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Least-squares problems

equivalent formulations

n

A%b

min || b— Az ||
rzER"

ATAJI = ATb, Ax = b\R(A)

A has full column rank (for simplicity)



Solving system of normal equations
using conjugate gradients (CG)

m]%n |b—Az| < ATAz = AT
TzeR™

CG for normal equations (g = 0 for simplicity) constructs
z € Ki(AT A, ATD)

which minimize

2 2 2
T —T = || b— Ax —|b=0b .
I kllara = |l kAE =l ir(4) |
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[ algorithms ? } [ stopping ? }




CG for normal equations
CGLS and LSQR algorithms

CGLS [Hestenes & Stiefel, 1952]

‘ LSQR [Paige & Saunders, 1982]
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— [z — zx|[ara (CGLS)
—— ||z — zx|| 474 (LSQR)
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Stopping criteria

Backward error and AT A-norm of the error
© Backward error: Given ¢, stop if xj solves
. . E f
min || (b4 f) — (A+ E)z |, H <e, H < e.
rER?

[Paige & Saunders, 1982]

@ Error norms: Recall
@ —ap 5r g = el = 7%

Stop if

7w 1?2 =171 2 £ 2
el =T <o o Ja— < - .
”,r_ ||2 = ” L — Tk HATA = 14¢ HT’CH

[Papez & Tichy, 2024]



Normwise relative backward error criterion

and sufficient conditions

(A+E)Y'(A+E)ay = (A+E) (b+ /) (1)

min {€: (1) holds with 5 < ¢, HHl <¢} < «

e Sufficient conditions (too conservative)

el < e ClAI izl + 10l
1A el < e llAl Il

[Paige & Saunders, 1982]

e Sufficient condition (asymptotically tight)

|z — @k [|ara
< e.
[ Al [zl + [0
[Chang & Paige & Titley-Peloquin, 2009]



How to estimate ||x — @y || 474 ?



The conjugate gradient (CG) algarithm is almost always the iterative method of choice for h ht S

salving linear systems with symmetric positive definite matrices. This book

-describes and analyzes techniques based on Gauss quadrature rules to cheaply
compute bounds an norms of the error and that can be used to derive reliable
stopping criteria;

«shaws how to compute estimates of the smallest and largest eigenvalues during CG
iterations; and
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Error norm estimation in CG

A is symmetric and positive definite, Az = b

input A, b, xg, T o
ro = b — Axg, po = 10 Heuristically,

: lz—zel%
Tk4+1 = Tk + YDk
Tkl = Tk — Ve ADE
. k
: EST = A
Ay = eIl ; !
(£,EST) = adaptive({A;}F_g, 7)

end for
0 1 oo V4 k

[Meurant & Papez & Tichy, 2021], [Papez & Tichy, 2024]



e
=]

12:
13:
14:

© e NT s Wb

Error norm estimation in CGLS

for solving least-squares problems

input A, b, zg, T

o = b — A.To

so=po = Alrg

for k=0,1,... do
qr = Apy
e = llskll?/llaxl?
Tht+1 = Tk + YDk
Tk+1 = Tk — Ykqk
k1 = AT
1 = [Isuall?/llsel?
Pk+1 = Sk+1 + Ok4+1Pk

AFOLS = (|||

{,EST) = adaptive ACGLS 0, T

(¢,EST) ptive({ o
end for

[Papez & Tichy, 2024]



Finite precision computations

and the estimates
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Estimates are reliable,

if local orthogonality is preserved

T
[sppeal 1,

sl

where s, = AT Az, — ATb.

[Strako$ & Tichy, 2002], [Papez & Tichy, 2024]
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Preconditioning

and the AT A-norm of the error
@ L nonsingular, modify the problem

min ||b— AL T LTz .
A 2
@ Solve the corresponding system of normal equations
L AT AL T LT =171 A b,

AT A z AT

L — a split preconditioner for AT A.

@ It holds that

& = 2eller 4 = Il = 2rllirs

and our techniques can be used in PCGLS and PLSQR.
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Numerical experiments



Test problems

SuiteSparse Matrix collection

problem m n ‘ b ‘ precond ‘
i11c1033 1033 320 v no
well1850 1850 712 ve no
il1c1850 1850 712 v v
sls 1748122 62729 rand Ve

@ b comes together with the matrix or randomly generated.

@ L constructed using the incomplete Cholesky of A7 A without
explicitly forming it — MATLAB interface of HSL_MI35.
[HSL library], [Scott & Tima, 2014]



Problems without preconditioning
i11¢1033 and well1850

i11c1033, CGLS wel11850, LSQR
T error
wr TN estimate 10°
107 v tol, T
! " ' rel. err. 05
05 W i | .
0 L A
ideal delay
ol e R
e S AN P AN
o e SR N PN N/ X R R e
0 1000 2000 3000 4000 0 100 200 300 400 500

|z —x¢l|%r, — EST

5 < 7t=0.25
|z =257 4

600

14



Problems with preconditioning
i11¢1850 and sls

i11c1850, PCGLS sls, PLSQR
error
e T~ | estimate
10°
[ tol. 7 107
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Conclusions

The techniques for error estimation developed for CG
can also be used in CGLS and LSQR.

The estimates are cheap, numerically reliable, and
work with preconditioning.

The heuristic strategy for estimating the quantity of interest
with a tolerance 7 has shown to be robust and reliable.

In the final stage, the suggested £ is usually almost optimal.
Important for stopping the iterations.
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Thank you for your attention!
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