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Introduction

Many real-world problems can be described (using some knowledge from other
areas of science) in a mathematical language. For example, a part of reality can be
modeled by a system of integral or differential equations. These equations usually
describe the real-world problem approximately (the problem is idealized by omitting
unimportant details). A solution of this system of integral or differential equations
lies in an infinite dimensional space and it is, in general, analytically uncomputable.
Therefore we formulate a dicretized problem and look for an approximate solution
in a finite dimensional space. After a possible linearization we obtain a system of
linear equations

Ax = b,(1)

one of the basic problems of numerical linear algebra. The whole solution process
combines tools from mathematical modeling, applied mathematics, numerical ana-
lysis, numerical methods and numerical linear algebra (for more details see [11]).
At all stages, the approximation steps are accompanied by errors and the whole
solution process should be well-balanced to avoid wasting human and computer
resources. When the problem is approximated on one stage with some level of accu-
racy it does not make a sense to solve the corresponding problem on a next stage
with a substantially different accuracy. Therefore, iterative methods are often very
suitable for solving the system (1). We can stop iteration process at any iteration
step (when the required accuracy level is reached). Moreover, the sparse structure of
matrices allows to solve large systems of millions of unknowns without transforming
the system matrix or even without forming it.

We mentioned one of the possible processes of formation of systems of linear
equations. Of course, systems of linear equations can arise in many ways and in
many applications.

This thesis is devoted to Krylov subspace methods for solving the system (1), .
It seems that the combination of preconditioning and Krylov subspace methods is
suitable and effective for solving the problem described above. The thesis consists
of 5 chapters.

The first chapter is introductory. Based on [10], [8] and [5] it gives an overview
of the most important Krylov subspace methods. Though there are many Krylov
subspace methods and algorithms, they all are based only on a few principles. In
the last section we discuss the stopping criteria of algorithms.

The Lanczos method for solving unsymmetric systems of linear equations (LM)
is one of the possible generalizations of the CG method to unsymmetric systems.
We deal with this method in the second chapter. The goal of this chapter, which
contains original results, is to contribute to answering an open question: What is
the relationship between the methods with short-term and long-term recurrences?
In particular, we wish to contribute to understanding of the role of the shadow
vector in the Lanczos process. We formulate a theorem about the relation between
general three-term recurrence (the coefficients can be chosen arbitrarily) and the
Lanczos three-term recurrence (the coefficients are determined by the orthogonality
condition). We explain that it is possible to determine the shadow vector such
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that the algorithm of the Lanczos method computes selected residuals of another
Krylov subspace method. We discuss the question why the convergence curves of
classical Krylov subspace methods are often very close to the convergence curve of
the GMRES method.

The third, fourth and fifth chapters consist of original results submitted for
publication [12] (joint work with Z. Strakoš) as well as their extensions.

In the third chapter we deal with the estimation of the A-norm of the error (A is
symmetric and positive definite matrix) in the conjugate gradient method (CG). We
want to bring more light into the problem of estimating of the A-norm of the error.
Based on the connection CG to Gauss quadrature, we show how to construct lower
estimates of the A-norm of the error. We explain that lower estimate based on Gauss
quadrature is mathematically equivalent to the estimates derived by algebraical way
and also to the original formula of Hestenes and Stiefel [9].

The goal of the fourth chapter is to explain the behaviour of CG in finite precision
arithmetic and to prepare basis for the rounding error analysis of estimates of the
A-norm of the error. We describe the basic idea of mathematical model of CG
in finite precision arithmetic based on understanding CG in the sense of Gauss
quadrature. The description and the bounds of the rounding errors arising in the
CG iterates are presented. A new theorem about the local orthogonality in finite
precision arithmetic closes the theoretical part of this chapter. In the numerical
experiments, we deal with the actual size of rounding errors in the CG iterates.

Our goal in the fifth chapter is to explain the problem of application of mathema-
tical formulas (derived in exact precision arithmetic) in finite precision arithmetic,
and to present rounding error analysis of the formulas that we use for estimating of
the A-norm of the error. We extend rounding error analysis of the favoured lower
bound (given by Hestenes’ and Stiefel’s formula [9]) presented in our paper [12] and
prove that it is numerically stable. We also present detailed rounding error analysis
of the new algebraically derived estimate. Our results are illustrated by numerical
experiments. We describe also an estimate for the euclidean norm of the error based
on [9, Theorem 6:3] and demonstrate numerically the possibility of application of
this estimate in finite precision arithmetic.

I. Krylov subspace methods

This chapter gives an overview of Krylov subspace methods. Krylov subspace me-
thod is a special case of projective method. It determines approximate solution xk

such that
xk ∈ x0 +Kk(A, r0), b−Axk ⊥ Lk,(2)

where x0 is the initial approximation, Lk is a space of dimension k and Kk(A, r0)
denotes k-th Krylov subspace,

Kk(A, r0) ≡ span{r0, Ar0, . . . , Ak−1r0}.

Various Krylov subspace methods are determined by the choice of spaces Lk. In
order to work with Krylov subspaces we need to choose their appropriate basis. In
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our work we consider two types of basis: Arnoldi’s basis and Lanczos’ basis. Arnoldi’s
basis is an appropriately chosen orthonormal basis and the computation of the basis
is, in general, expensive to computer resources (memory and computational costs).
Vectors of Lanczos’ basis satisfy

vk+1 ⊥ Kk(AT , r̃0)

where r̃0 is an auxiliary nonzero vector (the shadow vector). The computation of
these basis vectors is not expensive to computer resources.

Denoting by Vk+1 = [v1, . . . , vk+1] the n by k+1 matrix having the basis vectors
v1, . . . , vk+1 as its columns, any vector rk ≡ b − Axk from the linear manifold
r0 + AKk(A, r0) ⊂ Kk+1(A, r0) can be written in the form

rk = Vk+1 qk.

The vector qk ∈ Rk+1 is the coordinate vector of residual rk in the basis v1, . . . , vk+1

and we call it quasi-residual. When the quasi-residual qk is determined such that
the vector rk is a multiple of the last basis vectors vk+1, we speak about Galerkin’s
quasi-residual. The vector qk with minimal norm from the all possible quasi-residuals
is called minimal quasi-residual.

It is clear, from the facts given above, that in order to determine residuals and
approximate solutions (using appropriately chosen basis and quasi-residual) it is
necessary to resolve two problems: the construction of basis vectors and the con-
struction of residuals and approximate solutions from the basis vectors. Algorithmic
formulation of Krylov subspace methods is not unique and depends on algorithms
that realize individual stages of computations. The choice of appropriate algorithms
is important mainly in connection with the usage of algorithms in finite precision
arithmetic.

We present four basic Krylov subspace methods GMRES, FOM, QMR and LM,
and deal with their implementations. From the algorithm BiCG (this algorithm is
an implementation of the Lanczos metod), we derive algorithms of Lanczos-type
product methods (CGS, BiCGStab, TFQMR) and explain the basic idea of hybrid
BiCG-methods (e.g. BiCGStab(l)).

In the end of the chapter, we discuss the stopping criteria of algorithms. We
explain in the context of perturbation theory that if no other (more relevant and
more sophisticated) criterion is available then normwise relative backward error

β(xk) ≡ ‖rk‖
‖b‖+ ‖A‖‖xk‖

should be preferred to the (relative) residual norm ‖rj‖/‖r0‖. The number β(xk)
denotes the minimal size of perturbations ∆A and ∆b in the matrix A and in the
vector b (‖∆A‖ ≤ β(xk)‖A‖, ‖∆b‖ ≤ β(xk)‖b‖) such that xk is the exact solution
of the perturbed system (A + ∆A)xk = b + ∆b.
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II. On the shadow vector in the Lanczos method

In the previous chapter, we explained that it is possible to compute effectively the
basis vectors

vk+1 ⊥ Kk(AT , r̃0)(3)

where r̃0 is an auxiliary nonzero vector, often called the shadow vector or also the
left starting vector. The recurrence for computing basis vectors vk+1 is reduced to
three-term recurrence and it is possible to compute the following basis vector only
from the basis vectors given by previous two iterations. As a consequence, we can
compute the residuals and the approximations given by the conditions

xk ∈ x0 +Kk(A, r0), rk ⊥ Kk(AT , r̃0),(4)

with short-term recurrences (by the BiCG algorithm). We defined some other me-
thods (QMR, CGS, BiCGStab and so on) that are based on the basic condition (3)
and take advantage of the Lanczos’ basis. All these methods are not expensive on
computer resources and the quality of the computed approximate solution is of-
ten comparable with the quality of the approximate solution given by long-term
recurrence of the GMRES or FOM methods. The methods that use the Lanczos’
basis often give the possibility to gain “good” approximate solution from the li-
near manifold x0 +Kk(A, r0) by low expenses on computer resources. However, the
convergence of these methods is not well understood.

We wish to contribute to understanding of the role of the shadow vector r̃0 in the
Lanczos process. One of the possibilities how to look at this problem is following.

Consider the general three-term recurrence

t = Avk − αkvk − βk−1vk−1, γk = ‖t‖, vk+1 = t/γk,(5)

v1 ≡ r0/‖r0‖, β0 = 0, v0 = o where αk and βk−1 are arbitrary coefficients. The
unsymmetric Lanczos algorithm 1 computes Lanczos basis vectors by tree-term
recurrence (5) and the coefficients αk and βk−1 are determined by the orthogonality
condition (3); then we call this recurrence the Lanczos recurrence. Various shadow
vectors r̃0 determine various coefficients αk and βk−1. To understand the role of the
shadow vector we investigate the connection between the Lanczos recurrence and
the general three-term recurrence (5). For the simplicity of notation we assume in
this chapter that

dim(Kn(A, r0)) = n.(6)

The connection between the Lanczos vectors and the vectors computed by the
general three-term recurrence (5) is partially explained in Greenbaum’s theorem [6]:
If the three-term recurrence (5) (α´s and β´s can be almost anything) is run for
no more than (n + 2)/2 steps, there is a vector r̃0 such that recurrence (5) is the
Lanczos recurrence.

In the following theorem, we extend results of Greenbaum’s paper [6].
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Algorithm 1: Unsymmetric Lanczos Algorithm

input A, r0, r̃0

initialization

v0 = o

w0 = o

β0 = 0

γ0 = 0

v1 = r0/‖r0‖
w1 = r̃0/r̃

T
0 v1

for k = 1, . . .

αk = wT
k Avk

t = Avk − αkvk − βk−1vk−1

γk = ‖t‖
vk+1 = t/γk

t = AT wk − αkwk − γk−1wk−1

βk = vT
k+1t

wk+1 = t/βk

end for

Theorem 1 Given the vectors v1, . . . , vk+1 computed by the general three-term re-
currence (5). Then it is possible to compute these vectors by the unsymmetric Lan-
czos algorithm 1 if and only if r0 /∈ Wk and

βj 6= 0, j = 1, . . . , k − 1,(7)

where

Wk ≡
k⋃

i=1

Ki(A, vi+1).(8)

If k ≤ n/2 and if the coefficients βj satisfy the condition (7) then it is possible to
compute the vectors v1, . . . , vk+1 by the unsymmetric Lanczos algorithm 1.

Choosing the coefficient γk in the recurrence (5) as

γk = −(αk + βk−1),(9)

the vectors vk+1 lie in the linear manifold r0 +AKk(A, r0) and we can consider them
to be the residual vectors. Denoting rk ≡ vk+1 and using the relation rk = b−Axk,
we can derive, from recurrence for computing rk, the recurrence for computing
the corresponding approximation xk. Similarly, if we choose the coefficient γk in
the unsymmetric Lanczos algorithm 1 according to (9), denote rk ≡ vk+1, and
add the recurrence for computing the corresponding approximation xk then we
obtain the LMA algorithm – Lanczos method’s algorithm. This algorithm computes
the residuals and the approximations given by the conditions (4). In our work
we generalize the result of the theorem 1 also for the connection between Krylov
subspace method realized by three-term recurrence (for computing residuals and
approximation) and the Lanczos method implemented by the LMA algorithm.

Now turn to another issue. Let rk be arbitrary residual,

rk ∈ r0 + AKk(A, r0).(10)
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If the shadow vector satisfies the conditions

r̃0 ⊥ Kk(A, rk), r̃T
0 r0 6= 0,(11)

then
rk ⊥ Kk(AT , r̃0).(12)

When we run the Lanczos method with the starting parameter r̃0 chosen according
to (11), the k-th residual of the Lanczos method (denote it by rL

k ) fulfils the conditi-
ons (10) and (12). Since the residuals rL

k and rk are determined by these conditions
uniquely, it holds

rk = rL

k .(13)

Therefore, the short-term implementations (LMA, BiCG) of the Lanczos method are
able to compute (if no breakdown occurs) any residual rk from the linear manifold
r0 + AKk(A, r0), e.g. a residual of the GMRES method. In our thesis, we discuss
the question whether it is almost-any possible to compute the given residual vector
using the LMA algorithm.

We generalize the idea given by (11). Define the space

Z2l ≡
l⋃

i=0

K2i(A, r2i), 2l ≤ n/2,(14)

where r2i are arbitrary residuals (e.g. the residuals of the GMRES or of the FOM
method) lying in the linear manifold r0 + AK2i(A, r0). The space Z2l does not
contain the initial residual r0 for almost-any residual r2i and, therefore, we can
choose the shadow vector to be orthogonal to the space Z2l in association with
r̃T

0 r0 6= 0. If no breakdown occurs then the Lanczos method’s algorithm (LMA)
started with the parameter r̃0 computes the residuals rL

1 , . . . , rL
k such that

rL

0 = r0, rL

1 = r1, rL

2 = r2, rL

4 = r4, rL

8 = r8 . . . , rL

2l = r2l .

If the long-term recurrences do not have a special shape (i.e. some coefficients are
equal to zero) then the LMA algorithm can compute at most log2(n) residuals of
the given Krylov subspace method.

In the end of the chapter, we formulate one of the reasons why the convergence
curves of classical Krylov subspace methods are often very close to the convergence
curve of GMRES whenever the convergence curve of GMRES decreases rapidly. We
use a model Krylov subspace method that chooses randomly a vector from k + 1
dimensional unit sphere of the space Kk+1(A, r0) and determines the k-th residual
as an intersection of the line given by this vector with the manifold r0 +AKk(A, r0).

In numerical experiments, we demonstrate that the Lanczos metod can compute
selected residuals of the FOM and GMRES methods. We discuss the question how to
construct a random vector. We determine numerically the optimal shadow vector.
The optimality is taken in the sense of the closest convergence curves of the GMRES
and QMR methods. We observed very close convergence curves.
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III. On error estimation in the CG method

Consider a symmetric positive definite matrix A ∈ Rn×n and a right-hand side
vector b ∈ Rn. We investigate numerical estimation of errors in iterative methods
for solving linear systems (1). In particular, we focus on the conjugate gradient
method (CG) of Hestenes and Stiefel [9] and on the lower estimates of the A-norm
(also called the energy norm) of the error, which has important meaning in physics
and quantum chemistry, and plays a fundamental role in evaluating convergence.

Starting with the initial approximation x0, the conjugate gradient approximati-
ons are determined by the condition

xj ∈ x0 +Kj(A, r0)

‖x− xj‖A = min
u∈x0+Kj(A,r0)

‖x− u‖A,(15)

i.e. they minimize the A-norm of the error

‖x− xj‖A =((x− xj), A(x− xj))
1
2

over all methods generating approximations in the manifold x0 + Kj(A, r0). The
standard implementation of the CG method was given in [9, (3:1a)-(3:1f)], see algo-
rithm 2. The residual vectors {r0, r1, . . . , rj−1} form an orthogonal basis of the j-th

Algorithm 2: Conjugate gradient method (CG)

input x0, A, b

initialization

r0 = b−Ax0

p0 = r0

for j = 0, 1, . . .

γj =
(rj, rj)

(pj, Apj)

xj+1 = xj + γj pj

rj+1 = rj − γj Apj

δj =
(rj+1, rj+1)

(rj, rj)

pj+1 = rj+1 + δj pj

end for

Krylov subspace Kj(A, r0). The orthogonality relations create the elegance of the
method described in [9] and represent the fundamental property which links the CG
method to the world of classical orthogonal polynomials. The j-th residual can be
written as a polynomial in the matrix A applied to the initial error, rj = ϕj(A).
These polynomials are orthogonal with respect to the discrete inner product

(f, g) =
n∑

i=1

ωif(λi)g(λi), ωi = (r0, ui)
2/‖r0‖2,(16)
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where ui are normalized eigenvectors and λi are the eigenvalues of matrix A. The
eigenvalues λi and weights ωi determine distribution function ω(λ) and the corre-
sponding Riemann-Stieltjes integral

∫ ξ

ζ

f(λ) dω(λ) ≡
n∑

i=1

ωif(λi) .(17)

Consequently, in j-th step, CG implicitly determines weights ω(j)

i and nodes θ(j)

i of
j-th Gauss quadrature approximation of the integral (17)

∫ ξ

ζ

f(λ) dω(λ) =
j∑

i=1

ω(j)

i f(θ(j)

i ) + Rj(f)(18)

where Rj(f) stands for the (truncation) error in the Gauss quadrature. In [3] it was
proved that for f(λ) = λ−1, the identity (18) can be written in the form

‖x− x0‖2
A

‖r0‖2
= Cj +

‖x− xj‖2
A

‖r0‖2
(19)

and the value Cj of j-point Gauss quadrature was approximated from the actual
Gauss quadrature calculations (or from the related recurrence relations).

In our work we discuss several mathematically equivalent identities to (19). An
interesting form of (19) (multiplied by ‖r0‖2) was noticed by Warnick

‖x− x0‖2
A = rT

0 (xj − x0) + ‖x− xj‖2
A .(20)

We derived a mathematically equivalent identity by simple algebraic manipulations
without using Gauss quadrature,

‖x− x0‖2
A = rT

j (xj − x0) + rT
0 (xj − x0) + ‖x− xj‖2

A.(21)

The right-hand side of (21) contains, in comparison with (20), additional term
rT
j (xj − x0). This term is in exact arithmetic equal to zero, but it has an impor-

tant correction effect in finite precision computations. Consequently, we found that
the simplest identity mathematically equivalent to (19) (multiplied by ‖r0‖2) was
present in the Hestenes and Stiefel paper [9, relation (6:2)],

‖x− x0‖2
A =

j−1∑
i=0

γi‖ri‖2 + ‖x− xj‖2
A.(22)

The numbers γi‖ri‖2 are trivially computable; both γi and ‖ri‖2 are available at
every iteration step.

Using ‖x− x0‖2
A = ‖r0‖2Cn, (19) is written in the form

‖x− xj‖2
A = ‖r0‖2 [Cn − Cj] .

As suggested in [3, pp. 28–29], the unknown value Cn can be replaced, at a price
of m − j extra steps, by a computable value Cm for some m > j. The paper [3],
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however, did not properly use this idea and did not give a proper formula for com-
puting the difference Cm −Cj without cancellation, which limited the applicability
of the proposed result. Golub and Meurant cleverly resolved this trouble in [2] and
proposed an algorithm for estimating the A-norm of the error in the CG method
called CGQL.

Consider, in general, (18) for j and j + d, where d is some positive integer. The
idea is simply to eliminate the unknown integral by subtracting the identities for j
and j + d. In particular, using (19)–(22) we obtain the mathematically equivalent
identities

‖x− xj‖2
A = ηj,d + ‖x− xj+d‖2

A ,(23)

ηj,d ≡ ‖r0‖2 [(Cj+d − Cj],

‖x− xj‖2
A = µj,d + ‖x− xj+d‖2

A ,(24)

µj,d ≡ rT
0 (xj+d − xj),

‖x− xj‖2
A = ϑj,d + ‖x− xj+d‖2

A,(25)

ϑj,d ≡ rT
0 (xj+d − xj)− rT

j (xj − x0) + rT
j+d(xj+d − x0),

‖x− xj‖2
A = νj,d + ‖x− xj+d‖2

A,(26)

νj,d ≡
j+d−1∑

i=j

γi‖ri‖2.

Now recall that the A-norm of the error is in the CG method strictly decreasing. If
d is chosen such that

‖x− xj‖2
A À ‖x− xj+d‖2

A ,(27)

then neglecting ‖x−xj+d‖2
A on the right-hand sides of (23)–(26) gives lower bounds

(mathematically equal) for the squared A-norm of the error in the j-th step. Under
the assumption (27) these bounds are reasonably tight (their inaccuracy is given by
‖x− xj+d‖2

A).
Mathematically (in exact arithmetic)

ηj,d = µj,d = ϑj,d = νj,d .(28)

In finite precision computations (28) does not hold in general, and the different
bounds may give substantially different results.

IV. CG in finite precision arithmetic

For a long time the effects of rounding errors to the Lanczos and CG methods seemed
devastating. Orthogonality among the computed vectors v1, v2, . . . was usually lost
very quickly, with a subsequent loss of linear independence. Consequently, the finite
termination property was lost. Still, despite a total loss of orthogonality among the
vectors in the Lanczos sequence v1, v2, . . ., and despite a possible regular appearance
of Lanczos vectors which were linearly dependent, the Lanczos and the CG methods
produced reasonable results. In the fourth chapter we explain why.
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We discuss a model of finite precision CG based on [7] and [4]. Ideally (in exact
precision arithmetic) convergence of CG is determined by Gauss quadrature for the
Riemann-Stieltjes integral ∫ ξ

ζ

λ−1 dω(λ).

Finite precision CG can be viewed as ideal (exact precision) CG applied to a modified
problem, for which the convergence is determined by the Riemann-Stieltjes integral

∫ ξ

ζ

λ−1 dω̂(λ)

with a distribution function ω̂(λ) obtained from ω(λ) by blurring the individual
points λi into (infinitely) many points of increase close to each λi, and the total size
of increase in the neighbourhood of λi equal to ωi. We explain that delay of conver-
gence (due to rounding errors) in finite precision CG computations is determined by
the difference between the iteration number and the numerical rank of the matrix
of computed Lanczos vectors.

In the rest of the fourth chapter we describe and bound rounding errors arising
in the finite precision CG computations. We prove a new theorem about the local
orthogonality between the direction vector pj and the iteratively computed residual
rj+1. The result is used later in rounding error analysis of estimates.

Theorem 2 The local orthogonality between the direction vectors and the iterati-
vely computed residuals is in the finite precision CG bounded by

|pT
j rj+1| ≤ ε ‖rj‖2κ(A)1/2 O(j n + j2/2) + O(ε2)(29)

where ε denotes machine epsilon.

In numerical experiments, we use multiple arithmetic [1] to demonstrate that the
bounds of rounding errors are in most cases overestimated. We also depict the actual
size of the local orthogonality term |pT

j rj+1|.

V. Estimates in finite precision arithmetic

The bounds ηj,d, µj,d, ϑj,d and νj,d are mathematically equivalent. We prove that
the ideal (exact precision) identities (23)–(26) change numerically to

‖x− xj‖2
A = ∆j,d + ‖x− xj+d‖2

A + Ej,d(30)

where ∆j,d stands for the bounds ηj,d, µj,d, ϑj,d and νj,d, and Ej,d stands for the
rounding error due to finite precision arithmetic.

Please notice that the difference between (23)–(26) and (30) is not trivial. The
ideal and numerical counterparts of each individual term in these identities may be
orders of magnitude different (see Fig. 1)! In finite precision arithmetic, rounding
errors in the whole computation, not only in the computation of the convergence
bounds, must be taken into account.
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Figure 1: The A-norm of the error for the CG implementation with the double
reorthogonalized residuals (dashed-dotted line) is compared to the A-norm of the
error of the ordinary finite precision CG implementation (solid line). The corre-
sponding loss of orthogonality among the normalized residuals is plotted by the
dots resp. the dotted line.

Justification of the bound ηj,d in finite precision arithmetic was given in [3].
This justification is applicable only until ‖x − xj‖A reaches the square root of the
machine precision. In our work we prove much stronger results than the analysis of
the finite precision counterpart of (23) given in [3].

We concentrate on lower estimates νj,d and ϑj,d. In our rounding error analysis
we show that Ej,d is related to ε ‖x−xj‖A. In more detail, considering the estimate
νj,d, the significant part of perturbation term Ej,d can be written in the form

2 ε {(x− xj+d)T fj+d − (x− xj)
T fj}

where ε fj ≡ rj − (b −Axj) and this nontrivial fact (in [12] we use weaker result)
is also demonstrated numerically by using multiple arithmetic [1].

Due to the fact that rounding errors in computing νj,d and ϑj,d numerically are
negligible, the numerically computed values νj,d and ϑj,d (the difference xj+d − xj

must be computed in a proper way) give a good estimate for the A-norm of the
error ‖x− xj‖2

A until the perturbation term Ej,d in (30) is reasonably smaller than
the square of the computed A-norm of the error, i.e. until

|Ej,d| ¿ ‖x− xj‖2
A.(31)
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Since Ej,d is related to ε ‖x− xj‖A, we can define Fj,d by

Ej,d ≡ ε ‖x− xj‖A Fj,d.

The relation (31) is then equivalent to

‖x− xj‖A À ε |Fj,d|.(32)

The value Fj,d represents various terms. Its upper bound is, apart from κ(A)1/2,
which comes into play as an effect of the worst-case rounding error analysis, linearly
dependent on an upper bound for ‖x−x0‖A. The value of Fj,d is (as similar terms or
constants in any other rounding error analysis) not important. What is important
is the following possible interpretation of (32): until ‖x− xj‖A reaches a level close
to ε‖x − x0‖A, the computed estimates νj,d and ϑj,d must work. When significant
loss of orthogonality occurs, the estimate µj,d does not work.

The lower estimate of euclidean norm of the error we get from the identity
presented in [9, Theorem 6:3]

‖x− xj‖2 =
j+d−1∑

i=j

‖pi‖2

(pi, Api)
(‖x− xi‖2

A + ‖x− xi+1‖2
A) + ‖x− xj+d‖2,(33)

and replacing the unknown squares of the A-norms of the errors by their lower
estimates. Our results are illustrated by numerical experiments.

Conclusions

• We extended results of Anne Greenbaum (Theorem 1) on the role of the
shadow vector in the Lanczos process. We showed that there is a shadow
vector r̃0 such that the Lanczos method computes selected residuals of another
Krylov subspace method.

• In the CG method, the lower bound for the A-norm of the error based on Gauss
quadrature is mathematically equivalent to the original formula of Hestenes
and Stiefel [9].

• The local orthogonality between the direction vector and the iteratively com-
puted residual is in the finite precision CG bounded by (29) (Theorem 2).

• The estimate for the A-norm of the error ν1/2

j,d is simple and numerically stable.
Until ‖x− xj‖A reaches its ultimate attainable accuracy level, the computed
estimate ν1/2

j,d must work. Based on the results presented in our work we believe
that this estimate should be incorporated into any software realization of the
CG method. There is a small reason for using the other bounds η1/2

j,d or ϑ1/2

j,d in
practical computations.
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