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1. Introduction. Consider a system of linear algebraic equations

Ax = b(1)

with a nonsingular matrix A ∈ Rn×n and b ∈ Rn. Let x0 be a given ini-
tial approximation and r0 the corresponding residual r0 = b − Ax0 and
let Kk(A, r0)

def
= span{r0, Ar0, . . . , Ak−1r0} denote the k-th Krylov subspace

spanned by matrix A and vector r0.
The Lanczos method (LM) constructs approximate solutions xL

k and resid-
uals rL

k
def
= b−AxL

k such that

xL

k ∈ x0 +Kk(A, r0), rL

k ⊥ Kk(AT , r̃0),(2)

where r̃0 is an auxiliary vector often called the shadow vector, using two
three-term recurrences

rL

k = γk(ArL

k−1 + αkr
L

k−1 + βkr
L

k−2),(3)

xL

k = γk(−rL

k−1 + αkx
L

k−1 + βkx
L

k−2).(4)

To satisfy the condition rL
k ∈ r0 + AKk(A, r0), which is equivalent to the

condition xL
k ∈ x0 + Kk(A, r0), we choose γk = (αk + βk)−1. Coefficients αk

and βk determine the direction of the computed vector. If also vectors rL
k−1

and rL
k−2 satisfy the relevant orthogonality conditions then it is possible to

choose αk and βk such that the orthogonal condition in (2) is satisfied. For
effective computing these coefficients, we generate an auxiliary sequence of
vectors

r̃k = γk(AT r̃k−1 + αkr̃k−1 + βkr̃k−2),

which represents the base of the space Kk(AT , r̃0) and vectors r̃k satisfy
r̃k ⊥ Kk(A, r0). Using these vectors, we can compute numbers αk and βk as

αk = −(r̃k−1, ArL
k−1)

(r̃k−1, r
L
k−1)

, βk = −(r̃k−2, ArL
k−1)

(r̃k−2, r
L
k−2)

.(5)
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As we can see, the breakdown occurs if the scalar product (r̃i, r
L
i ) that appears

in the denominators of α’s and β’s is equal to zero for some i or if αi +βi = 0.
It is possible to show that if no breakdown occurs during the run of the LM
then residuals rL

k and approximations xL
k are determined uniquely by the

conditions (2) ([Gutkn–97]).
Let us focus on one parameter of the LM named the shadow vector.

There are two choices of this vector which are commonly used by practical
computing. The first is to choose r̃0 to be equal to the initial residual vector.
This choice is inspired by the symmetric case, because if A is a symmetric
matrix then the LM computes the same residuals and approximations as
CG algorithm. The second choice, nowadays the most supported one, is to
choose r̃0 randomly. In 1997, at the Czech-US Workshop in Milovy, Mrs.
Greenbaum asked the question “What is the role of the shadow vector r̃0?”
and she found a new theorem which she presented as a disturbing result:

Known result (Greenbaum). If 3-term recurrence (α′s and β′s can be al-
most anything) is run for no more than n/2 steps, there is a vector r̃0 such
that recurrence came from the Lanczos method.

This result shows that the LM need not converge in the first n/2 steps and
can behave almost arbitrarily.

We wanted to use this freedom of the LM in the first n/2 steps to make
this method closer to another Krylov subspace method like GMRES. We will
try to answer the question “Is there a vector r̃0 such that the Lanczos method
computes residuals of another Krylov subspace method?”

2. Definition and properties of space Wk. We used the idea of Green-
baum for determining the shadow vector. We exploit the fact that

0 = (rL

k , (AT )ir̃0) = (AirL

k , r̃0)

and hence

rL

k ⊥ Kk(AT , r̃0) ⇔ r̃0 ⊥ Kk(A, rL

k ), k = 1, 2, . . . .

From the orthogonality condition above it follows that the shadow vector r̃0
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is orthogonal to space

Wk(A, rL

1 , . . . , rL

k )
def
= span




rL
1 , rL

2 , rL
3 , rL

4 . . . rL
k ,

ArL
2 , ArL

3 , Ar4, . . . ArL
k ,

A2rL
3 , A2rL

4 , . . . A2rL
k ,

. . .
...

. . .
...

Ak−1rL
k




generated by matrix A and residuals rL
1 , . . . , rL

k . In the following paragraphs,
we will explore the properties of space Wk(A, r1, . . . , rk) in dependence on
parameters r1, . . . , rk.

General assumptions and denomination. We will consider k to be some
integer, 1 ≤ k ≤ [n/2], dim(K2k(A, r0)) = 2k, ri = Pi(A)r0 (i = 1, . . . , k)
where Pi(ξ) is a polynomial satisfying Pi(0) = 1 (this is consistent with
ri ∈ r0 + AKi(A, r0)) and deg(Pi(ξ)) = i (nontrivial leading coefficient pro-
vides linear independence of vectors r0, r1, . . . , rk) and we will write only Wk

instead of Wk(A, r1, . . . , rk).

Lemma 1. The dimension of space Wk is equal to 2k− 1 or 2k. The initial
residual lies in Wk if and only if dim(Wk) = 2k.

Proof. Any vector from Wk lies in K2k(A, r0) and, therefore, dim(Wk) ≤ 2k.
Since we can find 2k− 1 linearly independent vectors, for example r1, . . ., rk,
Ark, . . ., Ak−1rk, it is dim(Wk) ≥ 2k − 1.

If r0 ∈ Wk we can find in this space 2k linearly independent vectors:
r0, r1, . . . , rk, Ark, . . ., Ak−1rk, and, for that reason, dim(Wk) = 2k.

On the other hand, we know that Wk ⊆ K2k(A, r0) and if dim(Wk) = 2k
then Wk = K2k(A, r0) and r0 ∈ Wk. 2

In the following lemma, we will say more about the dimension of Wk in
dependence on recurrence which generates residuals r1, . . . , rk.

Lemma 2. Let us suppose a Krylov subspace method whose residuals are
computed by recurrence

ri = α(i)

i Ari−1 +
i−1∑
j=0

α(i)

j rj,

i−1∑
j=0

α(i)

j = 1, α(i)

i 6= 0, i = 1, . . . , k.(6)

Then vector r0 does not lie in the space Wk if and only if the recurrences of
the Krylov subspace method are
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(a) three-term or

(b) of the form

r1 = α(1)

1 Ar0 + r0(7)

rj = α(j)

j Arj−1 + α(j)

j−1rj−1 + α(j)

j−2rj−2, j = 2, . . . , i− 1,(8)

ri = α(i)

i Ari−1 + ri−1(9)

rj = α(j)

j Arj−1 + α(j)

j−1rj−1 + . . . + α(j)

i−1ri−1, j = i + 1, . . . , k.(10)

where 2 ≤ i ≤ k and α(j)

j−2 6= 0 for j = 2, . . . , i − 1. The shape of the
recurrences is depicted in the following scheme.

– 2 –

– 3 –

– 2 –
– 3 –
– 4 –

...

rj =

Proof. ⇒ Consider the case r0 /∈ Wk. We must show that some coefficients
α(j)

i of the Krylov subspace method (6) are zeros.
• Coefficients α(i)

0 , i = 3, . . . , k are zeros. If we suppose that some α(i)

0 6= 0,
3 ≤ i ≤ k, we can express vector r0 as a linear combination of vectors from
space Wk and it implies that r0 ∈ Wk, which is a contradiction.

• If α(j)

j−2 6= 0 for every j = 2, . . . , i−1 then it is α(s)

j−1 = 0, s = j+2, . . . , k.
For better understanding the proof of this proposition we write down the
recurrences:

r2 = α(2)

2 Ar1 + α(2)

1 r1 + α(2)

0 r0(11)

r3 = α(3)

3 Ar2 + α(3)

2 r2 + α(3)

1 r1(12)

r4 = α(4)

4 Ar3 + α(4)

3 r3 + α(4)

2 r2 + α(4)

1 r1(13)

r5 = α(5)

5 Ar4 + α(5)

4 r4 + α(5)

3 r3 + α(5)

2 r2 + α(5)

1 r1(14)
...

ri = α(i)

i Ari−1 + α(i)

i−1ri−1 + . . . + α(i)

2 r2 + α(i)

1 r1(15)
...

rk = α(k)

k Ark−1 + α(k)

k−1rk−1 + . . . + α(k)

2 r2 + α(k)

1 r1.(16)
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Proof by induction on i.
Initial step: (i = 3) If α(2)

0 6= 0 we obtain from (11) that Ar1 /∈ Wk (else
r0 ∈ Wk). If we multiply equations (13)-(16) by matrix A we obtain from
the facts Arj ∈ Wk, j = 2, . . . , k, A2rj ∈ Wk, j = 3, . . . , k and Ar1 /∈ Wk

that α(j)

1 = 0, j = 4, . . . , k.
Induction step: (i > 3) Let us suppose that α(j)

j−2 6= 0, j = 2, . . . , i − 1,
Ajrj /∈ Wk, j = 1, . . . , i− 3 and α(s)

j−1 = 0, s = j + 2, . . . , k, j = 2, . . . , i− 2.
From α(i−1)

i−3 6= 0 we have Ai−2ri−2 /∈ Wk (multiply recurrence for vector ri−1

by Ai−3 and use the fact Ai−3ri−3 /∈ Wk). If we multiply equations for vectors
rj, j = i + 1, . . . , k by matrix Ai−2 we obtain from the fact Ai−2ri−2 /∈ W̃k

that α(j)

i−2 = 0, j = i+1, . . . , k, i.e., α(s)

j−1 = 0, s = j +2, . . . , k, j = 2, . . . , i−1
and Ajrj /∈ Wk, j = 1, . . . , i− 2.

• From the previous two points we see that under assumption r0 /∈ Wk

the recurrences of the Krylov subspace method can be written in the form
(b) or that they are three-term.

⇐ On the other hand, let us suppose that the recurrences of some Krylov
subspace method are three-term or of form (b). We shall show that in this
case r0 /∈ Wk or, equivalently, if we denote the space generated by vectors
r1, . . . , rk, Ark, . . . , Ak−1rk by W̃k we have to prove the equality Wk = W̃k

(here it is sufficient to show that Asrj ∈ W̃k, j = 2, . . . , k−1, s = 1, . . . , j−1).
• If the recurrences are three-term ones we have

Asrj−1 ∈ span{As−1rj, As−1rj−1, As−1rj−2},(17)

where j = 3, . . . , k, s = 1, . . . , k − 2. By induction on s we can see that
Asrj−1 ∈ W̃k, j = 3, . . . , k, s = 1, . . . , j − 2.

• If they are of form (b) then for every integer s > 0 it holds

Asrj−1 ∈ span{As−1rj, As−1rj−1, As−1rj−2}, j = 3, . . . , i− 1,(18)

Asri−1 ∈ span{As−1ri, As−1ri−1},(19)

Asrj−1 ∈ span{As−1rj, As−1rj−1, . . . , As−1ri−1}, j = i + 1, . . . , k.(20)

We will show the fact Asrj−1 ∈ W̃k, j = 3, . . . , k, s = 1, . . . , j − 2 in two
steps. At first we prove that Asri−1 ∈ W̃k, . . . , Asrk−1 ∈ W̃k for s = 1, . . . , k.

It follows from (19) that Ari−1 ∈ W̃k and from (20) that Arj ∈ W̃k,
j = i, . . . , k − 1. By induction, let us suppose that As−1rj ∈ W̃k, j =
i− 1, . . . , k − 1. According to (19) it holds that Asri−1 ∈ W̃k and from (20)
that Asrj ∈ W̃k, j = i, . . . , k − 1, s ≤ k.
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In the second step we shall prove that Asrj ∈ W̃k, j = 2, . . . , i − 2,
s = 1, . . . , j − 1. It can be easily shown by induction, using (18) and the
result of the first step (Asri−1 ∈ W̃k). 2

Lemma 3. Consider a Krylov subspace method whose residuals are linearly
independent and generated by three-term recurrence as in (3). Then

Wk(A, r1, . . . , rk) = span{r1, . . . , r2k−1}.(21)

Proof. The dimension of both spaces is equal to 2k − 1. It is sufficient to
show that residuals rk+1, . . . , r2k−1 lie in Wk.

All vectors on the right hand side of the recurrence

rk+1 = γk(Ark + αkrk + βkrk−1)

lie in Wk and so rk+1 ∈ Wk. If we multiply this recurrence by matrices
A, . . . , Ak−2 we obtain Ajrk+1 ∈ Wk, j = 0, . . . , k − 2 and, by induction,
Ajri ∈ Wk, i = k + 1, . . . , 2k − 1, j = 0, . . . , 2k − 1− i. 2

3. Possible choices of the shadow vector. Now we can use space Wk or
its subspace to make the Lanczos method compute the given residual vectors.

Theorem 1. Choose vector r̃0 to satisfy the condition r̃0 ⊥ Wk. If no break-
down occurs during the run of the Lanczos method then the residuals com-
puted by the Lanczos method are the same as the given residuals r1, . . . , rk.

Proof. The residual of the Lanczos method rL
i (i ≤ k) and the given residual

ri lie both in variety r0 + AKi(A, r0), are orthogonal to the space Ki(AT , r̃0)
and, because of uniqueness, have to be equal. 2

Lemma 4. Consider a method generated by recurrences (7)−(10) and choose
a shadow vector such that r̃0 ⊥ Wk. Then the Lanczos method will break down
at the latest at the i-th step by computing the residual ri.

Proof. Multiplying (9) by matrix Ai−2 we obtain Ai−1ri−1 ∈ Wk. It means
that

(Pi−1(AT )r̃0, ri−1) = (r̃0,Pi−1(A)ri−1) = 0

for any matrix polynomial Pi−1(A) of degree i−1 at most. Since we can write
the auxiliary vector r̃i−1 in the form r̃i−1 = Pi−1(AT )r̃0 we have (r̃i−1, ri−1) =
0 and the breakdown occurs by computing the residual ri. 2
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Theorem 2. Consider any Krylov subspace method whose residual vectors
r1, . . . , rk are computed by the three-term recurrence (3) where γi = 1

αi+βi
,

αi + βi 6= 0, βi 6= 0, i ≤ k. Choose the shadow vector such that (r̃0, r0) 6= 0
and r̃0 ⊥ Wk. Then the Lanczos method computes residuals ri, i ≤ k, without
breakdown.

Proof. From the previous theorem we know that if no breakdown occurs
then the Lanczos method computes residuals r1, . . . , rk. We have to show
that no breakdown occurs.

• First, we will show by induction that Airi /∈ Wk for i = 0, . . . , k − 1.
Initial step: We know that A0r0 = r0 does not lie in Wk.
Induction step: If we multiply the three-term recurrence

ri = α(i)

i Ari−1 + α(i)

i−1ri−1 + α(i)

i−2ri−2

by Ai−2 we obtain from the facts Ai−2ri ∈ Wk, Ai−2ri−1 ∈ Wk, Ai−2ri−2 /∈
Wk and α(i)

i 6= 0, α(i)

i−2 6= 0 that Ai−1ri−1 /∈ Wk.
• Second, we will show that (ri,Pi(AT )r̃0) 6= 0 for any matrix polynomial

of degree i. It holds that

(ri,Pi(AT )r̃0) = (ri,

i∑
j=0

ξj(AT )j r̃0) =
i∑

j=0

ξj(Ajri, r̃0) = ξi(Airi, r̃0)

and ξi 6= 0 because Pi(ξ) is a polynomial of degree i. Let us suppose for
a moment that (Airi, r̃0) = 0. Then from the facts Airi /∈ Wk, Airi ∈
K2k(A, r0), it follows that K2k(A, r0) = Wk ∪Airi and then r̃0 is orthogonal
to space K2k(A, r0), it means (r̃0, r0) = 0, which is a contradiction.

Therefore, if we run the Lanczos method with this shadow vector we can
compute coefficients αi and βi without breakdown (rL

i , r̃i) 6= 0. By the choice
of αi and βi, the direction of the computed vector is determined uniquely
and, hence, ArL

i−1 + αir
L
i−1 + βir

L
i−2 is a multiple of ri. It means that there

exists an intersection of this direction with the variety r0 + AKi(A, r0) and
it is possible to compute γi. 2

Notice. This theorem, in a little different form, was presented by Green-
baum. We have only specified its assumptions and have said when the LM
computes residuals of another method without breakdown.

Now we will choose the shadow vector to be orthogonal to the particular
subspace of Wk in order to reach equality of some Lanczos’ residuals and
residuals of another Krylov subspace method.
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Theorem 3. Let rk = Pk(A)r0, Pk(0) = 1, deg(Pk(ξ)) = k where k < n
and let dim(Kk(A, r0)) = k. Choose a shadow vector such that (r̃0, r0) 6= 0
and r̃0 ⊥ Kk(A, rk). If no breakdown occurs during the run of the Lanczos
Method then rL

k = rk.

Proof. If no breakdown occurs during the run of the Lanczos Method and
if dim(Kk(A, r0)) = k then also dim(Kk(AT , r̃0)) = k, residuals rL

k and rk

satisfy the same determining conditions, they lie in the same variety and
are orthogonal to Kk(AT , r̃0) of dimension k, and, because of uniqueness,
rk = rL

k . 2

Theorem 4. Choose k ≤ [n/2] and let ri = Pi(A)r0, Pi(0) = 1, deg(Pi(ξ)) =
i, i = 1, 2, 4, 8, . . . , 2l, 2l ≤ k. Let dim(K2k(A, r0)) = 2k. Define the space

Z2l
def
=

l⋃
i=0

K2i(A, r2i),

and choose a shadow vector orthogonal to this space, r̃0 ⊥ Z2l, (r̃0, r0) 6= 0.
If no breakdown occurs during the run of the Lanczos method then rL

1 = r1,
rL

2 = r2, rL
4 = r4, . . . , rL

2l = r2l.

Proof. Residual rL
i and ri (i = 2j) satisfy the same determining condi-

tions. If no breakdown occurs in Lanczos method, residuals rL
i are determined

uniquely and, hence rL
i = ri. 2

Notice. Let us suppose that k = 2l for some integer l. Space Zk is formed
by 2k − 1 linearly independent vectors and r0 /∈ Zk ⊆ Wk. It is not always
possible to find the shadow vector such that the Lanczos method computes
residuals r2i , i = 0, . . . , l without breakdown. It can be readily seen from
Lemma 2. If the recurrences of a method are of form (b) then Zk = Wk and
according to Lemma 4, the Lanczos method will break down at the latest at
the step i, i < k.

Conclusion. For every set of residuals r1, . . . , rk it is always possible to
find r̃0 such that the orthogonal condition in (2) is satisfied. The Lanczos
method can compute all these residuals only if they have come from 3-term
recurrences and satisfy the assumptions of Theorem 2. It means that by
the LM we can map all three-term Krylov subspace methods (3), such that
βi 6= 0, γi 6= 0, αi + βi 6= 0, in the first n/2 steps.

It is possible to choose a shadow vector such that if the LM does not break
down then some Lanczos’ residuals are the same as those of another Krylov

8



subspace method. We have not shown yet whether there is r̃0 such that the
LM computes particular residuals of another method without breakdown.

4. Numerical experiments. For testing the methods we used the convec-
tion-diffusion equation

−10−3 4 u(x, y) + ux(x, y) = 0

on the unit square Ω = (0, 1)× (0, 1) with the homogeneous Dirichlet bound-
ary condition on ∂Ω. For discretization we considered a uniform mesh, our
matrix is of the rank 10000 and the right-hand side vector is a zero vector.
We took the vector x0 = (1, . . . , 1)T as the initial approximation.

In our numerical experiments, we used various choices of the shadow
vector:

(1) r̃0 = r0,
(2) r̃0 is chosen randomly,
(3) r̃0 is chosen as the orthogonal projection of a randomly chosen vector

to space Kk(A, rGMRES
k ),

(4) r̃0 is chosen as the orthogonal projection of vector r0 to space Z2l

generated by vector rGMRES

2i and by matrix A, i = 0, . . . , l, k = 2l ≤ [n/2].

The x-axis shows the number of iterations and the y-axis the size of quantity
‖rk‖/‖r0‖. For computing Lanczos’ residuals and approximations we used
BiCG method; see for instance [Tichý–98].

In the first figure we can see in detail the behaviour of the BiCG method
with choices (3) and (4) in the first 64 iterations (k = 64). Choice (3) caused
equality of the 64-th residuals. If we choose the shadow vector according to
(4) we can observe that the BiCG behaves very sensibly, in 2ith-iterations are
residuals rL

2i equal to those of the GMRES and that, among these iterations,
the curve of the BiCG is quite close to the curve of the GMRES.

The second figure shows the whole convergence curves of the GMRES
method and the BiCG with various choices of the shadow vector. The first
choice leads to the creation of a big peak and to a slow convergence. The
second choice, a randomly chosen vector, creates quite a big peak but the
convergence is then fast. By the third choice we decreased the height of the
peak by conserving the speed of convergence and in the last case the big peak
almost vanished. We know that the height of the peak is connected with the
reduction of ultimate accuracy of the approximate solution [Green–97b] and
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Figure 1: The BiCG and the GMRES in detail
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Figure 2: The whole convergence curves
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Figure 3: The level of accuracy

it means that the BiCG with the last choice computes most accurately of all
choices as we can see in Figure 3 which shows the norm of the true residual
b−Axk divided by the norm of the initial residual r0.

A similar behaviour, as that of the BiCG, we can observe in the last figure
by the CGS method; see e.g. [Gutkn–97]. The CGS with choices (3) and (4)
works very well and the number of steps is smaller than when the GMRES
is used.
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Figure 4: The CGS method and various shadow vectors
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