the dependence on v is expressed in the notation K(v), because A and
k are both fixed.) Note that K(v)TK(v) is the Gramian matrix of the vectors
Av, A%, ..., AFv,

K@)TK(@w) = [UT(AT)iAjv}

i5=1,...k"

Next, we define the function

g(v) = min f(c,v),

which represents the kth squared GMRES residual norm for the matrix A and the
initial vector v, and we denote

Q={uecR": d(4,u) >k}, F={ueR": dA u) <k}

The set I is a closed subset, () is an open subset of R, and R” = Q UT'. Note that
g(v) > 0 for all v € Q and g(v) = 0 for all v € I". The following lemma is a special
case of [2, Proposition 2.2] for real data and nonsingular A.

LEMMA 3.1. In the previous notation, the function g(v) is a continuous function
of v € R, ie., g € COR™), and it is an infinitely differentiable function of v € Q,
i.e., g € C(Q). Moreover, T' has measure zero in R™.

We next characterize the minimizer of the function f(c,v) as a function of v.

LEMMA 3.2. For each given v € €0, the problem

min f(c,v
cERF f( ’ )

has the unique minimizer
cx(v) = (K()TK () 'K (v)Tv € R,

As a function of v € Q, this minimizer satisfies c.(v) € C>®(Q). Given v € Q,
(c«(v),v) is the only point in RF x Q with

Vef(cx(v),v) =0.
9



Proof. Since v € Q and A is nonsingular, the vectors Av, A%v, ... A*v are linearly
independent and K (v)” K (v) is symmetric and positive definite. Therefore, if v € Q
is fixed, (3.2) is a quadratic functional in ¢, which attains its unique global minimum
at the stationary point

ce(v) = (K(w) ' K(v)) 'K (v)Tv.

Since K (v)T K (v) is nonsingular and each entry of (K (v)T K(v))~! can be expressed
using Cramer’s rule, the function ¢, (v) is a well defined rational function of v € Q,
and thus ¢, (v) € C*(Q). Note that the vector c.(v) contains the coefficients of the
kth GMRES polynomial that corresponds to the initial vector v € 2. O

As stated in Lemma 3.1, g(v) is a continuous function on R™, and thus it is also
continuous on the unit sphere

S={ueR": |u]|=1}.

Since S is a compact set and g(v) is continuous on this set, it attains its minimum
and maximum on S.
We are interested in the characterization of points (¢,v) € R* x S such that

(3.3) f(€,9) = max min f(c,v) = maxg(v).

This is the worst-case GMRES problem (1.3). Since g(v) = 0 for all v € T, we have

e IL) = g o)

To characterize the points (¢,7) € R¥ x S that satisfy (3.3), we define for every ¢ € R*
and v # 0 the two functions

Fle,v) = f <C|Z—||) _fley) Gv) =g (ﬁ) _9l)

vTo
Clearly, for any « # 0, we have
F(e,av) = F(c,v), G(av) = G(v).
LEMMA 3.3. It holds that G(v) € C*(Q). A vector v € QNS satisfies
g(v) > g(v) forall veS
if and only if v € QNS satisfies

G) > Gw) for all veR™\{0}.

Proof. Since g(v) € C*°(Q2) and 0 ¢ ©, it holds also G(v) € C*(Q). If v € QN S
is a maximum of G(v), then av is a maximum as well, so the equivalence is obvious.

O
THEOREM 3.4. The vectors ¢ € R* and v € SN that solve the problem

vex i (o)
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satisfy
(3.4) V.F@E9) =0, V,F(E7) =0,
i.e., (¢,v) is a stationary point of the function F(c,v).
Proof. Obviously, for any v € €,
flex(w),v) _ flev)

Flex(v),v) = vTo vTo

= F(c,v) forall c € R¥,

i.e., ¢x(v) also minimizes the function F'(c,v). Hence,
V. F(co(v),v) =0, v e

We know that g(v) attains its maximum on S at some point v € Q N S. Therefore,
G(v) attains its maximum also at v. Since G(v) € C*° (), it has to hold that

VG(v) = 0.
Denoting ¢ = ¢, (v) and writing the function G(v) as G(v) = F(c.(v),v) we get
(3.5) VG[@) =0 = V,c.(V)V F(¢,0) + V,F(c,0),

where V,c.(?) is the n x k Jacobian matrix of the function c.(v) : R* — R* at
the point v. Here we used the standard chain rule for multivariate functions. Since
v e QNS, we know that V.F(¢,v) = 0, and, therefore, using (3.5), V,F(¢,v) = 0.0

THEOREM 3.5. If (¢,0) is a solution of the problem (3.3), then v is a right
singular vector of the matriz p(A;<).

Proof. Since (¢,v) solves the problem (3.3), we have 0 = V,F(¢,v). Writing
F(c,v) as a Rayleigh quotient,
v p(A; ) Tp(4; c)v
v

F(c,v) =

)

we ask when V, F(c,v) = 0; for more details see [9, pp. 114-115|. By differentiating
F(c,v) with respect to v we get
0 = 24 ) p(As o |Jol|? — 2[vTp(A: ) Tp(A; c)v] v

- (vTv)?

and the condition 0 = V, F(¢,v) is equivalent to

p(A;0)"p(A;0)0 = F(&,0) 0.
In other words, ¥ is a right singular vector of p(4;¢) and o = \/F(¢,v) is the corre-
sponding singular value. O

THEOREM 3.6. A point (¢,v) € R¥ xS that solves the problem (3.3) is a stationary
point of F(c,v) in which the maximal value of F(c,v) is attained.

Proof. Using Theorem 3.4 we know that any solution (¢,7) € R¥ x S of (3.3) is a
stationary point of F'(c,v). On the other hand, if (¢,9) € R* x S satisfies
V. F(é,0) =0, V. .F(¢,0) =0,
11



then p(A4;¢) is the GMRES polynomial that corresponds to ¢ and
F(&,0) = [[p(4;&)0|* < [lp(A;0)0))* = F(&,9).
Hence, (¢,v) is a stationary point of F(¢,v) in which the maximal value of F(c,v) is
attained. 0
As a consequence of previous results we can formulate the following corollary.

COROLLARY 3.7. With the same assumptions and notation as in Theorem 2.3,
it holds that pr = qy..

Proof. Using Theorem 3.5 and Theorem 3.6 we know that
(3.6) P (A)b = pr(AT)pr(A)b,

i.e., that b is a right singular vector of the matrix py(A) that corresponds to the
maximal value of F(¢,?), i.e., to 97(A). From (2.6) we also know that

(3.7) Ui(A)b = qr(AT)pr(A) b

where ¢ is the GMRES polynomial that corresponds to A7 and the initial vector ry.
Comparing (3.6) and (3.7), and using the uniqueness of the GMRES polynomial gy
it follows that py = qx. O

4. Non-uniqueness of worst-case GMRES polynomials. In this section we
prove that a worst-case GMRES polynomial may not be uniquely determined, and
we give a numerical example for the occurrence of a non-unique case. Our results are
based on Toh’s parametrized family of (nonsingular) matrices

1 ¢

41) A= Awe) = -1

= |8

e R4, O<w<?2, 0<e.
—1
Toh used these matrices in [16] to show that 13(A)/@3(A) — 0 for e — 0 and each

w € (0,2) [16, Theorem 2.3|. In other words, he proved that the ratio of the worst-case
and ideal GMRES approximations can be arbitrarily small.

THEOREM 4.1. Let A be as in (4.1). If pr(2) is a worst-case GMRES polynomial
for A and k, then pr(—2) is also a worst-case GMRES polynomial for A and k.

In particular, ps3(z) # p3(—z), so the worst-case GMRES polynomial for A and
k = 3 1is not uniquely determined.

Proof. Let b be any worst-case initial vector for A and k, and consider the or-
thogonal similarity transformation

A=-QATQT, Q= )
Then

pr(A)b = Qpiu(=AT)QTb  and ¥ (A) = [lpe(A)b]| = [pe(—AT)wl| = v (AT),
12



where w = QTb. In other words, py(—2) is a worst-case GMRES polynomial for AT

and k. Using Corollary 3.7, it is also a worst-case GMRES polynomial for A and k.
Let p3(z) € w3 be any worst-case GMRES polynomial for A and k = 3. To show

that p3(—z) # p3(z) it suffices to show that p3(z) contains odd powers of z, i.e., that

(4.2) p3(z) #1— B2% for any B € R.
Define the matrix

1 0

1

B = = A2,

— o €
— o & o

From [16, Theorem 2.1] we know that the (uniquely determined) ideal GMRES poly-
nomial for A and k = 3 is of the form

43) () =1+ (a—1)z? 2
. «(2) = a—1)z7, o= .
b 4+ w?
Therefore,
min ||p(A)|| = min max ||p(B)v|| = max min ||p(B)v||,
min [p(4)] = min s 1p(B)o]] = max win ()

where the last equality follows from the fact that the ideal and worst-case GMRES
approximations are equal for k = 1 [8, 5]. If a worst-case polynomial for A and k = 3
is of the form 1 — 322 for some 3, then

¥3(A) = max min [[p(A)v]| = max min ||p(B)v| = min [[p(A)[| = @3(A).
lof|=1pems llol|=1pem pems

This, however, contradicts the main result by Toh that ¥3(A) < @3(A); see [16,
Theorem 2.2]. O

To compute examples of worst-case GMRES polynomials for the Toh matrix (4.1)
numerically we chose ¢ = 0.1 and w = 1, and we used the function fminsearch from
MATLAB’s Optimization Toolbox. We computed the value

¥3(A) = 0.4579

(we present the numerical results only to 4 digits) with the corresponding third worst-
case initial vector

b= [~0.6376,0.0471,0.2188, 0.7371]”

and the worst-case GMRES polynomial

pa(z) = —0.0252° — 0.8952% +0.2432 + 1 = o (2 — 1.181)(= +0.939) (= + 35.96).

One can numerically check that b is the right singular vector of p3(A) that corresponds
to the second maximal singular value of p3(A4). From Theorem 4.1 we know that
q3(2) = p3(—=) is also a third worst-case GMRES polynomial. One can now find the

13



corresponding worst-case initial vector leading to the polynomial g3 using the singular
value decomposition (SVD)

p3(A) =USVT,

where the singular values are ordered nonincreasingly on the diagonal of S. We know
(by numerical observation) that b is the second column of V. We now compute the
SVD of ¢g3(A), and define the corresponding initial vector as the right singular vector
that corresponds to the second maximal singular value of g3(A). It holds that

p3(AT) = p3(A)T =V SUT.
Since AT = —QAQT, we get Qps(—A)QT = VSUT, or, equivalently,
g3(4) = (QTV)S(QTU)T.

So, the columns of the matrix QT U are right singular vectors of g3(A) and the vector
Q" usy, where us is the second column of U, is the worst-case initial vector that gives
the worst-case GMRES polynomial ¢3(z) = ps(—z).

5. Ideal versus worst-case GMRES. As mentioned above, Toh [16] as well
as Faber, Joubert, Knill, and Manteuffel [2] have shown that worst-case GMRES and
ideal GMRES are different approximation problems in the sense that there exist ma-
trices A and iteration steps k for which 15 (A) < @r(A4). In this section we further
study these two approximation problems. We start with a geometrical characteriza-
tion related to the function f(c,v) from (3.2).

THEOREM 5.1. Let A € R™*™ be a nonsingular matriz and let 1 < k < d(A) — 1.
The kth ideal and worst-case GMRES approximations are equal, i.e.,

| . o
o1 e en = mne e

if and only if f(c,v) has a saddle point in R¥ x S.

Proof. If f(c,v) has a saddle point in R* x S, then there exist vectors ¢ € R¥ and
v € S such that

fe,v) < f(€,0) < f(e,v) VeeR* VoeS.

The condition f(¢,v) < f(¢,v) for all v € S implies that ¥ is a maximal right singular
vector of the matrix p(4;¢). If f(¢,0) < f(c,v) for all ¢ € R¥, then p(z;¢) is the
GMRES polynomial that corresponds to the initial vector ¥. In other words, if f(c,v)
has a saddle point in R¥ x S, then there exist a polynomial p(z;¢) and a unit norm
vector v such that v is a maximal right singular vector of p(A;¢) and

p(A: &) L AK(A,D).

Using [15, Lemma 2.4], the kth ideal and worst-case GMRES approximations are then
equal.

On the other hand, if the condition (5.1) is satisfied, then f(c,v) has a saddle
point in R¥ x S. O

In other words, the kth ideal and worst-case GMRES approximations are equal
if and only if the points (¢,7) € R* x S that solve the worst-case GMRES problem
are also the saddle points of f(c,v) in RF x §.

14



We next extend the original construction of Toh [16] to obtain some further nu-
merical examples in which ¢, (A) < ¢r(A). Note that the Toh matrix (4.1) is not
diagonalizable. In particular, for w = 1 we have A = XJX !, where

1 1 € € € —€

~ 1 -2 -1 0 1
J = -1 1 ’ X = 0 —2 0 2e
-1 0 4 0 0

One can ask whether the phenomenon v (A) < ¢r(A) can also appear for diago-
nalizable matrices. The answer is yes, since both ¥, (A) and ¢;(A) are continuous
functions on the open set of nonsingular matrices; see [2, Theorem 2.5 and Theo-
rem 2.6]. Hence one can slightly perturb the diagonal of the Toh matrix (4.1) in order
to obtain a diagonalizable matrix A for which ¢y (A) < @y (A).

For w = 1, the Toh matrix is an upper bidiagonal matrix with the alternating
diagonal entries 1 and —1, and the alternating superdiagonal entries € and ¢~!. One
can consider such a matrix for any n > 4, i.e.,

A: . . eRan’

and look at the values of ¥ (A) and ¢ (A). If n is even, we found numerically that
Yi(A) = pr(A) for k # n—1and ¢,_1(A) < op—1(A4). If nis odd, then our numerical
experiments showed that 15 (A) = @i (A) for k # n — 2 and ,—2(A) < pn_2(A).
Hence for all such matrices worst-case and ideal GMRES differ from each other for
exactly one k.

Inspired by the Toh matrix, we define the n x n matrices (for any n > 2)

A e 0 0 ... 0

J)\,EE ) EEE
- 0 0 0
A el 0 0

and use them to construct the matrix

A= [ Jie wkE ] € R2WX2n w >0
J—l,a

One can numerically observe that here 15 (A) < pr(A) for all steps k =3,...,2n—1.
As an example, we plot in Fig. 5.1 the ideal and worst-case GMRES convergence
curves for n = 4, ie.,, A is an 8 x 8 matrix, w = 4 and ¢ = 0.1. Varying the
parameter w will influence the difference between the worst-case and ideal GMRES
values in these examples. Decreasing w leads to a smaller difference, and increasing w
leads to a larger difference for large k, while the two values need not differ for some
small k.

15



- » -ideal GMRES
| —®—worst-case GMRES

1 2 3 4 5 6 7
number of iterations k

10

Fic. 5.1. Ideal and worst-case GMRES can differ from step 3 up to the step 2n — 1.

6. Ideal and worst-case GMRES for complex vectors or polynomials.
We now ask whether the values of the min-max approximation (1.2) and the max-min
approximation (1.3) for a matrix A € R™*" can change if we allow the maximization
over complex vectors and/or the minimization over complex polynomials. We will give
a complete answer to this question in Theorems 6.1 and 6.3 below. In short, for the
min-max approximation related to ideal GMRES the underlying fields of minimization
and maximization do not matter, while for the max-min approximation related to
worst-case GMRES different fields may in some cases indeed lead to different values.
These results again indicate the different nature of the two approximation problems,
and they complement (and in some sense complete) previous results in the literature
dealing with the same question; see, in particular, [2, Section 2[,[8, Section 3], and
[20, Section 4].

Let us define

orkF(A) = min max |[p(A4)d], Yrrr(A) = max min [[p(A)b,
where K and F are either the real or the complex numbers. Hence, the previously
used ¢ (A), ¥i(A), and 7, are now denoted by ¢rrr(A) and Yrrr(A4), and 7k R,
respectively. We first analyze the case of ¢r x r(A).

THEOREM 6.1. For a nonsingular matriz A € R™™ and 1 <k < d(A) —1,

vrrR(A) = prcr(A) = vrrc(4) = vrcc(A).

Proof. Since

max | Bol| = [B]| = max | Bo|

llell=1 llell=1

holds for any real matrix B € R"*", we have ¢ rr(A) = @i r.c(A).

Next, from R C C we get immediately ¢ cr(A) < ¢rr,r(A). On the other hand,
writing p € 7 ¢ in the form p = p, +ip;, where p, € m, g and p; is a real polynomial
of degree at most k such that p;(0) = 0, we get

2 . 2 2 _ 2
Prcr(4) = min max Ip(A)ell* = min e (- (A)DI* + lpi(A)BII%)
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> mi (A2 = 02 r(A),

Z L e [ (A)B]" = #ic p m(4)
so that ¢r cr(A) = ¢rrr(A). Finally, from [7, Theorem 3.1] we obtain @i rr(A) =
¢rcc(A). O

Since the value of ¢y x 7(A) does not change when choosing for K and F real or
complex numbers, we will again use the simple notation ¢y (A) in the following text.
The situation for the quantities corresponding to the worst-case GMRES approxima-
tion is more complicated. Our proof of this fact uses the following lemma.

LEMMA 6.2. If A = A(w,¢) is the Toh matriz defined in (4.1) and

6.1) B{‘g H

then Y3 r r(B) = ¢3(4).
Proof. Using the structure of B it is easy to see that ¢, g r(B) < ¢ (A) for any k.
To prove the equality, it suffices to find a real unit norm vector w with

(6.2) min |[p(B)w| = ¢3(A) = min [|p(A)].

PET3 R PET3 R
The solution p. of the ideal GMRES problem on the right hand side of (6.2) is given by
(4.3). Toh showed in [16, p. 32| that p.(A) has a twofold maximal singular value o, and

that the corresponding right and left singular vectors are given (up to a normalization)
by

0 w 0 2

(o1, vo] = w 0 [, us] = 2 0
’ 0o -2 |’ ’ 0 —w |’

—2 0 —w 0

ie., our = p«(A)vy and oug = p.(A)ve, where o = ||p.(4)].
Let us define

2l e

o[ ]=ofu] e (D=0

we see that ||¢(B)w|| = o. To prove (6.2) it is sufficient to show that ¢ is the third
GMRES polynomial for B and w, i.e., that ¢ satisfies ¢(B)w L B/w for j = 1,2, 3,
or, equivalently,

Using

Uq r Aj 0 (% TAj TAj . 1.9
s 0 A v | = uy Ay +uy Ave =0, j=1,2,3.
Using linear algebra calculations we get u? Av; = —4w = —ud Avy, and

0 = ul A%v; = ul A%vy = uf A3v; = ul A3v,.

17



Therefore, we have found a unit norm initial vector w and the corresponding third
GMRES polynomial ¢ such that ||¢(B)w|| = ¢3(A). O

We next analyze the quantities ¥y x r(A).
THEOREM 6.3. For a nonsingular matrix A € R™*™ and 1 <k < d(A) —1,

YrrR(A) =V cr(A) < Yrcec(A) <Yrre(4) < er(A),

where the first and the second inequality can be strict.

Proof. For a real initial vector b, the corresponding GMRES polynomial is
uniquely determined and real. This implies ¢ cr(A4) = Yrrr(A). Next, from [7,
Theorem 3.1] it follows that ¢ rr(A) < ¥k c.c(A). Finally, using R € C we get
Yrc.c(A) < Yrrc(A4). It remains to show that the first and the second inequality
can be strict, and that ¥r r.c(A) < pr(A).

For the first inequality, as shown in [20, Section 4], there exist real matrices A
and certain complex (unit norm) initial vectors b for which minyer, . [[p(A)b]| = 1
for k =1,...,n — 1 (complete stagnation), while such complete stagnation does not
occur for any real (unit norm) initial vector. Therefore, there are matrices for which
Yrcr(A) < Yrcc(A).

To show that the second inequality can be strict, we note that for any A € R™*",
the corresponding matrix B € R?>"*2" of the form (6.1), and 1 < k < d(4) — 1,

Virc(A) = max min [p(A)b|*> = max  min |[p(A)(u+ iv)|?
o \beHC:nl PET.R HuHZ’iﬁf\TQZI PETE R

= max  min ([[p(Aul” + [[p(A)v]?)
fulogz=1 ©o

(6.3) = max min Ip(B)vl* = i g r(B).

lloll=1

Now let A be the Toh matrix (4.1) and k = 3. Toh showed in [16, Theorem 2.2] that
for any unit norm b € C* and the corresponding third GMRES polynomial p, € T3,C,

125 (A)b]| < p3(A).

Hence 93.¢,c(A4) < ¢3(A). Lemma 6.2 and equation (6.3) imply ¢3(A) = Y3 r,c(A4)
for the Toh matrix, and, therefore, the second inequality can be strict.

Finally, since ||p(A)|| = ||p(B)]| for any polynomial p, we get ¢3(B) = ¢3(A), and,
using (6.3), Y3 r,c(A) = Y3 rr(B) < @3(B) = p3(A). O

We do not know whether the first and the second inequality in Theorem 6.3 can
be strict simultaneously, i.e., can both be strict for the same A and k. Concerning the
last inequality in Theorem 6.3, we are in fact able to prove that ¥ r c(4) = vir(A).
Since the techniques used in this proof are beyond the scope of this paper, we will
publish it elsewhere.

Our proof concerning the strictness of the first inequality in the previous theorem
relied on a numerical example given in [20, Section 4]. We will now give an alterna-
tive construction based on the non-uniqueness of the worst-case GMRES polynomial,
which will lead to an example with ¢, rr(A) < V¥rr,c(A).

Suppose that A is a real matrix for which in a certain step k two different worst-
case polynomials p, € m, g and p. € 7 r With corresponding real unit norm initial
vectors b and c exist, so that

Vrrr(A) = [Ips(A)bll = [[pe(A)e]-
18



S S
— GMRES(B,g,3)

== =Wy pa(A)

0.75

0.7

0.65¢

0.61

0.55¢

0.5¢

0.45
0

Fia. 6.1. Illustration of the value of (6.5) and different quantities from Theorem 6.3 for the
Toh matriz A(1.0, 0.1) in (4.1) and k = 3.

Note that since p, and p. are the uniquely determined GMRES polynomials that solve
the problem (1.1) for the corresponding real initial vectors, it holds that

(6.4) 1o (A)bll < [lp(A)bll, [lpe(A)e]l < [lp(A)e]

for any polynomial p € 7, ¢ \ {pp, pc}-
Writing any complex vector w € C" in the form w = (cosf)u + i(siné)v, with
u,v € R™, JJu|l = ||v]| = 1, we get
Vi rc(4) = max min |p(A)b||?
iz PETRE
= max_ min (cos®0|p(A)ul/*+ sin® 0 |[p(A)v|?)

Ok, u,vER™ pGﬂ‘km
Tull=llvli=1

OER pETE R
> (cos”0) "/JI%,]R,]R(A) + (sin®#9) wI%JR,]R(A) = ¢1%,R,R(A)7

where the strict inequality follows from (6.4) and from the fact that |p(A)b||* and
Ip(A)c||? do not attain their minima for the same polynomial.

To demonstrate the strict inequality ¢, g r(A) < ¥ r.c(A) numerically we use
the Toh matrix (4.1) with ¢ = 0.1 and w = 1, and k¥ = 3. Let b and ¢ be the
corresponding two different worst-case initial vectors introduced in Section 4. We
vary 6 from 0 to m and compute the quantities

(6.5) min  (cos” 6 [[p(A)b]|* + sin® 8 [[p(A)e[?) = min [p(B)go|*,
PET3 R PET3 R

> max min (cos® 0||p(A)b[|*> + sin® 0||p(A)c||?)

where

<[4 8] o n=[ )

In Fig. 6.1 we can see clearly, that for 6 ¢ {0, 7/2,7} the value of (6.5) is strictly
larger than 3 g r(A) = 0.4579 (dashed line). Numerical computations predict that
Ysrr(A) = ¥3cc(A) for the Toh matrix. Finally, Lemma 6.2 and equation (6.3)
imply 3 c(A) = Y3 rr(B) = p3(A) (dash-dotted line).
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