On worst-case GMRES

Petr Tichý

joint work with

Vance Faber and Jörg Liesen

Czech Academy of Sciences

June 18, 2012, SIAM Conference on Applied Linear Algebra, Valencia, Spain

GMRES, Worst-case GMRES and Ideal GMRES

$$\mathbf{A}x=b$$
 , $\mathbf{A}\in\mathbb{C}^{n\times n}$ is nonsingular, $\,b\in\mathbb{C}^n$,
$$x_0=\mathbf{0}\ \, \text{ and }\,\,\|b\|=1\ \, \text{for simplicity}\,.$$

GMRES computes $x_k \in \mathcal{K}_k(\mathbf{A},b)$ such that $r_k \equiv b - \mathbf{A}x_k$ satisfies

$$\begin{split} \|r_k\| &= \min_{p \in \pi_k} \|p(\mathbf{A})b\| & \text{(GMRES)} \\ &\leq \max_{\|b\|=1} \min_{p \in \pi_k} \|p(\mathbf{A})b\| \equiv \psi_k(\mathbf{A}) & \text{(worst-case GMRES)} \\ &\leq \min_{p \in \pi_k} \|p(\mathbf{A})\| \equiv \varphi_k(\mathbf{A}) & \text{(ideal GMRES)} \\ &\leq 1 \,. \end{split}$$

Questions

$$||r_k|| \le \underbrace{\max_{\|b\|=1} \min_{p \in \pi_k} ||p(\mathbf{A})b||}_{\psi_k(\mathbf{A})} \le \underbrace{\min_{p \in \pi_k} ||p(\mathbf{A})||}_{\varphi_k(\mathbf{A})}$$

- Relationship between ideal and worst case GMRES?
- Characterization of solutions? Understanding?
- Existence and uniqueness of the solution?
- How to approximate ideal/worst-case quantities?

Normal matrices

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^*, \quad \mathbf{Q}^* \mathbf{Q} = \mathbf{I}.$$

• [Greenbaum, Gurvits '94; Joubert '94] showed:

$$\max_{\|b\|=1} \min_{p \in \pi_k} \|p(\mathbf{A})b\| = \min_{p \in \pi_k} \|p(\mathbf{A})\|$$

• Which (known) approximation problem is solved?

$$\min_{p \in \pi_k} \|p(\mathbf{A})\| = \min_{p \in \pi_k} \|\mathbf{Q}p(\mathbf{\Lambda})\mathbf{Q}^*\| = \min_{p \in \pi_k} \max_{\lambda_i} |p(\lambda_i)|.$$

- Is the solution unique? Yes
- How to approximate ideal/worst-case quantities?

[Greenbaum '79; Liesen, T. '04]

Nonnormal matrices – Toh's example

$$||r_k|| \le \underbrace{\max_{\|b\|=1} \min_{p \in \pi_k} ||p(\mathbf{A})b||}_{\psi_k(\mathbf{A})} \le \underbrace{\min_{p \in \pi_k} ||p(\mathbf{A})||}_{\varphi_k(\mathbf{A})}$$

Consider the 4 by 4 matrix

$$\mathbf{A} = \begin{vmatrix} 1 & \epsilon \\ & -1 & \epsilon^{-1} \\ & & 1 & \epsilon \\ & & & -1 \end{vmatrix}, \quad \epsilon > 0.$$

Then, for k=3,

$$0 \stackrel{\epsilon \to 0}{\longleftarrow} \psi_k(\mathbf{A}) < \varphi_k(\mathbf{A}) = \frac{4}{5}.$$

[Toh '97; another example in Faber, Joubert, Knill, Manteuffel '96]

Uniqueness

Let ${\bf A}$ be a nonsingular matrix. Then the kth ideal GMRES polynomial ${\it p}_*\in\pi_k$ that solves the problem

$$\min_{p \in \pi_k} \| p(\mathbf{A}) \|$$

is unique.

[Greenbaum, Trefethen '94]

Generalization to

$$\min_{p \in \mathcal{P}_m} \| f(\mathbf{A}) - p(\mathbf{A}) \|$$

can be found in [Liesen, T. '09].

Matrix approximation problems in spectral norm and characterization of Ideal GMRES

Ideal GMRES is a special case of the problem

$$\min_{\mathbf{M} \in \mathbb{A}} \|\mathbf{B} - \mathbf{M}\| = \|\mathbf{B} - \mathbf{A}_*\|$$

 A_* is called a spectral approximation of B from the subspace A.

In our case,

$$\min_{p \in \pi_k} \|p(\mathbf{A})\| = \min_{\alpha_i \in \mathbb{C}} \left\| \mathbf{I} - \sum_{j=1}^k \alpha_j \mathbf{A}^j \right\|,$$

i.e.
$$\mathbf{B} = \mathbf{I}$$
, $\mathbb{A} = \operatorname{span}\{\mathbf{A}, \dots, \mathbf{A}^k\}$.

General characterization by [Lau and Riha, 1981] and [Zietak, 1993, 1996] \rightarrow based on the Singer's theorem [Singer, 1970].

Singer's theorem

Theorem [Singer, 1970]

Let $(\mathcal{V}, \|\cdot\|)$ be a **normed vector space**, $\mathcal{X} \subset \mathcal{V}$ a k-dimensional linear subspace of \mathcal{V} , and $y \in \mathcal{V} \backslash \mathcal{X}$. $x_* \in \mathcal{X}$ is a **best approximation** of y **iff** there exists ℓ **extremal points** f_1, \ldots, f_ℓ of Ω^* , where $1 \leq \ell \leq k+1$ if the scalars are real and ℓ numbers $\omega_1, \ldots, \omega_\ell > 0$, with $\omega_1 + \cdots + \omega_\ell = 1$, such that

$$\sum_{i=1}^{\ell} \omega_i f_i(x) = 0, \quad \forall x \in \mathcal{X},$$

$$f_i(y - x_*) = \|y - x_*\|, \quad i = 1, \dots, \ell.$$

Specialized for matrices by [Lau and Riha, 1981].

Characterization of Ideal GMRES

by Faber, Joubert, Knill, Manteuffel '96

Given a polynomial $q \in \pi_k$ and **A**, define the set

$$\Omega_k(q) \equiv \left\{ \begin{bmatrix} w^* q(\mathbf{A})^* \mathbf{A} w \\ \vdots \\ w^* q(\mathbf{A})^* \mathbf{A}^k w \end{bmatrix} : w \in \Sigma(q(\mathbf{A})), \|w\| = 1 \right\}$$

where $\Sigma(\mathbf{B})$ is the span of maximal right singular vectors of \mathbf{B} .

Theorem [Faber, Joubert, Knill, Manteuffel '96] $h\in\pi_k \text{ is the } k\text{th ideal GMRES pol. of } \mathbf{A} \iff \mathbf{0}\in\text{cvx}(\Omega_k(h)).$

This characterization was derived without using Singer's theorem.

Worst-case GMRES

For a given k, there exists a right hand side b such that

$$||r_k|| = \min_{p \in \pi_k} ||p(\mathbf{A})b|| = \max_{\|v\|=1} \min_{p \in \pi_k} ||p(\mathbf{A})v||$$

Theorem

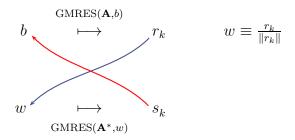
[Zavorin '02; Faber, T., Liesen '12]

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a nonsingular matrix. Then GMRES achieves the same worst-case behavior for \mathbf{A} and \mathbf{A}^* at every iteration.

- ullet [Zavorin '02] o only for diagonalizable matrices.
- ullet [Faber, T., Liesen '12] \to for all nonsingular matrices.

Cross equality for worst-case GMRES vectors

Given: $\mathbf{A} \in \mathbb{C}^{n \times n}$, k, a worst-case starting vector b



It holds that

$$||s_k|| = ||r_k|| = \psi_k(\mathbf{A}), \qquad b = \frac{s_k}{||s_k||}.$$

[Zavorin '02; Faber, T., Liesen '12]

A new characterization of worst-case GMRES

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be given. For $v \in \mathbb{R}^n$ and $c \in \mathbb{R}^k$ define

$$F(c,v) \equiv \frac{\|v - K(v)c\|^2}{\|v\|^2},$$

where $K(v) \equiv [\mathbf{A}v, \mathbf{A}^2v, \dots, \mathbf{A}^kv]$. We want to characterize the solution of the problem

$$\max_{v \in \mathbb{R}^n \setminus 0} \min_{c \in \mathbb{R}^k} F(c, v) . \tag{1}$$

Theorem

[Faber, T., Liesen '12]

 $\tilde{c} \in \mathbb{R}^k$ and $\tilde{v} \in \mathbb{R}^n$ that solve the problem (1) satisfy

$$\frac{\partial F}{\partial c}(\tilde{c}, \tilde{v}) = 0, \qquad \frac{\partial F}{\partial v}(\tilde{c}, \tilde{v}) = 0,$$

i.e., (\tilde{c}, \tilde{v}) is a stationary point of the function F(c, v).

Consequences of the new characterization

Let b, ||b|| = 1, be a worst-case starting vector and

$$r_k = p_k(\mathbf{A})b, \qquad ||r_k|| = \psi_k(\mathbf{A})$$

the corresponding GMRES residual vector. Then

Theorem

[Faber, T., Liesen '12]

• b is a right singular vector of $p_k(\mathbf{A})$, i.e.

$$\psi_k(\mathbf{A})^2 b = p_k(\mathbf{A}^T) p_k(\mathbf{A}) b.$$

ullet p_k is also a worst-case GMRES polynomial for ${f A}^T$.

Worst-case GMRES polynomials need not be unique

Theorem

[Faber, T., Liesen '12]

A worst-case GMRES polynomial for the Toh matrix

$$\mathbf{A} = \begin{bmatrix} 1 & \epsilon & & \\ & -1 & \epsilon^{-1} & \\ & & 1 & \epsilon \\ & & & -1 \end{bmatrix}, \quad \epsilon > 0,$$

and the step k=3 is **not unique**.

Example: If $\varepsilon = 0.1$, then both

$$-39.9^{-1}(z-1.181)(z+0.939)(z+35.96)$$

and

$$39.9^{-1}(z+1.181)(z-0.939)(z-35.96)$$

are worst-case GMRES polynomials of A.

Ideal versus worst-case GMRES

$$||r_k|| \le \underbrace{\max_{\|b\|=1} \min_{p \in \pi_k} ||p(\mathbf{A})b||}_{\psi_k(\mathbf{A})} \le \underbrace{\min_{p \in \pi_k} ||p(\mathbf{A})||}_{\varphi_k(\mathbf{A})}$$

- $\psi_k(\mathbf{A}) = \varphi_k(\mathbf{A})$ iff a worst-case starting vector b is a maximal right singular vector of $p_k(\mathbf{A})$.
- If $\Omega_k(p_*)$ is convex then $\psi_k(\mathbf{A})=\varphi_k(\mathbf{A})$. [Faber, Joubert, Knill, Manteuffel '96]
- $\psi_k(\mathbf{A}) = \varphi_k(\mathbf{A})$ iff $\max_{v \in \mathbb{R}^n \setminus 0} \min_{c \in \mathbb{R}^k} F(c, v) = \min_{c \in \mathbb{R}^k} \max_{v \in \mathbb{R}^n \setminus 0} F(c, v).$

Existence of a saddle point of F(c, v)? [Faber, T., Liesen '12]

Summary on worst-case GMRES

- Worst-case starting vectors satisfy the cross equality.
- Worst-case GMRES polynomials need not be unique.
- **③** Worst-case GMRES **data** (\tilde{c}, \tilde{v}) are **stationary points** of the function F(c, v).
- **3** Worst-case **starting vector** b is a **right singular vector** of the corresponding GMRES matrix $p_k(\mathbf{A})$.
- $\psi_k(\mathbf{A}) = \varphi_k(\mathbf{A})$ iff b is a maximal right singular vector of $p_k(\mathbf{A})$.
- $\mathbf{0} \ \psi_k(\mathbf{A}) = \varphi_k(\mathbf{A}) \ \text{iff} \ F(c,v) \ \text{has a saddle point}.$

Related papers

- V. FABER, P. TICHÝ AND J. LIESEN, [Ideal and Worst-case GMRES: Characterization and examples, in preparation, (2012?).]
- J. LIESEN AND P. TICHÝ, [On best approximations of polynomials in matrices in the matrix 2-norm, SIMAX, 31 (2009), pp. 853–863.]
- K. C. TOH, [GMRES vs. ideal GMRES, SIMAX, 18 (1997), pp. 30–36.]
- V. FABER, W. JOUBERT, E. KNILL, AND T. MANTEUFFEL, [Minimal residual method stronger than polynomial preconditioning, SIMAX, 17 (1996), pp. 707–729.]
- A. GREENBAUM AND L. N. TREFETHEN, [GMRES/CR and Arnoldi/Lanczos as matrix approximation problems, SISC, 15 (1994), pp. 359–368.]

Thank you for your attention!