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Problem formulation

Consider a system

Ax=b

where A € R™*" is symmetric, positive definite.

@ A is large and sparse
@ look for an approximation

@ in each iteration perform Av

Without loss of generality, |

b” = 1, i) = 0.



input A, b
ro =0, po =10
for k=1,2,... do

T
~ Tp_1Tk—1
k=1 =
Pr_1Apr-1
Tk = Tg—1+ Vk—1Pk—1
TR = Th—1— Vk-1Apr_1
T’g?"k
5k = T
Tk—1Tk—1
Pk = Tk + OpPr—1

test quality of xp

end for

The conjugate gradient method

Coefficients matrix Ry,

1 /o1
V70 Yo

Vectors € (A, b)
span{b, Ab, ..., A*~1p}

Orthogonality
ri Lri  pi Lap;




CG as the Lanczos method



The Lanczos algorithm

Let A be symmetric, compute orthonormal basis of ICy(A,b)

input A, b
v1 = b/||b]]
Bo=0,v9=0 Ty,
for k=1,2,... do a; B

o = ’U,?Avk 8

w = Avg — agvp — Br_1Vk-1 _

Br = [lw] o P

Vg1 = w/ﬂk Br-1 o

end for

Avy, = Brvgy1 + apvi + Br—1Vk—1 -

The Lanczos algorithm can be represented by

AV, = ViTy+ Brvpiiet, ViV, =1.



CG versus Lanczos

Let A be symmetric, positive definite

Both compute an orthogonal basis of [Cx (A, b). It holds that

k Tk
V41 = (_1) ||rkH .
It can be shown that
T, = RIR,,
where
Ty Ry
1 Ja 1
a1 B} Var) Y0
b1
’ T 5k,—1
ﬁk—l ’ Vie—2
Br—1 o 1
L Ve—1 ]




Lanczos, CG and the eigenvalues approximations

The Lanczos algorithm can be represented by

AV, = V,T,+ ﬁk17k+1€£, V;;Vk =1I.

Let
Try = py,  lyll=1.
Then
z z
= ~= T
A Viy=pViy + Brvkiiepy
and

|Az—pz| = Bletyl.

Connection to CG — Tj = Rng

Eigenvalues of T} are squared singular values of Ry.



CG as a projection method



Projection process

and approximation to the solution of Az = b
Given zp = 0 (for simplicity), look for z,

v, €S8, st rp LCh

@ 7 = b— A.’L’k;
@ S;, ... k-dimensional search space

@ Cj. ... k-dimensional constraints space
Conjugate gradients: S, = C, = Kr(A,b).

Tk 1 /Ck(A, b) <~ (:E — xk) 1a Kk(A, b)

i.e., ||z — zk||a is minimal (A is SPD).
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CG as an optimization procedure
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Ax=1b»

...and minimization of a quadratic functional
Let A € R™*"™ be symmetric and positive definite.

@ A and b define the quadratic functional
1

Fly) = §yTAy—yTb, F:R"—R.
@ Gradient, Hessian
VF(y)=Ay—b, V°F(y)=A.
e F(y) is strictly convex.
e F(y) attains its minimum at V.F(x) =0,

VFly)=0 < Azxz=bD.
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Quadratic functional

... and derivation of the conjugate gradient method

e F(y) and the A-norm of the error,

1

1
Fly) = sle—yla—slzla-
2 2

e An efficient strategy to find the minimum of F(y)?

Use line search, z; = x1_1 — Vp_1Pk_1-

Choose pj_1 to be conjugate (A-orthogonal), then

|z — zrlA = min Iz —ylla -
y€Espan{po,....pk—1}

o CG — use 1y, to construct py.
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Nonlinear conjugate gradient method

For a general problem

min f(z)

consider CG as a quadratic approximation.

Association
2
rE < —Vf(a:k), A &V f(;vk),
and use the same relations.

Ingredients
@ Line search to determine v;_1.
e Compute gradients numerically.
@ Avoid the use of the Hessian.
o

Restart every nth iteration.
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The (nonlinear) conjugate gradient method

input A., b, ZTo input f, X0
ro = b— Axg ro = —V f(x0)
Po=To Po=To
for k=1,2,... do for k=1,2,... do
T
o1 = M Ye—1 < line search
pk_lApkfl
Tp = Tk—1+ Vk—1Pk—1 Tk = Tg-1+ Vk-1Pk-1
Tk = Th—1— Vk—1APpr—1 re = —Vf(zy)
rzrk - Tk:TTk
O = 7 —— T OaT
Te—1Tk—1 k—1Tk—1
Py = TR+ 5kpk—1 Pk = Tkt Okpr—1
test quality of z;, test quality of V f ()

end for end for
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CG as Gauss quadrature
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(Normalized) orthogonal polynomials

A sequence of polynomials 1; of degree ¢ such that
(Yishy) = dij

Usually, the inner product (-, -) defined by

3 € 3
/ wle dx, / 1011/1]10(56) dﬂ?, or / @bﬂ/}] dw(z) .
¢ q ¢

@ 1); unique up to a normalization
@ roots € (a,b), distinct

@ can be computed by the three-term recurrence

Br1 Yr1(w) = (T — apy1)k — Br Yr-1(z)
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Ortogonal polynomials and Jacobi matrices

Three-term recurrences can be written in the form

Yo a1 B Yo 0
Y1 B1 a2 [ P :
" : _ S - : n :
: E B 5m—1 0
L Ym—1 ] i Bm-1  Qm 1L Ym—1 1 L Bm¥n ]

Roots of 9, () are the eigenvalues of the Jacobi matrix.
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Orthogonal polynomials and Gauss Quadrature

Quadrature formula

3

Gauss Quadrature formula:
@ Maximal degree of exactness 2k — 1
@ Weights and nodes determined by orthogonal polynomials

e Computed via Jacobi matrices (Golub-Welsch)

v; ... eigenvalues

w; ... squared lst components of the normalized eigenvectors
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Back to the conjugate gradient method

o CG is a “polynomial method”,

k—1

veEKp(AD) = v=>) (jAb=q(A)b.
§=0
@ Residuals rq,...,r,_1 are orthogonal,

0 = rlrj=0b"q(A)g(A)b.

i
@ Use the spectral decomposition, A = UAU7?, b = Uw .

N
0=wgi(A)g;(M)w =Y wiai(A)gi(Me) = (@i, ¢j)wn -
/=1

@ CG constructs a sequence of orthogonal polynomials.
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Distribution function w(\)

N
A, b = (G )unc: (fs @ = D> wif(A)g(Ae) -
=1
Define the function w(A), w

1 4
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CG, Lanczos and Gauss quadrature

At any iteration step k, CG (implicitly) determines weights and
nodes of the k-point Gauss quadrature

3
JAOEe Zw o) + Ralf].
The Jacobi matrix available in CG (Lanczos),

T, =RIR;.

Understanding the formula: For f(\) = A~! we get

(m2t),, = (7)), +Reld 7,
k—1
lzlla = D vllrll® + e — zxlla -

J=0
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Motivation

The normwise backward error

Given xj, what are the norms of the smallest perturbations AA of
A and Ab of b (in the relative sense) such that

(A+AA)z), = b+ Ab?

We are interested in the quantity

, IAA] _ _ [|Abd]
min<e: (A+ AA)xp =b+ Ab, €,<z~:}
{ Al 1]

called the normwise backward error. It is given by

el
[AT el + T

[Rigal, Gaches 1967]
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Motivation

Maximum attainable accuracy

L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

I~ Ay = rel < < [A] (Jol) + max 1) O
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Motivation

Error estimation

@ k-bound

o —aulla 2( m<A>—1>’“
le=olla = "\ ViA) +1

@ \pin-bounds

el lI7&l
T—Trl|lA £ —(—— Tz — x| <
H H Vv )\min ’ H H )\min

@ Gauss-Radau quadrature-based bounds

lz—zila < VA Il
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How to approximate Apin(A) and Apax(A)?

A is symmetric and positive definite

Amax(A) = Al Mg (A) =AY

min

Important source of information — Ty, = Rng.

@ Using the largest and smallest eigenvalue of T}y,
+ can be very accurate
— solving eigenvalue problems, which k7
— storing T
o Based on incremental estimation of | Ty|| and | T, ||
+ accurate enough
+ very cheap
+ no need to store T, or some vectors
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Incremental estimation of || T|| and || T

@ In CG, only Ry, is available, Ty = RkTRk, and

ITell = IRel® TR = IR

@ Structure: R} and R,;l are
e upper triangular, R, bidiagonal,
e How arises Ry41 from Ry, and R,;il from R, '?
e In both cases, by adding one column and one row.

@ Incremental norm estimation: incrementally improve
an approximation of the maximum right singular vector.
[Bischof 1990], [Duff, Vémmel 2002], [Duintjer Tebbens, Tiima 2014].
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The idea of incremental norm estimation

U is general, upper triangular

Given U € R¥** upper triangular, and z, ||z|| = 1, |Uz| =~ ||U]||,
IAJ:[U 2], v e RF, q € R.

Consider new approximate max. right singular vector in the form
5z - sUz+cv
5= [ ] & U= [ * ]
c cq

where 52 4+ ¢2 = 1 are chosen such that |[UZ|| is maximum,

Hﬂé\V:[Zﬂg 1]

p=|Uz|? o =0TUz, T =vTv+ %

— maximum eigenvalue and eigenvector of the 2 x 2 matrix?
29



Incremental norm estimation

The algorithm

ar ] , U &€ Rk, q € R, (Zk S Rk>

1. Compute the entries of the 2 x 2 matrix and Ay,
ok = [Ukzi|®, ok =0l Upzi, 71 =vive +qi-
2. Compute the new estimate pp41 using
A = (pk — Tk)2 —|—40‘]% .
1 Pk — Tk)

2 2

cg==-1—-——"]), = pr + VARCK .

k 9 ( \/A—k Pk+1 = Pk kCk

3. If necessary, compute zj41

. Sz
s =1/1— ci, ck = |ex|sign(ox), 241 = [ ikk ] .
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Specialization to upper bidiagonal matrices

ar b 0
B =
k+1 bkfl 0
ay by,
L Ak+1
Inverse ) )
- _ k
B—l _ Bk) wk Ak+1
k+1 = 1
Ak41

where wy, is the last column of the matrix B,;l, ie.,

b
—wy, 2k
W41 = [ 1ak+1 ] .

k41
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CG with incremental estimation of ||A]|
1 —
Te—1 Y

% k> 1.

R, in CG have the entries a; =

input A, b, g
ro =b— Axg, po =10
fork=1,...,do
CG iteration(k) — Vk—1, Tk, Tk, Ok, Pk
if kK =1 then
G=1p=""
end if
_ Vo Cho1

57k 1
Ye—1 Yk 9
Ag = (pr — T5)° + 4o}
1 J—
Pr+1 = pr + Ak ch
end for
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strakos48

Approximation of )\max(A) Approximation of )\mm(A)
10 w — 10 ‘ ‘
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1072 4
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Estimates of the extreme eigenvalues (summary)

o T) = R,{Rk represents an important source of information.

e We developed cheap estimators of A\pin(A) and Apax(A),
based on incremental estimation of | Ry|| and | R; .

@ The reached relative accuracy of estimates is usually
between 10~! and 1072,

@ These estimates can be used, e.g., to approximate
e the normwise backward error,
e condition number of A,
e attainable level of accuracy,

e A-norm of the error.
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Estimating the A-norm of the error

A brief history

@ The function (z — zx, A(z — x)) can be used as a measure of the
“goodness” of xj as an estimate of x. [Hestenes, Stiefel 1952]

@ Gene Golub and collaborators: [Dahlquist, Golub, Nash 1978],
[Golub, Meurant 1994] relate error bounds to Gauss quadrature.

o Idea of estimating errors in CG, behavior in finite precision
arithmetic [Golub, Strako$ 1994], the CGQL algorithm [Golub,
Meurant, 1997], intensively studied in many later papers.

@ Numerical stability of the estimates based on Gauss
quadrature [Strako$, T. 2002], [Strakos, T. 2005].

@ Summary in the book [Golub, Meurant 2010].

@ Improvement [Meurant, T. 2013] — the CGQ algorithm.
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CG and Gauss quadrature

The lower bound on ||z — xk||a

At any iteration step k, CG determines (through T}) weights and
nodes of the k-point Gauss quadrature. For f(\) = A7!:

k—1

lela = D2l + Il — walfa
5=0

Considering the same formula for some k& 4+ d we obtain

ktd—1
lz —alfa = Do wlrsl? + e — zrsalla
=k
We have a lower bound. E.g., if 12=2+dla (g then

lz—zk|la

k+d—1

> yllrsll? <l — anlla < 2
=k

k+d—1

> il
=k
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Finite precision arithmetic

CG behavior
Orthogonality is lost, convergence is delayed!
B EICETREATR
— P [, I,
1
!
0 L : === FEP) VIVl |
'
10+ '
1
1
— 1
10° | N ;
’ 1
10° + N [
I 1
. i
10*10 1 i
‘ :
107 l' 1
’ 1
.
0™ L ]
'O
40 60 80 100 120

10
0 20
Identities need not hold in finite precision arithmetic!
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The lower bound

Practically relevant questions

k+d—1

lz—azela = D vl + o — zrpalla
=k

Practically relevant questions:
+ We can compute it almost for free.
+ It is numerically stable [Strakos, T. 2002, 2005]:

— How to control the quality of the bound?
e How to choose d adaptively?

e How to detect a decrease of the A-norm of the error?
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The choice of d

R. Kouhia: Cylindrical shell (Matrix Market), matrix s3dkt3m2

PCG, x(A) =3.62e +11, n =90499, cholinc(A,0).

-8
1075 -~ relative A-norm of the error
— estimate
1079 T T T L L
500 1000 1500 2000 2500 3000

40



CG and Gauss-Radau quadrature

o Modification of Gauss quadrature rule.

@ Prescribe 1 such that 0 < p < Apin.

Gauss-Radau quadrature rule can be written algebraically as

k—2
(R)

lzla = 3= villril® + 9 llreall? + R,
7=0

where R,SR) <0, 76“) =~ ! and

N ) E
i () = 5) + b1

[Golub, Meurant, 1997], [Meurant, T. 2013]

How to construct an upper bound on ||z — z|[A?
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CG and Gauss-Radau quadrature

Upper bound

Using Gauss rule for & and Gauss-Radau rule for k 4 d,

k+d—2
. R
le ol = 3 il + s Ireean 2 + R,
=k
and Rfﬁ)d < 0.

Practically relevant questions:
+ We can compute it almost for free.

— How to get u?

Sensitivity of the bound on u?

Numerical behavior?

Quality of the bound?
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Gauss-Radau upper bound, exact arithmetic

various values of p, bcsstkO1l matrix, n = 48

4= Amin(1—10""), m=1,...,14

CGQ - besstk01, mu = lambda*(1-1e-x), d=1

10° T T T T T
107 E
10°F El
10°F E
exact error
Radau upper bound
10"’ L L L L L L
0 5 10 15 20 25 30 35 40 45 50
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Gauss-Radau upper bound, finite precision arithmetic

various values of p, bcsstkO1l matrix, n = 48

4= Amin(1—10""), m=1,...,14

CGQ - besstk01, mu = lambda*(1-1e—x), d=1
10 T T T T

exact error

" Radau upper bound
- 1 I

L L L L
0 20 40 60 80 100 120 140 160 180
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An upper bound on the upper bound

Find an envelope for all curves that corresponds to various p's.

(w)

Multiply the updating formula for v, by 1

IN

J

(=)

(W =) + 8
)
p + 851
I3 12 )
;117 _ AIrjall
112 - 2
”;;““2 + 5j+1 Hpj-‘rl”
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An upper bound on the upper bound

In summary, if ;1 < Apin, then

o Irell? rsl?
po lpel?

2 — 2l < 75|l

CGQ - besstk01, mu = lambda*(1-1e-x), d=1
T T T T

107 exact error
Radau upper bound
upper-upper bound
107 . . . . . .
0 20 40 60 80 100 120 140 160 180
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CG and Gauss-Radau quadrature

Upper bound on the upper bound

If 4 < Amin, then

k+d—1

Irksall® |7 xrall®
A< D> vlmlP+
=k

ro pktall?

|z —

Practically relevant questions:
+ We can compute it almost for free.
+ No too much sensitive to the choice of .

+ Heuristics — we can use it even if g > Apin
(e.g., use the estimate of the smallest Ritz value).

+ Numerical behavior? Looks OK, so far no analysis.

— Quality of the bound. Not so tight.

47



Conclusions and questions

o T\ = R,{Rk represents an important source of information
that can be used for estimating the CG convergence.

@ The estimation of the A-norm of the error should be based
on the numerical stable lower bound.

@ How to detect a decrease of the A-norm of the error?
(How to choose d adaptively?).

@ We found an upper bound on the Gauss-Radau upper bound
that is insensitive to the choice of y, and hope to be useful in
the adaptive choice of d for the lower bound.
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Thank you for your attention!
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