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The conjugate gradient method

Ax = b, A is real, symmetric, positive definite, ‖b‖ = 1, x0 = 0.

input A, b

r0 = b, p0 = r0

for k = 1, 2, . . . do

γk−1 =
rT

k−1rk−1

pT
k−1A pk−1

xk = xk−1 + γk−1pk−1

rk = rk−1 − γk−1A pk−1

δk =
rT

k rk

rT
k−1rk−1

pk = rk + δkpk−1

end for
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Mathematical properties of CG

CG generates an orthogonal basis r0, . . . , rk−1 of

Kk(A, b) ≡ span{b, Ab, . . . , A
k−1b} .

using a coupled two-term recurrence.

The CG approximation xk is optimal,

‖x − xk‖A = min
y∈Kk

‖x − y‖A .

orthogonal vectors →

orthogonal polynomials

three-term recurrence, Tk = R
T

k
Rk

Gauss quadrature connection
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How to measure quality of an approximation?

relative residual norm,

‖rk‖
‖b‖ , Axk = b + ∆b.

“Using of the residual vector rk as a measure of the “goodness” of

the estimate xk is not reliable” [Hestenes, Stiefel 1952]

normwise backward error

The normwise backward error is, as a base for stopping criteria,

frequently recommended in the numerical analysis literature.

error estimates

Estimates of the A-norm of the error play an important role in

stopping criteria in many problems [Deuflhard 1994], [Arioli 2004],

[Jiránek, Strakoš, Vohralík 2010]
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The normwise backward error

Given xk, what are the norms of the smallest perturbations ∆A of
A and ∆b of b (in the relative sense) such that

(A + ∆A) xk = b + ∆b ?

We are interested in the quantity

min

{

ε : (A + ∆A) xk = b + ∆b,
‖∆A‖
‖A‖ ≤ ε,

‖∆b‖
‖b‖ ≤ ε

}

called the normwise backward error. It is given by

‖rk‖
‖A‖‖xk‖ + ‖b‖ .

[Rigal, Gaches 1967]
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The normwise backward error
How to efficiently approximate ‖A‖?

‖rk‖
‖A‖‖xk‖ + ‖b‖

Using Frobenius norm of A, 1√
n

‖A‖F ≤ ‖A‖ ≤ ‖A‖F ,

+ very simple
– for large n, not accurate enough

Using the largest eigenvalue of Tk, i.e., ‖Tk‖
+ accurate
– solving eigenvalue problems, which k?

Based on incremental estimation of ‖Tk‖
+ accurate enough
+ very cheap
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How to incrementally estimate ‖Tk‖?

Since Tk = R
T
k Rk, it holds that

‖Tk‖ = ‖Rk‖2 .

Rk is upper triangular, Rk+1 arises from Rk by adding one
column and one row ⇒ one can use the ideas of
[Bischof 1990], [Duff, Vömmel 2002], [Duintjer Tebbens, Tůma 2014].

The idea is to incrementally improve an approximation of
the maximum right singular vector.
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The idea of incremental norm estimation

Given R ∈ R
k×k upper triangular, and z, ‖z‖ = 1, ‖Rz‖ ≈ ‖R‖.

Let

R̂ =

[

R v

µ

]

, v ∈ R
k, µ ∈ R.

Consider new approximate max. right singular vector in the form

ẑ =

[

sz

c

]

,

where s2 + c2 = 1 are chosen such that ‖R̂ẑ‖ is maximum,

‖R̂ẑ‖2 =

[

s

c

]T [

α β

β γ

] [

s

c

]

α = ‖Rz‖2, β = vT
Rz, γ = vT v + µ2.

Determine the maximum eigenvalue of the 2 × 2 matrix, and the
corresponding eigenvector.
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Specialization to upper bidiagonal matrices from CG

Rk+1 =

[

Rk v

µ

]

, Rk =
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v =

√

δk

γk−1
ek, µ =

1√
γk

Using some algebra → an updating formula for ∆k ≡ ‖Rkzk‖2,

∆k+1 = ∆k + ωkc2
k+1,

we don’t need to store zk!
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CG with incremental norm estimation

input A, b, x0

r0 = b − Ax0, p0 = r0

δ0 = 0, γ−1 = 0
for k = 1, . . . , do

CG iteration(k) → γk−1, xk, rk, δk, pk

αk = 1
γk−1

+
δk−1

γk−2

β2
k = δk

γ2
k−1

if k = 1 then

c2
1 = 1, ∆1 = α1

else

ωk−1 =
√

(∆k−1 − αk)2 + 4β2
k−1c2

k−1

c2
k = 1

2

(

1 − ∆k−1−αk

ωk−1

)

∆k = ∆k−1 + ωk−1c2
k

end if

end for
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Accuracy of the upper bound

∆k ≤ ‖A‖ ⇒ ‖rk‖
‖A‖‖xk‖ + ‖b‖ ≤ ‖rk‖

∆k‖xk‖ + ‖b‖
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Estimating the A-norm of the error
A brief history

“The function (x − xk, A(x − xk)) can be used as a measure of the

“goodness” of xk as an estimate of x.” [Hestenes, Stiefel 1952]

Gene Golub and collaborators: [Dahlquist, Golub, Nash 1978] relate
error bounds to Gauss quadrature; see also [Golub, Meurant

1994].

Idea of estimating errors in CG, behavior in finite precision
arithmetic [Golub, Strakoš 1994], the CGQL algorithm [Golub,

Meurant, 1997], intensively studied in many later papers.

Numerical stability of the estimates based on Gauss
quadrature [Strakoš, T. 2002], [Strakoš, T. 2005].

Summary in the book [Golub, Meurant 2010].

Improvement [Meurant, T. 2013] → the CGQ algorithm.
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CG and Gauss quadrature
The lower bound on ‖x − xk‖A

At any iteration step k, CG determines (through Tk) weights and
nodes of the k-point Gauss quadrature. For f(λ) = λ−1:

‖x‖2
A =

k−1
∑

j=0

γj‖rj‖2 + ‖x − xk‖2
A .

Considering the same formula for some k + d we obtain

‖x − xk‖2
A =

k+d−1
∑

j=k

γj‖rj‖2 + ‖x − xk+d‖2
A

We have a lower bound. E.g., if
‖x−xk+d‖A

‖x−xk‖A
< 0.8, then

√

√

√

√

√

k+d−1
∑

j=k

γj‖rj‖2 < ‖x − xk‖A < 2

√

√

√

√

√

k+d−1
∑

j=k

γj‖rj‖2 .
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The lower bound
Practically relevant questions

‖x − xk‖2
A =

k+d−1
∑

j=k

γj‖rj‖2 + ‖x − xk+d‖2
A.

Practically relevant questions:

+ We can compute it almost for free.

+ It is numerically stable [Strakoš, T. 2002, 2005]:

– How to control the quality of the bound?

How to choose d adaptively?

How to detect a decrease of the A-norm of the error?
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The choice of d

R. Kouhia: Cylindrical shell (Matrix Market), matrix s3dkt3m2

PCG, κ(A) = 3.62e + 11 , n = 90499 , cholinc(A, 0) .
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CG and Gauss-Radau quadrature

Modification of Gauss quadrature rule.

Prescribe µ such that 0 < µ < λmin.

Gauss-Radau quadrature rule can be written algebraically as

‖x‖2
A =

k−2
∑

j=0

γj‖rj‖2 + γ
(µ)
k−1‖rk−1‖2 + R(R)

k

where R(R)
k < 0, γ

(µ)
0 = µ−1, and

γ
(µ)
j+1 =

(

γ
(µ)
j − γj

)

µ
(

γ
(µ)
j − γj

)

+ δj+1

.

How to construct an upper bound on ‖x − xk‖A?
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CG and Gauss-Radau quadrature
Upper bound

Using Gauss rule for k and Gauss-Radau rule for k + d,

‖x − xk‖2
A =

k+d−2
∑

j=k

γj‖rj‖2 + γ
(µ)
k+d−1‖rk+d−1‖2 + R(R)

k+d

and R(R)
k+d < 0.

Practically relevant questions:

+ We can compute it almost for free.

– How to get µ?

– Sensitivity of the bound on µ?

– Numerical behavior?

– Quality of the bound?

19



Gauss-Radau upper bound, exact arithmetic
various values of µ, bcsstk01 matrix, n = 48

µ = λmin(1 − 10−m), m = 1, . . . , 14

0 5 10 15 20 25 30 35 40 45 50
10

−5

10
−4

10
−3

10
−2

10
−1

CGQ − bcsstk01, mu = lambda*(1−1e−x), d=1

 

 

exact error
Radau upper bound

20



Gauss-Radau upper bound, finite precision arithmetic
various values of µ, bcsstk01 matrix, n = 48

µ = λmin(1 − 10−m), m = 1, . . . , 14
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An upper bound on the upper bound

Find an envelope for all curves that corresponds to various µ’s.

Multiply the updating formula for γ
(µ)
j+1 by µ

µγ
(µ)
j+1 =

µ
(

γ
(µ)
j − γj

)

µ
(

γ
(µ)
j − γj

)

+ δj+1

.

We can show that µγ
(µ)
j+1 < fj+1, and fj+1 does not depend on µ,

fj+1 =
fj

fj + δj+1
, f0 = 1.

In fact, we can show that

fj =
‖rj‖2

‖pj‖2
.
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An upper bound on the upper bound

In summary, if µ < λmin, then

‖x − xk‖2
A ≤ γ

(µ)
k ‖rk‖2 <

fk

µ
‖rk‖2.
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CG and Gauss-Radau quadrature
Upper bound on the upper bound

If µ < λmin, then

‖x − xk‖2
A <

k+d−1
∑

j=k

γj‖rj‖2 +
fk+d

µ
‖rk+d‖2

Practically relevant questions:

+ We can compute it almost for free.

+ No too much sensitive to the choice of µ.

+ Heuristics → we can use it even if µ > λmin

(e.g., use the estimate of the smallest Ritz value).

+ Numerical behavior? Looks OK, so far no analysis.

– Quality of the bound. Not so tight.

+ We hope, it can be used for the adaptive choice of d

in the (tight) lower bound.
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Conclusions and questions

Tk = R
T
k Rk represents an important source of information

that can be used for estimating the CG convergence.

The normwise backward error can be approximated almost
for free using incremental norm estimation.

The approximation ∆k of ‖A‖ can also be used to estimate
the level of maximal attainable accuracy.

The estimation of the A-norm of the error should be based
on the numerical stable lower bound.

How to detect a decrease of the A-norm of the error?
(How to choose d adaptively?).

We found an upper bound on the Gauss-Radau upper bound
that is insensitive to the choice of µ, and hope to be useful in
the adaptive choice of d for the lower bound.
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Thank you for your attention!
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