The conjugate gradient method from different perspectives

Petr Tichý
Faculty of Mathematics and Physics
Charles University

December 7, 2016
Seminář ústavu matematiky VŠCHT

Problem formulation

Consider a system

$$
\mathbf{A} x=b
$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, positive definite.

- \mathbf{A} is large and sparse
- look for an approximation
- in each iteration perform $\mathbf{A} v$

Without loss of generality, $\|b\|=1, x_{0}=0$.

The conjugate gradient method

input \mathbf{A}, b
$r_{0}=b, p_{0}=r_{0}$
for $k=1,2, \ldots$ do

$$
\begin{aligned}
\gamma_{k-1} & =\frac{r_{k-1}^{T} r_{k-1}}{p_{k-1}^{T} \mathbf{A} p_{k-1}} \\
x_{k} & =x_{k-1}+\gamma_{k-1} p_{k-1} \\
r_{k} & =r_{k-1}-\gamma_{k-1} \mathbf{A} p_{k-1} \\
\delta_{k} & =\frac{r_{k}^{T} r_{k}}{r_{k-1}^{T} r_{k-1}} \\
p_{k} & =r_{k}+\delta_{k} p_{k-1}
\end{aligned}
$$

test quality of x_{k}
end for

Coefficients matrix \mathbf{R}_{k}

$$
\left[\begin{array}{cccc}
\frac{1}{\sqrt{\gamma_{0}}} & \sqrt{\frac{\delta_{1}}{\gamma_{0}}} & & \\
& \ddots & \ddots & \\
& & \ddots & \sqrt{\frac{\delta_{k-1}}{\gamma_{k-2}}} \\
& & & \frac{1}{\sqrt{\gamma_{k-1}}}
\end{array}\right]
$$

Vectors $\in \mathcal{K}_{k}(\mathbf{A}, b)$ $\operatorname{span}\left\{b, \mathbf{A} b, \ldots, \mathbf{A}^{k-1} b\right\}$

Orthogonality

$$
r_{i} \perp r_{j} \quad p_{i} \perp_{\mathbf{A}} p_{j}
$$

CG as the Lanczos method

The Lanczos algorithm

Let \mathbf{A} be symmetric, compute orthonormal basis of $\mathcal{K}_{k}(\mathbf{A}, b)$

$$
\begin{aligned}
& \text { input } \mathbf{A}, b \\
& v_{1}=b /\|b\| \\
& \beta_{0}=0, v_{0}=0 \\
& \text { for } k=1,2, \ldots \text { do } \\
& \quad \alpha_{k}=v_{k}^{T} \mathbf{A} v_{k} \\
& \quad w=\mathbf{A} v_{k}-\alpha_{k} v_{k}-\beta_{k-1} v_{k-1} \\
& \beta_{k}=\|w\| \\
& v_{k+1}=w / \beta_{k}
\end{aligned}
$$

$$
\left[\right]
$$

end for

$$
\mathbf{A} v_{k}=\beta_{k} v_{k+1}+\alpha_{k} v_{k}+\beta_{k-1} v_{k-1}
$$

The Lanczos algorithm can be represented by

$$
\mathbf{A} \mathbf{V}_{k}=\mathbf{V}_{k} \mathbf{T}_{k}+\beta_{k} v_{k+1} e_{k}^{T}, \quad \mathbf{V}_{k}^{*} \mathbf{V}_{k}=\mathbf{I}
$$

CG versus Lanczos

Let \mathbf{A} be symmetric, positive definite
Both compute an orthogonal basis of $\mathcal{K}_{k}(\mathbf{A}, b)$. It holds that

$$
v_{k+1}=(-1)^{k} \frac{r_{k}}{\left\|r_{k}\right\|}
$$

It can be shown that

$$
\mathbf{T}_{k}=\mathbf{R}_{k}^{T} \mathbf{R}_{k}
$$

where

Lanczos, CG and the eigenvalues approximations

The Lanczos algorithm can be represented by

$$
\mathbf{A} \mathbf{V}_{k}=\mathbf{V}_{k} \mathbf{T}_{k}+\beta_{k} v_{k+1} e_{k}^{T}, \quad \mathbf{V}_{k}^{*} \mathbf{V}_{k}=\mathbf{I}
$$

Let

$$
\mathbf{T}_{k} y=\mu y, \quad\|y\|=1
$$

Then

$$
\mathbf{A} \overbrace{\mathbf{V}_{k} y}^{z}=\mu \overbrace{\mathbf{V}_{k} y}^{z}+\beta_{k} v_{k+1} e_{k}^{T} y
$$

and

$$
\|\mathbf{A} z-\mu z\|=\beta_{k}\left|e_{k}^{T} y\right|
$$

Connection to CG $\longrightarrow \mathbf{T}_{k}=\mathbf{R}_{k}^{T} \mathbf{R}_{k}$
Eigenvalues of \mathbf{T}_{k} are squared singular values of \mathbf{R}_{k}.

CG as a projection method

Projection process

and approximation to the solution of $\mathbf{A} x=b$

Given $x_{0}=0$ (for simplicity), look for x_{k},

$$
x_{k} \in \mathcal{S}_{k} \quad \text { s.t. } \quad r_{k} \perp \mathcal{C}_{k}
$$

- $r_{k}=b-\mathbf{A} x_{k}$
- $\mathcal{S}_{k} \ldots k$-dimensional search space
- $\mathcal{C}_{k} \ldots k$-dimensional constraints space

Conjugate gradients: $\mathcal{S}_{k}=\mathcal{C}_{k}=\mathcal{K}_{k}(\mathbf{A}, b)$.

$$
r_{k} \perp \mathcal{K}_{k}(\mathbf{A}, b) \quad \Leftrightarrow \quad\left(x-x_{k}\right) \perp_{\mathbf{A}} \mathcal{K}_{k}(\mathbf{A}, b)
$$

i.e., $\left\|x-x_{k}\right\|_{\mathbf{A}}$ is minimal $(\mathbf{A}$ is SPD).

CG as an optimization procedure

$\mathbf{A} x=b$

and minimization of a quadratic functional
Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be symmetric and positive definite.

- \mathbf{A} and b define the quadratic functional

$$
\mathcal{F}(y) \equiv \frac{1}{2} y^{T} \mathbf{A} y-y^{T} b, \quad \mathcal{F}: \mathbb{R}^{n} \longmapsto \mathbb{R}
$$

- Gradient, Hessian

$$
\nabla \mathcal{F}(y)=\mathbf{A} y-b, \quad \nabla^{2} \mathcal{F}(y)=\mathbf{A}
$$

- $\mathcal{F}(y)$ is strictly convex.
- $\mathcal{F}(y)$ attains its minimum at $\nabla \mathcal{F}(x)=0$,

$$
\nabla \mathcal{F}(y)=0 \quad \Leftrightarrow \quad \mathbf{A} x=b
$$

Quadratic functional

. and derivation of the conjugate gradient method

- $\mathcal{F}(y)$ and the A-norm of the error,

$$
\mathcal{F}(y)=\frac{1}{2}\|x-y\|_{\mathbf{A}}^{2}-\frac{1}{2}\|x\|_{\mathbf{A}}^{2} .
$$

- An efficient strategy to find the minimum of $\mathcal{F}(y)$?
- Use line search, $x_{k}=x_{k-1}-\gamma_{k-1} p_{k-1}$.
- Choose p_{k-1} to be conjugate (A-orthogonal), then

$$
\left\|x-x_{k}\right\|_{\mathbf{A}}^{2}=\min _{y \in \operatorname{span}\left\{p_{0}, \ldots, p_{k-1}\right\}}\|x-y\|_{\mathbf{A}}^{2} .
$$

- CG \rightarrow use r_{k} to construct p_{k}.

Nonlinear conjugate gradient method

For a general problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

consider CG as a quadratic approximation.
Association

$$
r_{k} \leftrightarrow-\nabla f\left(x_{k}\right), \quad \mathbf{A} \leftrightarrow \nabla^{2} f\left(x_{k}\right),
$$

and use the same relations.
Ingredients

- Line search to determine γ_{k-1}.
- Compute gradients numerically.
- Avoid the use of the Hessian.
- Restart every nth iteration.

The (nonlinear) conjugate gradient method

input \mathbf{A}, b, x_{0}
$r_{0}=b-\mathbf{A} x_{0}$
$p_{0}=r_{0}$
for $k=1,2, \ldots$ do

$$
\begin{aligned}
\gamma_{k-1} & =\frac{r_{k-1}^{T} r_{k-1}}{p_{k-1}^{T} \mathbf{A} p_{k-1}} & \gamma_{k-1} & \leftarrow \text { line search } \\
x_{k} & =x_{k-1}+\gamma_{k-1} p_{k-1} & x_{k} & =x_{k-1}+\gamma_{k-1} p_{k-1} \\
r_{k} & =r_{k-1}-\gamma_{k-1} \mathbf{A} p_{k-1} & r_{k} & =-\nabla f\left(x_{k}\right) \\
\delta_{k} & =\frac{r_{k}^{T} r_{k}}{r_{k-1}^{T} r_{k-1}} & \delta_{k} & =\frac{r_{k}^{T} r_{k}}{r_{k-1}^{T} r_{k-1}} \\
p_{k} & =r_{k}+\delta_{k} p_{k-1} & p_{k} & =r_{k}+\delta_{k} p_{k-1}
\end{aligned}
$$

test quality of x_{k}
end for
input f, x_{0}

$$
\begin{aligned}
& r_{0}=-\nabla f\left(x_{0}\right) \\
& p_{0}=r_{0}
\end{aligned}
$$

for $k=1,2, \ldots$ do
test quality of $\nabla f\left(x_{k}\right)$
end for

CG as Gauss quadrature

(Normalized) orthogonal polynomials

A sequence of polynomials ψ_{i} of degree i such that

$$
\left\langle\psi_{i}, \psi_{j}\right\rangle=\delta_{i, j}
$$

Usually, the inner product $\langle\cdot, \cdot\rangle$ defined by

$$
\int_{\zeta}^{\xi} \psi_{i} \psi_{j} \mathrm{~d} x, \quad \int_{\zeta}^{\xi} \psi_{i} \psi_{j} w(x) \mathrm{d} x, \quad \text { or } \quad \int_{\zeta}^{\xi} \psi_{i} \psi_{j} \mathrm{~d} \omega(x)
$$

- ψ_{i} unique up to a normalization
- roots $\in(a, b)$, distinct
- can be computed by the three-term recurrence

$$
\beta_{k+1} \psi_{k+1}(x)=\left(x-\alpha_{k+1}\right) \psi_{k}-\beta_{k} \psi_{k-1}(x)
$$

Ortogonal polynomials and Jacobi matrices

Three-term recurrences can be written in the form
$x\left[\begin{array}{c}\psi_{0} \\ \psi_{1} \\ \vdots \\ \vdots \\ \psi_{m-1}\end{array}\right]=\left[\begin{array}{ccccc}\alpha_{1} & \beta_{1} & & & \\ \beta_{1} & \alpha_{2} & \beta_{2} & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & \beta_{m-1} \\ & & & \beta_{m-1} & \alpha_{m}\end{array}\right]\left[\begin{array}{c}\psi_{0} \\ \psi_{1} \\ \vdots \\ \vdots \\ \psi_{m-1}\end{array}\right]+\left[\begin{array}{c}0 \\ \vdots \\ \vdots \\ 0 \\ \beta_{m} \psi_{n}\end{array}\right]$

Roots of $\psi_{m}(x)$ are the eigenvalues of the Jacobi matrix.

Orthogonal polynomials and Gauss Quadrature

Quadrature formula

$$
\int_{\zeta}^{\xi} f(\lambda) d \omega(\lambda)=\sum_{i=1}^{k} w_{i} f\left(\nu_{i}\right)+\mathcal{R}_{k}[f]
$$

Gauss Quadrature formula:

- Maximal degree of exactness $2 k-1$
- Weights and nodes determined by orthogonal polynomials
- Computed via Jacobi matrices (Golub-Welsch)
$\nu_{i} \ldots$ eigenvalues
$w_{i} \ldots$ squared 1 st components of the normalized eigenvectors

Back to the conjugate gradient method

- CG is a "polynomial method",

$$
v \in \mathcal{K}_{k}(\mathbf{A}, b) \Rightarrow v=\sum_{j=0}^{k-1} \zeta_{j} \mathbf{A}^{j} b=q(\mathbf{A}) b
$$

- Residuals r_{0}, \ldots, r_{k-1} are orthogonal,

$$
0=r_{i}^{T} r_{j}=b^{T} q_{i}(\mathbf{A}) q_{j}(\mathbf{A}) b
$$

- Use the spectral decomposition, $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}, b=\mathbf{U} \omega$.

$$
0=\omega^{T} q_{i}(\boldsymbol{\Lambda}) q_{j}(\boldsymbol{\Lambda}) \omega=\sum_{\ell=1}^{N} \omega_{\ell}^{2} q_{i}\left(\lambda_{\ell}\right) q_{j}\left(\lambda_{\ell}\right) \equiv\left\langle q_{i}, q_{j}\right\rangle_{\omega, \Lambda}
$$

- CG constructs a sequence of orthogonal polynomials.

Distribution function $\omega(\lambda)$

$$
\mathbf{A}, b \rightarrow\langle\cdot, \cdot\rangle_{\omega, \Lambda}: \quad\langle f, g\rangle_{\omega, \Lambda}=\sum_{\ell=1}^{N} \omega_{\ell}^{2} f\left(\lambda_{\ell}\right) g\left(\lambda_{\ell}\right)
$$

Then,

$$
\langle f, g\rangle_{\omega, \Lambda}=\int_{\zeta}^{\xi} f(\lambda) g(\lambda) d \omega(\lambda)
$$

CG, Lanczos and Gauss quadrature

At any iteration step k, CG (implicitly) determines weights and nodes of the k-point Gauss quadrature

$$
\int_{\zeta}^{\xi} f(\lambda) d \omega(\lambda)=\sum_{i=1}^{k} \omega_{i}^{(k)} f\left(\theta_{i}^{(k)}\right)+\mathcal{R}_{k}[f]
$$

The Jacobi matrix available in CG (Lanczos),

$$
\mathbf{T}_{k}=\mathbf{R}_{k}^{T} \mathbf{R}_{k}
$$

Understanding the formula: For $f(\lambda) \equiv \lambda^{-1}$ we get

$$
\begin{aligned}
\left(\mathbf{T}_{n}^{-1}\right)_{1,1} & =\left(\mathbf{T}_{k}^{-1}\right)_{1,1}+\mathcal{R}_{k}\left[\lambda^{-1}\right] \\
\|x\|_{\mathbf{A}}^{2} & =\sum_{j=0}^{k-1} \gamma_{j}\left\|r_{j}\right\|^{2}+\left\|x-x_{k}\right\|_{\mathbf{A}}^{2} .
\end{aligned}
$$

Motivation

The normwise backward error
Given x_{k}, what are the norms of the smallest perturbations $\Delta \mathbf{A}$ of \mathbf{A} and Δb of b (in the relative sense) such that

$$
(\mathbf{A}+\Delta \mathbf{A}) x_{k}=b+\Delta b ?
$$

We are interested in the quantity

$$
\min \left\{\varepsilon:(\mathbf{A}+\Delta \mathbf{A}) x_{k}=b+\Delta b, \frac{\|\Delta \mathbf{A}\|}{\|\mathbf{A}\|} \leq \varepsilon, \frac{\|\Delta b\|}{\|b\|} \leq \varepsilon\right\}
$$

called the normwise backward error. It is given by

$$
\frac{\left\|r_{k}\right\|}{\|\mathbf{A}\|\left\|x_{k}\right\|+\|b\|}
$$

[Rigal, Gaches 1967]

Motivation

Maximum attainable accuracy

Motivation

Error estimation

- κ-bound

$$
\frac{\left\|x-x_{k}\right\|_{\mathbf{A}}}{\left\|x-x_{0}\right\|_{\mathbf{A}}} \leq 2\left(\frac{\sqrt{\kappa(\mathbf{A})}-1}{\sqrt{\kappa(\mathbf{A})}+1}\right)^{k}
$$

- $\lambda_{\text {min }}$-bounds

$$
\left\|x-x_{k}\right\|_{\mathbf{A}} \leq \frac{\left\|r_{k}\right\|}{\sqrt{\lambda_{\min }}}, \quad\left\|x-x_{k}\right\| \leq \frac{\left\|r_{k}\right\|}{\lambda_{\min }}
$$

- Gauss-Radau quadrature-based bounds

$$
\left\|x-x_{k}\right\|_{\mathbf{A}} \leq \sqrt{\gamma_{k}^{(\mu)}}\left\|r_{k}\right\|
$$

How to approximate $\lambda_{\min }(\mathbf{A})$ and $\lambda_{\max }(\mathbf{A})$?

\mathbf{A} is symmetric and positive definite

$$
\lambda_{\max }(\mathbf{A})=\|\mathbf{A}\|, \quad \lambda_{\min }^{-1}(\mathbf{A})=\left\|\mathbf{A}^{-1}\right\| .
$$

Important source of information $\rightarrow \mathbf{T}_{k}=\mathbf{R}_{k}^{T} \mathbf{R}_{k}$.

- Using the largest and smallest eigenvalue of \mathbf{T}_{k},
+ can be very accurate
- solving eigenvalue problems, which k ?
- storing \mathbf{T}_{k}
- Based on incremental estimation of $\left\|\mathbf{T}_{k}\right\|$ and $\left\|\mathbf{T}_{k}^{-1}\right\|$
+ accurate enough
+ very cheap
+ no need to store \mathbf{T}_{k} or some vectors

Incremental estimation of $\left\|\mathrm{T}_{k}\right\|$ and $\left\|\mathrm{T}_{k}^{-1}\right\|$

- In CG, only \mathbf{R}_{k} is available, $\mathbf{T}_{k}=\mathbf{R}_{k}^{T} \mathbf{R}_{k}$, and

$$
\left\|\mathbf{T}_{k}\right\|=\left\|\mathbf{R}_{k}\right\|^{2} \quad\left\|\mathbf{T}_{k}^{-1}\right\|=\left\|\mathbf{R}_{k}^{-1}\right\|^{2}
$$

- Structure: \mathbf{R}_{k} and \mathbf{R}_{k}^{-1} are
- upper triangular, \mathbf{R}_{k} bidiagonal,
- How arises \mathbf{R}_{k+1} from \mathbf{R}_{k}, and \mathbf{R}_{k+1}^{-1} from \mathbf{R}_{k}^{-1} ?
- In both cases, by adding one column and one row.
- Incremental norm estimation: incrementally improve an approximation of the maximum right singular vector. [Bischof 1990], [Duff, Vömmel 2002], [Duintjer Tebbens, Tůma 2014].

The idea of incremental norm estimation

U is general, upper triangular
Given $\mathbf{U} \in \mathbb{R}^{k \times k}$ upper triangular, and $z,\|z\|=1,\|\mathbf{U} z\| \approx\|\mathbf{U}\|$,

$$
\hat{\mathbf{U}}=\left[\begin{array}{cc}
\mathbf{U} & v \\
& q
\end{array}\right], \quad v \in \mathbb{R}^{k}, \quad q \in \mathbb{R} .
$$

Consider new approximate max. right singular vector in the form

$$
\hat{z}=\left[\begin{array}{c}
s z \\
c
\end{array}\right] \quad \rightarrow \quad \hat{\mathbf{U}} \hat{z}=\left[\begin{array}{c}
s \mathbf{U} z+c v \\
c q
\end{array}\right]
$$

where $s^{2}+c^{2}=1$ are chosen such that $\|\hat{\mathbf{U}} \hat{z}\|$ is maximum,

$$
\begin{gathered}
\|\hat{\mathbf{U}} \hat{z}\|^{2}=\left[\begin{array}{c}
s \\
c
\end{array}\right]^{T}\left[\begin{array}{cc}
\rho & \sigma \\
\sigma & \tau
\end{array}\right]\left[\begin{array}{c}
s \\
c
\end{array}\right] \\
\rho=\|\mathbf{U} z\|^{2}, \quad \sigma=v^{T} \mathbf{U} z, \quad \tau=v^{T} v+q^{2} .
\end{gathered}
$$

\rightarrow maximum eigenvalue and eigenvector of the 2×2 matrix?

Incremental norm estimation

The algorithm

$$
\mathbf{U}_{k+1}=\left[\begin{array}{cc}
\mathbf{U}_{k} & v_{k} \\
& q_{k}
\end{array}\right], \quad v_{k} \in \mathbb{R}^{k}, \quad q_{k} \in \mathbb{R}, \quad\left(z_{k} \in \mathbb{R}^{k}\right)
$$

1. Compute the entries of the 2×2 matrix and Δ_{k},

$$
\rho_{k}=\left\|\mathbf{U}_{k} z_{k}\right\|^{2}, \quad \sigma_{k}=v_{k}^{T} \mathbf{U}_{k} z_{k}, \quad \tau_{k}=v_{k}^{T} v_{k}+q_{k}^{2} .
$$

2. Compute the new estimate ρ_{k+1} using

$$
\begin{gathered}
\Delta_{k}=\left(\rho_{k}-\tau_{k}\right)^{2}+4 \sigma_{k}^{2} \\
c_{k}^{2}=\frac{1}{2}\left(1-\frac{\rho_{k}-\tau_{k}}{\sqrt{\Delta_{k}}}\right), \quad \rho_{k+1}=\rho_{k}+\sqrt{\Delta_{k}} c_{k}^{2}
\end{gathered}
$$

3. If necessary, compute z_{k+1}

$$
s_{k}=\sqrt{1-c_{k}^{2}}, \quad c_{k}=\left|c_{k}\right| \operatorname{sign}\left(\sigma_{k}\right), \quad z_{k+1}=\left[\begin{array}{c}
s_{k} z_{k} \\
c_{k}
\end{array}\right] .
$$

Specialization to upper bidiagonal matrices

$$
\mathbf{B}_{k+1}=\left[\begin{array}{cccc|c}
a_{1} & b_{1} & & & 0 \\
& \ddots & \ddots & & \vdots \\
& & \ddots & b_{k-1} & 0 \\
& & & a_{k} & b_{k} \\
\hline & & & & a_{k+1}
\end{array}\right]
$$

Inverse

$$
\mathbf{B}_{k+1}^{-1}=\left[\begin{array}{cc}
\mathbf{B}_{k}^{-1} & -w_{k} \frac{b_{k}}{a_{k+1}} \\
& \frac{1}{a_{k+1}}
\end{array}\right]
$$

where w_{k} is the last column of the matrix \mathbf{B}_{k}^{-1}, i.e.,

$$
w_{k+1}=\left[\begin{array}{c}
-w_{k} \frac{b_{k}}{a_{k+1}} \\
\frac{1}{a_{k+1}}
\end{array}\right] .
$$

CG with incremental estimation of ||A\|

\mathbf{R}_{k} in CG have the entries $a_{k}=\frac{1}{\sqrt{\gamma_{k-1}}}, b_{k}=\sqrt{\frac{\delta_{k}}{\gamma_{k-1}}}, k \geq 1$.
input \mathbf{A}, b, x_{0}
$r_{0}=b-\mathbf{A} x_{0}, p_{0}=r_{0}$
for $k=1, \ldots$, do
CG iteration $(k) \rightarrow \gamma_{k-1}, x_{k}, r_{k}, \delta_{k}, p_{k}$
if $k=1$ then

$$
c_{0}^{2}=1, \rho_{1}=\gamma_{0}^{-1}
$$

end if

$$
\begin{aligned}
& \sigma_{k}=\frac{\sqrt{\delta_{k}}}{\gamma_{k-1}} c_{k-1} \\
& \tau_{k}=\frac{\delta_{k}}{\gamma_{k-1}}+\frac{1}{\gamma_{k}} \\
& \Delta_{k}=\left(\rho_{k}-\tau_{k}\right)^{2}+4 \sigma_{k}^{2} \\
& c_{k}^{2}=\frac{1}{2}\left(1-\frac{\rho_{k}-\tau_{k}}{\sqrt{\Delta_{k}}}\right) \\
& \rho_{k+1}=\rho_{k}+\sqrt{\Delta_{k}} c_{k}^{2}
\end{aligned}
$$

end for

strakos48 matrix, $n=48$

Estimates of the extreme eigenvalues (summary)

- $\mathbf{T}_{k}=\mathbf{R}_{k}^{T} \mathbf{R}_{k}$ represents an important source of information.
- We developed cheap estimators of $\lambda_{\min }(\mathbf{A})$ and $\lambda_{\max }(\mathbf{A})$, based on incremental estimation of $\left\|\mathbf{R}_{k}\right\|$ and $\left\|\mathbf{R}_{k}^{-1}\right\|$.
- The reached relative accuracy of estimates is usually between 10^{-1} and 10^{-2}.
- These estimates can be used, e.g., to approximate
- the normwise backward error,
- condition number of A,
- attainable level of accuracy,
- A-norm of the error.

Estimating the A-norm of the error

A brief history

- The function $\left(x-x_{k}, \mathbf{A}\left(x-x_{k}\right)\right)$ can be used as a measure of the "goodness" of x_{k} as an estimate of x. [Hestenes, Stiefel 1952]
- Gene Golub and collaborators: [Dahlquist, Golub, Nash 1978], [Golub, Meurant 1994] relate error bounds to Gauss quadrature.
- Idea of estimating errors in CG, behavior in finite precision arithmetic [Golub, Strakoš 1994], the CGQL algorithm [Golub, Meurant, 1997], intensively studied in many later papers.
- Numerical stability of the estimates based on Gauss quadrature [Strakoš, T. 2002], [Strakoš, T. 2005].
- Summary in the book [Golub, Meurant 2010].
- Improvement [Meurant, T. 2013] \rightarrow the CGQ algorithm.

CG and Gauss quadrature

The lower bound on $\left\|x-x_{k}\right\|_{\mathbf{A}}$
At any iteration step k, CG determines (through \mathbf{T}_{k}) weights and nodes of the k-point Gauss quadrature. For $f(\lambda)=\lambda^{-1}$:

$$
\|x\|_{\mathbf{A}}^{2}=\sum_{j=0}^{k-1} \gamma_{j}\left\|r_{j}\right\|^{2}+\left\|x-x_{k}\right\|_{\mathbf{A}}^{2}
$$

Considering the same formula for some $k+d$ we obtain

$$
\left\|x-x_{k}\right\|_{\mathbf{A}}^{2}=\sum_{j=k}^{k+d-1} \gamma_{j}\left\|r_{j}\right\|^{2}+\left\|x-x_{k+d}\right\|_{\mathbf{A}}^{2}
$$

We have a lower bound. E.g., if $\frac{\left\|x-x_{k+d}\right\|_{\mathbf{A}}}{\left\|x-x_{k}\right\|_{\mathbf{A}}}<0.8$, then

$$
\sqrt{\sum_{j=k}^{k+d-1} \gamma_{j}\left\|r_{j}\right\|^{2}}<\left\|x-x_{k}\right\|_{\mathbf{A}}<2 \sqrt{\sum_{j=k}^{k+d-1} \gamma_{j}\left\|r_{j}\right\|^{2}}
$$

Finite precision arithmetic

CG behavior

Orthogonality is lost, convergence is delayed!

Identities need not hold in finite precision arithmetic!

The lower bound

Practically relevant questions

$$
\left\|x-x_{k}\right\|_{\mathbf{A}}^{2}=\sum_{j=k}^{k+d-1} \gamma_{j}\left\|r_{j}\right\|^{2}+\left\|x-x_{k+d}\right\|_{\mathbf{A}}^{2}
$$

Practically relevant questions:

+ We can compute it almost for free.
+ It is numerically stable [Strakoš, T. 2002, 2005]:
- How to control the quality of the bound?
- How to choose d adaptively?
- How to detect a decrease of the A-norm of the error?

The choice of d

R. Kouhia: Cylindrical shell (Matrix Market), matrix s3dkt3m2

PCG, $\kappa(\mathbf{A})=3.62 e+11, \quad n=90499$, cholinc $(\mathbf{A}, 0)$.

CG and Gauss-Radau quadrature

- Modification of Gauss quadrature rule.
- Prescribe μ such that $0<\mu \leq \lambda_{\text {min }}$.

Gauss-Radau quadrature rule can be written algebraically as

$$
\|x\|_{\mathbf{A}}^{2}=\sum_{j=0}^{k-2} \gamma_{j}\left\|r_{j}\right\|^{2}+\gamma_{k-1}^{(\mu)}\left\|r_{k-1}\right\|^{2}+\mathcal{R}_{k}^{(R)}
$$

where $\mathcal{R}_{k}^{(R)}<0, \gamma_{0}^{(\mu)}=\mu^{-1}$, and

$$
\gamma_{j+1}^{(\mu)}=\frac{\left(\gamma_{j}^{(\mu)}-\gamma_{j}\right)}{\mu\left(\gamma_{j}^{(\mu)}-\gamma_{j}\right)+\delta_{j+1}}
$$

[Golub, Meurant, 1997], [Meurant, T. 2013]
How to construct an upper bound on $\left\|x-x_{k}\right\|_{\mathbf{A}}$?

CG and Gauss-Radau quadrature

Upper bound

Using Gauss rule for k and Gauss-Radau rule for $k+d$,

$$
\left\|x-x_{k}\right\|_{\mathbf{A}}^{2}=\sum_{j=k}^{k+d-2} \gamma_{j}\left\|r_{j}\right\|^{2}+\gamma_{k+d-1}^{(\mu)}\left\|r_{k+d-1}\right\|^{2}+\mathcal{R}_{k+d}^{(R)}
$$

and $\mathcal{R}_{k+d}^{(R)}<0$.
Practically relevant questions:

+ We can compute it almost for free.
- How to get μ ?
- Sensitivity of the bound on μ ?
- Numerical behavior?
- Quality of the bound?

Gauss-Radau upper bound, exact arithmetic

 various values of μ, bcsstk01 matrix, $n=48$$$
\mu=\lambda_{\min }\left(1-10^{-m}\right), \quad m=1, \ldots, 14
$$

Gauss-Radau upper bound, finite precision arithmetic

 various values of μ, bcsstk01 matrix, $n=48$$$
\mu=\lambda_{\min }\left(1-10^{-m}\right), \quad m=1, \ldots, 14
$$

An upper bound on the upper bound

Find an envelope for all curves that corresponds to various μ 's. Multiply the updating formula for $\gamma_{j+1}^{(\mu)}$ by μ

$$
\begin{aligned}
& \mu \gamma_{j+1}^{(\mu)}=\frac{\mu\left(\gamma_{j}^{(\mu)}-\gamma_{j}\right)}{\mu\left(\gamma_{j}^{(\mu)}-\gamma_{j}\right)+\delta_{j+1}} \\
&<\frac{\mu \gamma_{j}^{(\mu)}}{\mu \gamma_{j}^{(\mu)}+\delta_{j+1}} \\
& \leq \frac{\left\|r_{j}\right\|^{2}}{\left\|p_{j}\right\|^{2}} \\
& \frac{\left\|r_{j}\right\|^{2}}{\left\|p_{j}\right\|^{2}}+\delta_{j+1}\left\|r_{j+1}\right\|^{2} \\
&\left\|p_{j+1}\right\|^{2}
\end{aligned}
$$

An upper bound on the upper bound

In summary, if $\mu \leq \lambda_{\text {min }}$, then

$$
\left\|x-x_{k}\right\|_{\mathbf{A}}^{2} \leq \gamma_{k}^{(\mu)}\left\|r_{k}\right\|^{2}<\frac{\left\|r_{k}\right\|^{2}}{\mu} \frac{\left\|r_{k}\right\|^{2}}{\left\|p_{k}\right\|^{2}} .
$$

CG and Gauss-Radau quadrature

Upper bound on the upper bound
If $\mu \leq \lambda_{\text {min }}$, then

$$
\left\|x-x_{k}\right\|_{\mathbf{A}}^{2}<\sum_{j=k}^{k+d-1} \gamma_{j}\left\|r_{j}\right\|^{2}+\frac{\left\|r_{k+d}\right\|^{2}}{\mu} \frac{\left\|r_{k+d}\right\|^{2}}{\left\|p_{k+d}\right\|^{2}}
$$

Practically relevant questions:

+ We can compute it almost for free.
+ No too much sensitive to the choice of μ.
+ Heuristics \rightarrow we can use it even if $\mu>\lambda_{\text {min }}$ (e.g., use the estimate of the smallest Ritz value).
+ Numerical behavior? Looks OK, so far no analysis.
- Quality of the bound. Not so tight.

Conclusions and questions

- $\mathbf{T}_{k}=\mathbf{R}_{k}^{T} \mathbf{R}_{k}$ represents an important source of information that can be used for estimating the CG convergence.
- The estimation of the A-norm of the error should be based on the numerical stable lower bound.
- How to detect a decrease of the \mathbf{A}-norm of the error? (How to choose d adaptively?).
- We found an upper bound on the Gauss-Radau upper bound that is insensitive to the choice of μ, and hope to be useful in the adaptive choice of d for the lower bound.

Related papers

- G. Meurant and P. Tichý, [Practical estimation of the A-norm of the error in CG, in preparation, 2017]
- G. Meurant and P. Tichý, [On computing quadrature-based bounds for the A-norm of the error in conjugate gradients, Numer. Algorithms, 62 (2013), pp. 163-191]
- G. H. Golub and G. Meurant, [Matrices, moments and quadrature with applications, Princeton University Press, USA, 2010.]
- Z. Strakoš and P. Tichý, [On error estimation in the conjugate gradient method and why it works in finite precision computations, Electron. Trans. Numer. Anal., 13 (2002), pp. 56-80.]
- G. H. Golub and Z. Strakoš, [Estimates in quadratic formulas, Numer. Algorithms, 8 (1994), pp. 241-268.]

Thank you for your attention!

