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Problem formulation

Consider a system

Axr=0b>

where A € R™*"™ is symmetric, positive definite.

Without loss of generality,

b =1, 2 =0.



The conjugate gradient method

input A, b

ro =0, po =10
fork=1,2,... do

T
N Tp—1Tk—1
-1 =
pk_lApk:—l
Tp = Tg_1+ Vk—1Pk-1
T = Th—1— Ye—1ADir—1
7“;;’;7“]{;
(Sk; = T
To—1Tk—1
Pk = T+ OpDPr—1

test quality of

end for



Mathematical properties of CG

optimality property

CG — xp, Tk, Dk

The kth Krylov subspace,

Ki(A,b) = span{b, Ab,...,A*"1b} .

@ Residuals rg,...,rg_1 form an orthogonal basis of K (A,b).

@ The CG approximation zy is optimal

= zklla = min flz =yl



A practically relevant question

How to measure quality of an approximation?

@ using residual information,
— normwise backward error,

— relative residual norm.
“Using of the residual vector r; as a measure of the “goodness” of

the estimate xj, is not reliable” [Hestenes & Stiefel 1952]
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A practically relevant question

How to measure quality of an approximation?

@ using residual information,
— normwise backward error,
— relative residual norm.
“Using of the residual vector r; as a measure of the “goodness” of
the estimate xj, is not reliable” [Hestenes & Stiefel 1952]

@ using error estimates,
— estimate of the A-norm of the error,
— estimate of the Euclidean norm of the error.
“The function (z — xg, A(x — 1)) can be used as a measure of the
“goodness” of xj as an estimate of x." [Hestenes & Stiefel 1952]

The (relative) A-norm of the error plays an important role
in stopping criteria in many problems [Deuflhard 1994], [Arioli 2004],
[Jirdnek, Strakos, Vohralik 2006]



@ CG and the Lanczos algorithm



The Lanczos algorithm

Let A be symmetric, compute orthonormal basis of Ky (A,b)

input A, b
v = b/||b||, 51 =0
Bo=0,v9=0

for k=1,2,... do
ap = v,{Avk
w = Avg — agvp — Br_1Vk-1
Br = [|w]|

Vg1 = w/ By

end for
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The Lanczos algorithm

Let A be symmetric, compute orthonormal basis of Ky (A,b)

input A, b
v = b/||b||, 51 =0
ﬁo = O, Vo = 0 Tk‘
for k=1,2,... do a; fr
o = v,{Avk 8
w = Avg — agvp — Br_1Vk-1 _
Bi = llw] o P

Vpy1 = w/ By Br-1 o

end for

The Lanczos algorithm can be represented by

AV = ViTy+ Bevoptier, ViV =1.



CG versus Lanczos

Let A be symmetric, positive definite

The CG approximation is the given by

Ty = Viyr where Tpy, = |bller.

It holds that
vp1 = (=1)F ”:ZH , Ty =LDL{,
where
1 %
L, = VoL , D=

o1 1 il



CG versus Lanczos

Summary

@ Both algorithms generate an orthogonal basis of the Krylov
subspace Ki(A,b).

@ Lanczos generates an orthonormal basis vy, ..., v using
a three-term recurrence — T.

@ CG generates an orthogonal basis rq,...,rr_1 using
a coupled two-term recurrence — T = LyD;LT.

@ It holds that
k Tk

Irell”

Vg1 = (—1)



9 CG, Lanczos and Quadrature
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CG, Lanczos and Gauss quadrature

Overview

CG, Lanczos,
algorithms

Gauss Quadrature Orthogonal polynomials
nodes, weights Jacobi matrices
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CG, Lanczos and Gauss quadrature

Corresponding formulas

At any iteration step k, CG (implicitly) determines weights and
nodes of the k-point Gauss quadrature

k
| P do) = 3w FEM) + Ryl
=1

T, ... Jacobi matrix, 9518) .. .eigenvalues of T}, wi(k) ...scaled and

squared first components of the normalized eigenvectors of Ty.
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CG, Lanczos and Gauss quadrature

Corresponding formulas

At any iteration step k, CG (implicitly) determines weights and
nodes of the k-point Gauss quadrature

/jf(/\)dw wak 0™ + Relf].

T, ... Jacobi matrix, 91( 2 .. .eigenvalues of T}, wi(k) ...scaled and

squared first components of the normalized eigenvectors of Ty.

OES
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CG, Lanczos and Gauss quadrature

Corresponding formulas

At any iteration step k, CG (implicitly) determines weights and
nodes of the k-point Gauss quadrature

k

3 1 .
/< FN Ao = YoM M) + Rl
i=1
T, ... Jacobi matrix, 9518) .. .eigenvalues of T}, wi(k) ...scaled and

squared first components of the normalized eigenvectors of Ty.

f(\) = A~! . Lanczos-related quantities:
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CG, Lanczos and Gauss quadrature

Corresponding formulas

At any iteration step k, CG (implicitly) determines weights and
nodes of the k-point Gauss quadrature

k

3 1 .
/< FN Ao = YoM M) + Rl
i=1
T, ... Jacobi matrix, 9518) .. .eigenvalues of T}, wi(k) ...scaled and

squared first components of the normalized eigenvectors of Ty.

f(\) = A~! . Lanczos-related quantities:

(127),, = (307), R

CG-related quantities

k—1

lzla = D illrll? + llo — el -
j=0
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Gauss-Radau quadrature

More general quadrature formulas

/<de szJc Vi) ijf(’j.j)+7zk[f]a

i=1
the weights [w;]F_;, [w;]72, and the nodes [v;]k_, are unknowns,
[;]72, are prescribed outside the open integration interval.
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Gauss-Radau quadrature

More general quadrature formulas

/<de szf Vi) ijf(’j.j)+7zk[f]a

i=1
the weights [w;]F_;, [w;]72, and the nodes [v;]k_, are unknowns,
[;]72, are prescribed outside the open integration interval.

m = 1: Gauss-Radau quadrature.
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Gauss-Radau quadrature

More general quadrature formulas

/<de szf Vi) ijf(’j.j)+7zk[f]a

J=1

the weights [w;]F_;, [w;]72, and the nodes [v;]k_, are unknowns,
[;]72, are prescribed outside the open integration interval.

m = 1. Gauss-Radau quadrature. Algebraically: Given pu = vy,
find a1 so that p is an eigenvalue of the extended matrix

ar B
_ b1
T = R
Br—1 o
B

Bk

Up+1 |

Quadrature for f(\) = A~! is given by ( k+1)1 L
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Quadrature formulas

Golub - Meurant - Strako$ approach

Quadrature formulas for f(A\) = A~! take the form

(1), - (), 7
)+

(T:1),, = (T

and R\? > 0 while RV < 0 if 11 < Apuin.

14



Quadrature formulas

Golub - Meurant - Strako$ approach

Quadrature formulas for f(A\) = A~! take the form

(), = (5, ¢ R,
1), = ()

and R\“) > 0 while R\ < 0/if 11 < Amin. Equivalently

lzla = 7 + llo— a4,

~ R
lz)i = 7 + R,

where 1, = (T,;l)l X TE = (lel)m'

)

[Golub & Meurant 1994, 1997, 2010, Golub & Strako$ 1994]
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|dea of estimating the A-norm of the error

Consider two quadrature rules at steps k and k + d, d > 0,

lz|a = 7 4 llo—ala,
|22 = Fitd + Rita- (1)

15
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Consider two quadrature rules at steps k and k + d, d > 0,
lzlA = 7 + lo—al?,

|22 = Fitd + Rita- (1)

Then

lz = 2k|A = Fhvd— 7% + Rita-

Gauss quadrature: Rpiq = Rﬁ)d > 0 — lower bound,

Radau quadrature: 7A€k+d = R,(ﬁ)d < 0 — upper bound.
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|dea of estimating the A-norm of the error

Consider two quadrature rules at steps k and k + d, d > 0,
lzlA = 7 + lo—al?,

|22 = Fitd + Rita- (1)

Then

lz = 2k|A = Fhvd— 7% + Rita-

Gauss quadrature: Rpiq = Rﬁ)d > 0 — lower bound,
Radau quadrature: 7A€k+d = R,(ﬁ)d < 0 — upper bound.

How to compute efficiently

Thtd — Tk ?

15



© How to compute the estimates?
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How to compute 7y, q — 717

For numerical reasons, it is not good to compute explicitly 7,
Tk+d, and subtract .

17



How to compute 7 g — 717

For numerical reasons, it is not good to compute explicitly 7,
Tk+d, and subtract .

Instead, we use the formula,

ktd—2
Thid = Th = (Tj+1 = 75) + (Tjrd — Tj+d-1)
i=k
k+d—2 R
= Aj+ ADgya-1,
j=k

and update the A’s without subtraction. Recall that

Aj = (Tﬂ'_il)m B (Tj_l)m’
Apyia = (T_id)1 1 (Tk_id—l)m :

17



Golub and Meurant approach

[Golub & Meurant 1994, 1997]: Use tridiagonal matrices,

(G J =+ [T | = [Tzt - | &y

18



Golub and Meurant approach

[Golub & Meurant 1994, 1997]: Use tridiagonal matrices,

(G J > [T ] = [Dop] » | T

Compute the A's,

AV
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Golub and Meurant approach

[Golub & Meurant 1994, 1997]: Use tridiagonal matrices,

L ¢ |~

Compute the A's,
AVES]

AEC#)

Use the formulas

lz — k]l A

|l — k|3

- [ -

k+d—1

Z Aj + Hx—fEkerHia

Jj=k

k4d—2 ) ")
I

Z AJ""Ak:er—l + Rk:-i-d'

Jj=k
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CGQL (Conjugate Gradients and Quadrature via Lanczos)

input A, b, g, p
TOZb—A.TO Po =To
do=0,7v1=1c1=1 5=0,dy=1, N(u) = [,
for K =1,..., until convergence do
CG-iteration (k)

B 1 5k 1 O
o = ) /Bk = 2
V-1 'Yk 2 V-1
51%—1 202
dp = Ap_q = —k
i 4, S 70| 4.
2
w Bk
Qi1 P o — g’
k= G
AW 2 5/%% 2 5130%
k = HTOH M R
di, (G di — B2) 2

Estimates(k,d)

end for
19



Our approach

[Meurant & T. 2012]

@ We use tridiagonal matrices only implicitly.
@ CG generates LDL™ factorization of T}.

@ Update LDLT factorizations of the tridiagonal matrices

T,

@ Quite complicated algebraic manipulations, but, in the end,

@ we get very simple formulas for updating A;_1 and A,(C“).

20



Our approach

[Meurant & T. 2012]

@ We use tridiagonal matrices only implicitly.
@ CG generates LDL™ factorization of T}.

@ Update LDLT factorizations of the tridiagonal matrices

T,

@ Quite complicated algebraic manipulations, but, in the end,

@ we get very simple formulas for updating A;_1 and A,(C“).

@ This idea can be used also for other types of quadratures
(Gauss-Lobatto, Anti-Gauss).

20



CGQ (Conjugate Gradients and Quadrature)

[Meurant & T. 2012]

input A, b, xg, u,
ro = b— Axg, po =10

A(()“) _ Hro||2,
for K =1,..., until convergence do

CG-iteration(k)

A1 = e lre—all?,
Il (A = Ap-1)
(AP = Ag) + [rel2

Estimates(k,d)
end for
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@ Experiments and questions
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Practically relevant questions

The estimation is based on formulas

k+d—1

lz—zila = D Aj + [lo—zppalla
Jj=k
k+d—2

lo—ald = > Aj+Al,, + RE,
Jj=k

(w)

We are able to compute A; and A/ almost for free.
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Practically relevant questions

The estimation is based on formulas

k+d—1

lz—zila = D Aj + [lo—zppalla
Jj=k
k+d—2

lo—ald = > Aj+Al,, + RE,
Jj=k

(w)

We are able to compute A; and A/ almost for free.

Practically relevant questions:
@ What happens in finite precision arithmetic ?
@ How to choose d7?
@ How to choose p 7

23



Finite precision arithmetic

CG behavior
Orthogonality is lost, convergence is delayed!

;
----------- rmim (E) | X=X
b INL L Le===" E) =11,
10 — FPY Il x=x, I,
1
T
07 | ' FRYII=VV L
I
1
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1
1
— 1
10° | N ;
N 1
. !
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'l 1
] 1
-10| I -
10 ! :
, i
~ 1)
10 ] 1
’ 1
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16 L L L
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10
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Identities need not hold in finite precision arithmetic!
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Rounding error analysis

@ Lower bound [Strakos & T. 2002, 2005]: The equality

k+d—1

”l‘_l‘kui = Z Aj + ”w_xk—&-d”i
=k

holds (up to a small inaccuracy) also in finite precision
arithmetic for computed vectors and coefficients.
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Rounding error analysis

@ Lower bound [Strakos & T. 2002, 2005]: The equality

k+d—1

”l‘_l‘kui = Z Aj + ”w_xk—&-d”i
=k

holds (up to a small inaccuracy) also in finite precision
arithmetic for computed vectors and coefficients.

@ Upper bound: There is no rounding error analysis of
k+d—2

R
lz — 2rlla = Z AJ’""AI(ﬁr)d—l + REH)d‘
=k
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The choice of d - Experiment 1

Strakos matrix, n = 48, Ay = 0.1, A\, = 1000, p =0.9, d =4

CGQ - strakos48

10° T

10° —

107 .

107 —

10]

10

12|

100

10

exact error

1 Gauss lower bound
. 1 1

0 20 40 60 80 100 120

10
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The choice of d - Experiment 2

R. Kouhia: Cylindrical shell (Matrix Market), matrix s3dkt3m2

PCG, k(A) =3.62e +11, n=90499, d =200, cholinc(A,0).

== true residual norm
“““ normwise backward error

1078 — - A-norm of the error
— estimate T
10" L T I i e
0 500 1000 1500 2000 2500 3000
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The choice of d

k+d—1

|z — a3 = Z Aj + ||z — zppalla
=k

We get a tight lower bound if

Hl"—l"k:HQA > Hx_-l"k:erH?A'
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The choice of d
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=k

We get a tight lower bound if

Hl"—l"k:HQA > \|$—$k+d\|i-

How to detect a reasonable decrease of the A-norm od the error?

Theoretically, one could use the upper bound,

|z — $k+d\|i k+d
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The choice of d

k+d—1
|z — a3 = Z Aj + ||z — zppalla
j=k
We get a tight lower bound if

Hl"—l"k:HQA > \|$—$k+d\|i-

How to detect a reasonable decrease of the A-norm od the error?

Theoretically, one could use the upper bound,

|z — $k+d\|i k+d
lo—wlh = S,

But, can we trust the upper bound?

28



The choice of 1, upper bound, exact arithmetic

Strakos matrix, n = 48, \y = 0.1, A, = 1000, p =09, d=1

CGQ - strakos48

10 T T T

10° | .

107E : ]

107k s
exact error
Upper bound, p=0.5 )\1

e Upper bound, u:A1*0.9999
107 T T T I I I I I I
0 5 10 15 20 25 30 35 40 45 50
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The choice of 1, upper bound, finite precision arithmetic

Strakos matrix, n = 48, \y = 0.1, A, = 1000, p =09, d=1

CGQ - strakos48
T

exact error
Upper bound, p=0.5 )\1

Upper bound, u:)\l
T

1 1 1 1
0 20 40 60 80 100 120
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Numerical troubles with the upper bound

Given i, we look for a1 (explicitly or implicitly) so that p is an
eigenvalue of the extended matrix

[ B 1
_ B
Trir = o B
Br-1  ar B
i Br Qg1 |
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Numerical troubles with the upper bound

Given i, we look for a1 (explicitly or implicitly) so that p is an
eigenvalue of the extended matrix

ar B
_ B
T = e B
Br-1  ar B
i Br Qg1 |

To find such a a1, we need to solve the system
(T — ul)y = ey .

If u is close to the smallest eigenvalue of T, we can get into
numerical troubles!
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Conclusions and questions

@ The upper bound as well as the lower bound on the A-norm
of the error can be computed in a simple way.
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Conclusions and questions

@ The upper bound as well as the lower bound on the A-norm
of the error can be computed in a simple way.

@ Unfortunately, the computation of the upper bound is
not always numerically stable.

e pis far from Ay — overestimation,
@ p is close to Ay — numerical troubles.

@ The estimation of the A-norm of the error should be based
on the numerical stable lower bound.

@ How to detect a reasonable decrease of the A-norm of the
error? (How to choose d adaptively?).

@ Is there any way how to involve the upper bound?
Understanding of numerical behaviour of the upper bound?
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Thank you for your attention!
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