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Strakoš, Zdeněk; Tichý, Petr

On Estimation of the A-norm of the Error in CG and PCG

We concentrate on the preconditioned conjugate gradient method and describe a simple and numerically well-justified
way of estimation of the A-norm of the error. In this way this note represents an extension of [5] and its aim is to
mediate the analytic results from [5] to practical users of the preconditioned conjugate gradient method.

1. Introduction

In this paper we consider a system of linear algebraic equations Ax = b where A is a Hermitian positive definite n

by n matrix and b n-dimensional vector (both real or complex). When A is large and sparse, as in matrices arising
from FEM discretization of 3-D problems, iterative methods become competitive alternatives to direct solvers. For
Hermitian positive definite systems, the conjugate gradient (CG) method [4] with a proper (typically problem–
inspired) preconditioning represents in most cases a good choice. A goal of this paper is to present a simple way of
estimating the A-norm of the error in the preconditioned conjugate gradient (PCG) method.

Estimating the A-norm of the error in CG and PCG has been studied by many authors. History and various aspects
of this topic are thoroughly described in [5]. Though the formulas emphasized in [5] were published (in some form)
previously, e.g. in [4], [2] or [1], our contribution is, to our opinion, novel in providing theoretical justification for
practical use of the error estimates in computations affected by rounding errors. The presented note extends the
results from [5] to PCG. A need for writing it can perhaps be seen from a comparison with [1, Section 6]. The last
paper thoroughly and extensively examines estimating error norms in PCG. However, all derivations in [1, Section 6]
assume exact arithmetic, no loss of orthogonality is considered there and the results are based on exploiting the
finite termination property, i.e., on getting the exact solution in a finite number of steps (which does not exceed the
dimension of the problem). These assumptions are clearly, in general, violated in practical computations. In order
to be widely used, a practical error estimator needs to be properly justified (for a more detailed discussion see [5]
and also [3]).

2. Estimation of the A-norm of the error

The standard version of the PCG method is given by the formulas

given x0, r0 = b − Ax0, s0 = M−1r0, p0 = s0,
for j = 0, 1, . . .

γj =
(rj , sj)

(pj , Apj)
, xj+1 = xj + γj pj , rj+1 = rj − γj Apj , sj+1 = M−1rj+1,

δj+1 =
(rj+1, sj+1)

(rj , sj)
, pj+1 = sj+1 + δj+1 pj

end for.

The preconditioner M = LLT is chosen so that a linear system with the matrix M is easy to solve, while the
matrix L−1AL−T ensures fast convergence of PCG. This goal is fulfilled, e.g., when L−1AL−T is well conditioned
(approximates the identity matrix) or has properly clustered eigenvalues (the positions as well as the diameters of
the clusters are important). An estimator for the A-norm of the error is then formulated in a very simple way.
Following [5], we get fundamental identity for decrease of the A-norm of the error in d consecutive steps

‖x − xj‖
2
A =

j+d−1∑

i=j

γi (ri, si) + ‖x − xj+d‖
2
A . (1)

Assuming a reasonable decrease of the A-norm of the error in the steps j + 1 through j + d, the square root of

νj,d ≡

j+d−1∑

i=j

γi (ri, si) (2)
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gives a tight lower bound for the A-norm of the jth error of PCG applied to the system Ax = b. Please notice that
(similarly as in the ordinary CG) the quantities γi and (ri, si) are at our disposal during the PCG iterations.

3. Numerical stability of the estimate

Numerical stability analysis of the estimate (2) must answer a question to which extent the identity (1) holds for
quantities computed in finite precision arithmetic (characterized by machine precision ε). Please notice that this
question if fundamentally different from its trivial part examining the error in computing νj,d from (2) using γi and
(ri, si). In order to justify the estimate (2), we have to derive the identity for the computed quantities analogous to
(1) without using any assumption which does not hold in finite precision computations. In particular, we can not
use any assumption about orthogonality or finite termination. A complicated analysis published in [6], see also [5],
shows that the computed quantities satisfy

‖x − xj‖
2
A − ‖x − xj+d‖

2
A = νj,d + νj,d E

(1)
j,d + ‖x − xj‖A E

(2)
j,d + O(ε2), (3)

where the terms E
(1)
j,d and E

(2)
j,d are small (for their quantification see [6]). This formula can be interpreted in a

following way: until ‖x − xj‖A reaches a level close to ε‖x − x0‖A, the estimate νj,d must work.

4. Numerical Experiment

To illustrate the quality and also the drawbacks of the esti-
mate (2), we use a problem of the size n = 21498 arised from
cylindrical shell modeling, given at the R. Kouhia’s homepage
http://www.hut.fi/~kouhia/. Experiment was performed in
MATLAB 6.5 on a PC with machine precision ε ∼ 10−16. We
set x0 = 0, determined L simply by the MATLAB command
cholinc(A, 1e–5), and used a fixed value d = 4. The figure demon-
strates that if the A-norm of the error (solid line) decreases rapidly
(iterations 350−400), we can not visually distinguish this quantity
from its estimate (dashed line). On the other hand, if the conver-
gence is slow (iterations 1−350) (2) may underestimate the actual
A-norm of the error. Still, the behaviour of the estimate offers
a good information about convergence. We emphasize that this
example represents an illustration, and neither the preconditioner
nor the estimate (parameter d) has been tuned for this specific
problem.
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tube: n=21498, d=4, nnz(A)= 894490, nnz(L)=4384369, L=cholinc(A,1.0e−005)
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