The multiplicative Schwarz method for matrices with a special block structure

Petr Tichý
joint work with

Carlos Echeverría, Jörg Liesen, Daniel Szyld

PANM20, June 24-29, 2020, Hejnice

Motivation

Related papers

- C. Echeverría, J. Liesen, P. Tichý, D. Szyld, Convergence of the multiplicative Schwarz method for singularly perturbed convection-diffusion problems discretized on a Shishkin mesh, Electron. Trans. Numer. Anal., 2018.
- C. Echeverría, J. Liesen, and P. Tichý, Analysis of the multiplicative Schwarz method for matrices with a special block structure, arXiv.org/abs/1912.09107

One-dimensional case

$$
-\varepsilon u^{\prime \prime}+\alpha u^{\prime}+\beta u=f
$$

$$
0<\varepsilon \ll \alpha
$$

Convection-diffusion boundary value problem

$$
-\varepsilon u^{\prime \prime}+\alpha u^{\prime}+\beta u=f
$$

Convection-diffusion boundary value problem

$$
-\varepsilon u^{\prime \prime}+\alpha u^{\prime}+\beta u=f
$$

Shishkin mesh \rightarrow uniform convergence

The standard upwind difference scheme

The standard upwind difference scheme

$$
\mathcal{A}=Y \Lambda Y^{-1}
$$

$\varepsilon=10^{-8}$	original	scaled
$\kappa(\mathcal{A})$	10^{10}	10^{3}
$\kappa(Y)$	10^{17}	10^{19}

Solving linear system using GMRES

Linear solver

and geometry of the problem

- Systems with submatrices easily solvable (Toeplitz).
- Restriction operators $R_{1}=\left[\begin{array}{ll}I_{n} & 0\end{array}\right], R_{2}=\left[\begin{array}{cc}0 & I_{n}\end{array}\right]$.

Multiplicative Schwarz method

- Given $x^{(k)}$, then $x=x^{(k)}+y$ and y satisfies

$$
A y=b-A x^{(k)} \equiv r^{(k)}
$$

Multiplicative Schwarz method

- Given $x^{(k)}$, then $x=x^{(k)}+y$ and y satisfies

$$
A y=b-A x^{(k)} \equiv r^{(k)}
$$

- Restriction to the first domain

$$
\left(R_{1} A R_{1}^{T}\right) y_{1}=R_{1} r^{(k)}
$$

and use prolongation of y_{1},

$$
x^{\left(k+\frac{1}{2}\right)}=x^{(k)}+R_{1}^{T} y_{1} .
$$

Multiplicative Schwarz method

- Given $x^{(k)}$, then $x=x^{(k)}+y$ and y satisfies

$$
A y=b-A x^{(k)} \equiv r^{(k)}
$$

- Restriction to the first domain

$$
\left(R_{1} A R_{1}^{T}\right) y_{1}=R_{1} r^{(k)}
$$

and use prolongation of y_{1},

$$
x^{\left(k+\frac{1}{2}\right)}=x^{(k)}+R_{1}^{T} y_{1}
$$

- Use $x^{\left(k+\frac{1}{2}\right)}$ and restrict to the second domain

$$
x^{(k+1)}=x^{\left(k+\frac{1}{2}\right)}+R_{2}^{T} y_{2} .
$$

Multiplicative Schwarz method

results [Echeverría, Liesen, Tichý, Szyld, 2018]

- Consistent stationary method

$$
x^{(k)}=\overbrace{\left(I-P_{2}\right)\left(I-P_{1}\right)}^{T} x^{(k-1)}+v
$$

Multiplicative Schwarz method

results [Echeverría, Liesen, Tichý, Szyld, 2018]

- Consistent stationary method

$$
\begin{gathered}
x^{(k)}=\overbrace{\left(I-P_{2}\right)\left(I-P_{1}\right)}^{T} x^{(k-1)}+v \\
\quad \downarrow \\
x-x^{(k)}=T^{k}\left(x-x^{(0)}\right)
\end{gathered}
$$

Multiplicative Schwarz method

 results [Echeverría, Liesen, Tichý, Szyld, 2018]- Consistent stationary method

$$
\begin{aligned}
& x^{(k)}= \overbrace{\left(I-P_{2}\right)\left(I-P_{1}\right)}^{T} x^{(k-1)}+v \\
& \quad \downarrow \\
& x-x^{(k)}=T^{k}\left(x-x^{(0)}\right)
\end{aligned}
$$

- Bounds

$$
\left\|x-x^{(k)}\right\| \leq\left\|T^{k}\right\|\left\|x-x^{(0)}\right\| \leq\|T\|^{k}\left\|x-x^{(0)}\right\|
$$

Multiplicative Schwarz method

 results [Echeverría, Liesen, Tichý, Szyld, 2018]- Consistent stationary method

$$
\begin{aligned}
x^{(k)}= & \overbrace{\left(I-P_{2}\right)\left(I-P_{1}\right)}^{T} x^{(k-1)}+v \\
& \downarrow-x^{(k)}=T^{k}\left(x-x^{(0)}\right)
\end{aligned}
$$

- Bounds

$$
\left\|x-x^{(k)}\right\| \leq\left\|T^{k}\right\|\left\|x-x^{(0)}\right\| \leq\|T\|^{k}\left\|x-x^{(0)}\right\|
$$

- We have shown

$$
\left\|T^{k}\right\|_{\infty}=\rho^{k} \quad \text { and } \quad \rho<\frac{\varepsilon}{\varepsilon+\frac{\alpha}{N}}
$$

Numerical example

$$
\varepsilon=10^{-6}, N=200, \alpha=1, \beta=0
$$

Schwarz method as a preconditioner

- Consistent scheme

$$
x^{(k+1)}=T x^{(k)}+v
$$

- Preconditioned system

$$
(I-T) x=v
$$

Schwarz method as a preconditioner

- Consistent scheme

$$
x^{(k+1)}=T x^{(k)}+v
$$

- Preconditioned system

$$
(I-T) x=v
$$

- T is a rank-one matrix, therefore

$$
\operatorname{dim}\left(\mathcal{K}_{k}\left(I-T, r_{0}\right)\right) \leq 2
$$

\Rightarrow GMRES converges in at most 2 steps

Schwarz method as a preconditioner

- Consistent scheme

$$
x^{(k+1)}=T x^{(k)}+v
$$

- Preconditioned system

$$
(I-T) x=v
$$

- T is a rank-one matrix, therefore

$$
\operatorname{dim}\left(\mathcal{K}_{k}\left(I-T, r_{0}\right)\right) \leq 2
$$

\Rightarrow GMRES converges in at most 2 steps
... a motivation for more dimensional cases.

Two-dimensional case
[Echeverría, Liesen, Tichý, 2020]

A motivation

Problems with one boundary layer

$$
-\varepsilon \Delta u+\alpha u_{y}+\beta u=f
$$

E.g., $\alpha=1, \beta=0, f=0$,

$$
u(x, y)=(2 x-1)\left(\frac{1-e^{(y-1) / \varepsilon}}{1-e^{-1 / \varepsilon}}\right)
$$

Shishkin mesh

Use the standard upwind difference scheme.

A general algebraic problem

$\mathcal{A}=\left[\right.$| \widehat{A}_{H} | | |
| :---: | :---: | :---: |
| | | |
| | | |
| | C | A |
| H | B | |
| | | C_{h} |
| | | |
| | | \widehat{A}_{h} |$] \in \mathbb{R}^{N(2 m+1) \times N(2 m+1)}$

A general algebraic problem

- Multiplicative Schwarz method

$$
x^{(k)}=T x^{(k-1)}+v
$$

- Structure of T, convergence ?

$$
\left\|x-x^{(k)}\right\| \leq\left\|T^{k}\right\|\left\|x-x^{(0)}\right\|
$$

Structure of T

Structure of T

$$
\begin{gathered}
T=\left(I-P_{2}\right)\left(I-P_{1}\right) \\
\left\|T^{k+1}\right\| \leq \rho^{k}\|T\| \\
\rho=\left\|Z_{11}^{(h)} C_{h} \Pi^{(2)} Z_{m m}^{(H)} B_{H} \Pi^{(1)}\right\|
\end{gathered}
$$

Structure of T

How to bound norms of blocks of inverses of \widehat{A}_{h} and \widehat{A}_{H} ?

Block tridiagonal case

New results of [Echeverría, Liesen, Nabben, 2018]

$$
\widehat{A}_{h}=\left[\begin{array}{cccc}
A_{h} & B_{h} & & \\
C_{h} & \ddots & \ddots & \\
& \ddots & \ddots & B_{h} \\
& & C_{h} & A_{h}
\end{array}\right], \quad \widehat{A}_{H}=\ldots
$$

\widehat{A}_{h} is row block diagonally dominant if

$$
\left\|A_{h}^{-1} B_{h}\right\|+\left\|A_{h}^{-1} C_{h}\right\| \leq 1
$$

How to bound $\left\|Z_{i j}^{(h)}\right\|$?
[Echeverría, Liesen, Nabben, 2018]

Bounding ρ

for \mathcal{A} row and column block diagonally dominant

Using [Echeverría, Liesen, Nabben, 2018] we have shown

$$
\rho \leq \frac{\eta_{h}\left\|A^{-1} C\right\|}{1-\eta_{h}\left\|A^{-1} B\right\|} \frac{\eta_{H}\left\|A^{-1} B\right\|}{1-\eta_{H}\left\|A^{-1} C\right\|}
$$

where $\|\cdot\|$ is any induced matrix norm and

$$
\eta_{h}=\min \left\{\frac{\left\|A_{h}^{-1} C_{h}\right\|}{1-\left\|A_{h}^{-1} B_{h}\right\|}, \frac{\left\|A_{h}^{-1}\right\|\left\|C_{h}\right\|}{1-\left\|C_{h} A_{h}^{-1}\right\|}\right\}
$$

Bounds now contain only inverses of individual blocks.

Bounding ρ

for \mathcal{A} row and column block diagonally dominant

Using [Echeverría, Liesen, Nabben, 2018] we have shown

$$
\rho \leq \frac{\eta_{h}\left\|A^{-1} C\right\|}{1-\eta_{h}\left\|A^{-1} B\right\|} \frac{\eta_{H}\left\|A^{-1} B\right\|}{1-\eta_{H}\left\|A^{-1} C\right\|}
$$

where $\|\cdot\|$ is any induced matrix norm and

$$
\eta_{h}=\min \left\{\frac{\left\|A_{h}^{-1} C_{h}\right\|}{1-\left\|A_{h}^{-1} B_{h}\right\|}, \frac{\left\|A_{h}^{-1}\right\|\left\|C_{h}\right\|}{1-\left\|C_{h} A_{h}^{-1}\right\|}\right\}
$$

Bounds now contain only inverses of individual blocks.

$$
\left\|x-x^{(k)}\right\| \leq \rho^{k}\|T\|\left\|x-x^{(0)}\right\|
$$

Application to the convection-diffusion equation

Discretization on the Shishkin mesh

$$
-\varepsilon \Delta u+\alpha u_{y}+\beta u=f
$$

$\mathcal{A}=\left[\begin{array}{cccc|cccc}A_{H} & B_{H} & & & & & & \\ C_{H} & \ddots & \ddots & & & & & \\ & \ddots & \ddots & B_{H} & & & & \\ & & C_{H} & A_{H} & B_{H} & & & \\ \hline & & & C & A & B & & \\ & & & & C_{h} & A_{h} & B_{h} & \\ & & & & & C_{h} & \ddots & \ddots \\ & & & & & & \ddots & \\ \hline & & & & & & & C_{h} \\ & & & A_{h}\end{array}\right]$
$C_{H}, C, C_{h}, B_{H}, B, B_{h}, \ldots \ldots \ldots \ldots . .$. scalar multiples of I
 \mathcal{A}. . row and column block diagonally dominant

Application to the convection-diffusion equation discretized on the Shishkin mesh

In [Echeverría, Liesen, Tichý, 2020] we have shown for $\|\cdot\|=\|\cdot\|_{\infty}$ that

$$
\left\|x-x^{(k+1)}\right\| \leq \rho^{k}\|T\|\left\|x-x^{(0)}\right\|
$$

where

$$
\rho<\frac{\varepsilon}{\varepsilon+\frac{\alpha}{m}}
$$

and

$$
\|T\| \leq \rho \quad \text { or } \quad\|T\| \leq 1
$$

depending on the order of domains in the definition of T.

Application to the convection-diffusion equation discretized on the Shishkin mesh

In [Echeverría, Liesen, Tichý, 2020] we have shown for $\|\cdot\|=\|\cdot\|_{\infty}$ that

$$
\left\|x-x^{(k+1)}\right\| \leq \rho^{k}\|T\|\left\|x-x^{(0)}\right\|
$$

where

$$
\rho<\frac{\varepsilon}{\varepsilon+\frac{\alpha}{m}}
$$

and

$$
\|T\| \leq \rho \text { or }\|T\| \leq 1
$$

depending on the order of domains in the definition of T.

- Low-rank structure of T
- Schwarz as a preconditioner
- Preconditioned GMRES \rightarrow at most $N+1$ iterations

Tightness of the bound

$$
N=30, \quad m=20, \quad \mathcal{A} \in \mathbb{R}^{1230 \times 1230}, \quad \alpha=1, \quad \beta=0
$$

Convergence of multiplicative Schwarz and error bounds for $\varepsilon=10^{-4}$ (left) and $\varepsilon=10^{-8}$ (right)

Open problems

Practical implementation issues

To use the iterative scheme

$$
x^{(k)}=T x^{(k-1)}+v
$$

we need to solve linear systems with submatrices of

- Schur complement and fast Toeplitz solvers?
- Inexact solvers?
- Problems with non-constant coefficients?

Additive Schwarz method

$$
x^{(k)}=T x^{(k-1)}+w, \quad T \equiv I-\left(P_{1}+P_{2}\right)
$$

where

$$
T=-\left[\begin{array}{ccccc}
0_{N(m-1)} & & & P_{1: m-1}^{(1)} & \\
& & & P_{m}^{(1)} & \\
& \Pi^{(2)} & I_{N} & \Pi^{(1)} & \\
& P_{1}^{(2)} & & & \\
& P_{2: m}^{(2)} & & & 0_{N(m-1)}
\end{array}\right]
$$

Additive Schwarz method

$$
x^{(k)}=T x^{(k-1)}+w, \quad T \equiv I-\left(P_{1}+P_{2}\right)
$$

where

$$
T=-\left[\begin{array}{ccccc}
0_{N(m-1)} & & & P_{1: m-1}^{(1)} & \\
& & & P_{m}^{(1)} & \\
& \Pi^{(2)} & I_{N} & \Pi^{(1)} & \\
& P_{1}^{(2)} & & & \\
& P_{2: m}^{(2)} & & & 0_{N(m-1)}
\end{array}\right]
$$

- $\rho(T) \geq 1$
- $I-T$ is nonsingular
- can be used as a preconditioner

Two boundary layers

$$
-\varepsilon \Delta u+\alpha_{1} u_{x}+\alpha_{2} u_{y}+\beta u=f
$$

Shishkin mesh

- Definition of the multiplicative Schwarz method?
- Structure of \mathcal{A} ?
- Is T low-rank?

Summary

Conclusions

- Generalization of results [Echeverría, Liesen, Tichý, Szyld, 2018].

Conclusions

- Generalization of results [Echeverría, Liesen, Tichý, Szyld, 2018].
- We analyzed convergence of the multiplicative Schwarz method applied to systems with a special block structure

$\left[\right.$| \widehat{A}_{H} | | | |
| :---: | :---: | :---: | :---: |
| | | | |
| | | B_{H} | |
| | C | A | B |
| | | C_{h} | |
| | | | \widehat{A}_{h} |$]$

Conclusions

- Generalization of results [Echeverría, Liesen, Tichý, Szyld, 2018].
- We analyzed convergence of the multiplicative Schwarz method applied to systems with a special block structure

- Detailed results for block tridiagonal matrices.

Conclusions

- Generalization of results [Echeverría, Liesen, Tichý, Szyld, 2018].
- We analyzed convergence of the multiplicative Schwarz method applied to systems with a special block structure

$$
\left[\begin{array}{c|c|cc}
\widehat{y}_{H} & & & \\
& & B_{H} & \\
\hline & C & A & B \\
\hline & C_{h} & & \\
& & & \widehat{A}_{h}
\end{array}\right]
$$

- Detailed results for block tridiagonal matrices.
- For a particular problem \rightarrow tight and simple bounds.

Important ideas

- Adapt a linear solver to the problem

Important ideas

- Adapt a linear solver to the problem

- Revisit classical bounds

$$
\left\|x-x^{(k)}\right\| \leq\left\|T^{k}\right\|\left\|x-x^{(0)}\right\|
$$

Important ideas

- Adapt a linear solver to the problem

- Revisit classical bounds

$$
\left\|x-x^{(k)}\right\| \leq\left\|T^{k}\right\|\left\|x-x^{(0)}\right\|
$$

- Exploit low-rank structure

$$
T^{k}, \quad \operatorname{dim} \mathcal{K}(I-T, v)
$$

Important ideas

- Adapt a linear solver to the problem

- Revisit classical bounds

$$
\left\|x-x^{(k)}\right\| \leq\left\|T^{k}\right\|\left\|x-x^{(0)}\right\|
$$

- Exploit low-rank structure

$$
T^{k}, \quad \operatorname{dim} \mathcal{K}(I-T, v)
$$

- Combine stationary and Krylov subspace solvers.

Related papers

- C. Echeverría, J. Liesen, and P. Tichý, Analysis of the multiplicative Schwarz method for matrices with a special block structure, submitted, 2020.
- C. Echeverría, J. Liesen, and R. Nabben, Block diagonal dominance of matrices revisited: bounds for the norms of inverses and eigenvalue inclusion sets, Linear Algebra Appl. 553, 2018.
- C. Echeverría, J. Liesen, P. Tichý, and D. Szyld, Convergence of the multiplicative Schwarz method for singularly perturbed convection-diffusion problems discretized on ..., Electron. Trans. Numer. Anal. 48, 2018.
- H-G. Roos, M. Stynes, L. Tobiska, Robust numerical methods for singularly perturbed differential equations, Springer-Verlag, Berlin, 2008.
- M. Stynes, Steady-state convection-diffusion problems, Acta Numer. 14, 2005.

Related papers

- C. Echeverría, J. Liesen, and P. Tichý, Analysis of the multiplicative Schwarz method for matrices with a special block structure, submitted, 2020.
- C. Echeverría, J. Liesen, and R. Nabben, Block diagonal dominance of matrices revisited: bounds for the norms of inverses and eigenvalue inclusion sets, Linear Algebra Appl. 553, 2018.
- C. Echeverría, J. Liesen, P. Tichý, and D. Szyld, Convergence of the multiplicative Schwarz method for singularly perturbed convection-diffusion problems discretized on ..., Electron. Trans. Numer. Anal. 48, 2018.
- H-G. Roos, M. Stynes, L. Tobiska, Robust numerical methods for singularly perturbed differential equations, Springer-Verlag, Berlin, 2008.
- M. Stynes, Steady-state convection-diffusion problems, Acta Numer. 14, 2005.

Thank you for your attention!

