The Faber-Manteuffel Theorem and its Consequences

Petr Tichý

joint work with

Vance Faber, Jörg Liesen, Zdeněk Strakoš

Czech Academy of Sciences

July 21, 2011 ICIAM 2011, Vancouver, BC, Canada

1

Optimal Krylov subspace methods

and low memory requirements?

• Consider a system of linear algebraic equations

$$\mathbf{A}x = b$$

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ is nonsingular, $b \in \mathbb{R}^n$.

• Given x_0 , find an *optimal*

$$x_j \in x_0 + \mathcal{K}_j(\mathbf{A}, r_0)$$

so that the error is minimized in a given vector norm.

 What are necessary and sufficient conditions on A so that x_j can be computed at low memory requirements? (only a constant number of vectors is needed) CG [Hestenes, Stiefel 1952], MINRES, SYMMLQ [Paige, Saunders 1975]

- Optimal in the sense that they minimize some error norm: $\|x - x_j\|_{\mathbf{A}}$ in CG, $\|x - x_j\|_{\mathbf{A}^T\mathbf{A}} = \|r_j\|$ in MINRES, $\|x - x_j\|$ in SYMMLQ - here $x_j \in x_0 + \mathbf{A}\mathcal{K}_j(\mathbf{A}, r_0)$.
- Generate orthogonal (or A-orthogonal) Krylov subspace basis using a three-term recurrence.
- An important assumption: **A** is symmetric (MINRES, SYMMLQ) and positive definite (CG).

Gene Golub

G. H. Golub, 1932-2007

- By the end of the 1970s it was unknown if such methods existed also for general unsymmetric **A**.
- Gatlinburg VIII (now Householder Symposium) held in Oxford in 1981.
- "A prize of \$500 has been offered by Gene Golub for the construction of a 3-term conjugate gradient like descent method for non-symmetric real matrices or a proof that there can be no such method".

What kind of method Golub had in mind

- We want to solve $\mathbf{A}x = b$ using CG-like descent method: error is minimized in some given inner product norm, $\|\cdot\|_{\mathbf{B}} = \langle \cdot, \cdot \rangle_{\mathbf{B}}^{1/2}$.
- Starting from x_0 , compute

$$x_{j+1} = x_j + \alpha_j p_j, \qquad j = 0, 1, \dots,$$

 p_j is a direction vector, α_j is a scalar (to be determined),

$$\operatorname{span}\{p_0,\ldots,p_j\} = \mathcal{K}_{j+1}(\mathbf{A},r_0), \qquad r_0 = b - \mathbf{A}x_0.$$

• $||x - x_{j+1}||_{\mathbf{B}}$ is minimal iff

$$\alpha_j = rac{\langle x - x_j, p_j
angle_{\mathbf{B}}}{\langle p_j, p_j
angle_{\mathbf{B}}} \quad \text{and} \quad \langle p_j, p_i
angle_{\mathbf{B}} = 0.$$

• p_0, \ldots, p_j has to be a **B**-orthogonal basis of $\mathcal{K}_{j+1}(\mathbf{A}, r_0)$.

Optimal Krylov subspace method with short recurrences

The question about

the existence of an optimal Krylov subspace method with short recurrences

can be reduced to the question:

For which A is it possible to generate a B-orthogonal basis of the Krylov subspace using short recurrences?

(for each initial starting vector)

SIAM J. NUMER. ANAL. Vol. 21, No. 2, April 1984 © 1984 Society for Industrial and Applied Mathematics 011

NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A CONJUGATE GRADIENT METHOD*

VANCE FABER[†] AND THOMAS MANTEUFFEL[†]

Abstract. We characterize the class CG(s) of matrices A for which the linear system $A\mathbf{x} = \mathbf{b}$ can be solved by an s-term conjugate gradient method. We show that, except for a few anomalies, the class CG(s) consists of matrices A for which conjugate gradient methods are already known. These matrices are the Hermitian matrices, $A^* = A$, and the matrices of the form $A = e^{i\theta}(dI + B)$, with $B^* = -B$.

- Faber and Manteuffel gave the answer in 1984:
 For a general matrix A there exists *no* short recurrence for generating orthogonal Krylov subspace bases.
- What are the details of this statement?

2 Ideas of a new proof

Formulation of the problem

 $\mathbf B$ -inner product, Input and Notation

Without loss of generality, $\mathbf{B} = \mathbf{I}$. Otherwise change the basis:

 $\langle x,y \rangle_{\mathbf{B}} \,=\, \langle \mathbf{B}^{1/2}x, \mathbf{B}^{1/2}y \rangle, \quad \hat{\mathbf{A}} \,\equiv\, \mathbf{B}^{1/2}\mathbf{A}\mathbf{B}^{-1/2}, \quad \hat{v} \,\equiv\, \mathbf{B}^{1/2}v \,.$

Input data:

- $\mathbf{A} \in \mathbb{C}^{n imes n}$, a nonsingular matrix.
- $v \in \mathbb{C}^n$, an initial vector.

Notation:

- $\bullet~d_{\min}(\mathbf{A})$ $\ldots~$ the degree of the minimal polynomial of $\mathbf{A}.$
- $d = d(\mathbf{A}, v) \dots$ the grade of v with respect to \mathbf{A} , the smallest d s.t. $\mathcal{K}_d(\mathbf{A}, v)$ is invariant under multiplication with \mathbf{A} .

Formulation of the problem Our Goal

• Generate a basis v_1, \ldots, v_d of $\mathcal{K}_d(\mathbf{A}, v)$ s.t.

1. span
$$\{v_1, ..., v_j\} = \mathcal{K}_j(A, v)$$
, for $j = 1, ..., d$,
2. $\langle v_i, v_j \rangle = 0$, for $i \neq j$, $i, j = 1, ..., d$.

Arnoldi's algorithm:

Standard way for generating the orthogonal basis (no normalization for convenience): $v_1 \equiv v$,

$$v_{j+1} = \mathbf{A}v_j - \sum_{i=1}^j h_{i,j} v_i, \qquad h_{i,j} = \frac{\langle \mathbf{A}v_j, v_i \rangle}{\langle v_i, v_i \rangle},$$

 $j=0,\ldots,d-1.$

Formulation of the problem

Arnoldi's algorithm - matrix formulation

In matrix notation:

$$\mathbf{A} \underbrace{[v_1, \dots, v_{d-1}]}_{\equiv \mathbf{V}_{d-1}} = \underbrace{[v_1, \dots, v_d]}_{\equiv \mathbf{V}_d} \underbrace{\begin{bmatrix} h_{1,1} & \cdots & h_{1,d-1} \\ 1 & \ddots & \vdots \\ & \ddots & h_{d-1,d-1} \\ & & 1 \end{bmatrix}}_{\equiv \mathbf{H}_{d,d-1}},$$

 $\mathbf{V}_d^* \mathbf{V}_d$ is diagonal, $d = \dim \mathcal{K}_n(\mathbf{A}, v)$.

(s+2)-term recurrence: $v_{j+1} = \mathbf{A} v_j - \sum_{i=j-s}^{j} h_{i,j} v_i$.

Formulation of the problem

Optimal short recurrences (Definition - Liesen, Strakoš 2008)

- A admits an optimal (s+2)-term recurrence, if
 - for any v, $\mathbf{H}_{d,d-1}$ is at most (s+2)-band Hessenberg, and
 - for at least one v, $\mathbf{H}_{d,d-1}$ is (s+2)-band Hessenberg.

Sufficient and necessary conditions on A?

The Faber-Manteuffel theorem

Definition. If $\mathbf{A}^* = p_s(\mathbf{A})$, where p_s is a polynomial of the smallest possible degree s, \mathbf{A} is called normal(s).

```
Theorem[Faber, Manteuffel 1984], [Liesen, Strakoš 2008]Given nonsingular A and nonnegative s, s + 2 < d_{\min}(A).A admits an optimal (s + 2)-term recurrenceif and only ifA is normal(s).
```

 Sufficiency is straightforward, necessity is not. Key words from the proof of necessity in [Faber, Manteuffel 1984] include: "continuous function" (analysis), "closed set of smaller dimension" (topology), "wedge product" (multilinear algebra).

A new proof of the Faber-Manteuffel theorem

 Motivated by the paper [Liesen, Strakoš 2008] which contains a completely reworked theory of short recurrences for generating orthogonal Krylov subspace bases.

"It is unknown if a simpler proof of the necessity part can be found. In view of the fundamental nature of the Faber-Manteuffel Theorem, such proof would be a welcome addition to the existing literature. It would lead to a better understanding of the theorem by enlightening some (possibly unexpected) relationships, and it would also be more suitable for classroom teaching."

• In [Faber, Liesen, T. 2008] we give two new proofs of the Faber-Manteuffel theorem that use more elementary tools.

Extension of $\mathbf{A} \mathbf{V}_{d-1} = \mathbf{V}_d \mathbf{H}_{d,d-1}$ Matrix representation of \mathbf{A} in \mathbf{V}_d

Since $\mathcal{K}_d(\mathbf{A}, v)$ is invariant, $\mathbf{A}v_d \in \mathcal{K}_d(\mathbf{A}, v)$ and

Idea of the proof Unitary transformation of the upper Hessenberg matrix

(for simplicity, we omit indices by \mathbf{V}_d and $\mathbf{H}_{d,d}$)

Proof by contradiction. Let A admit an optimal (s + 2)-term recurrence and A not be normal(s). Then there exists a starting vector v such that $h_{1,d} \neq 0$.

Find unitary G such that G^*HG is unreduced upper Hessenberg, but G^*HG is not (s + 2)-band (up to the last column).

Faber-Manteuffel Theorem – Summary

Generating an orthogonal basis of $\mathcal{K}_d(\mathbf{A}, v)$ via Arnoldi-type recurrence

Arnoldi-type recurrence (s+2)-term

 \updownarrow

\$

the only interesting case is s = 1, collinear eigenvalues

• When is A normal(s)?

 ${\ \bullet \ } {\bf A}$ is normal and

[Faber, Manteuffel 1984], [Khavinson, Świątek 2003] [Liesen, Strakoš 2008]

- 1. s = 1 if and only if the eigenvalues of A lie on a line in \mathbb{C} .
- 2. For s > 1, **A** has at most 3s 2 different eigenvalues.
- All classes of "interesting" matrices are known.

The matrix representation of the Arnoldi algorithm can be extended by one column to

$$\mathbf{A} \mathbf{V}_d = \mathbf{V}_d \mathbf{H}_d$$

where $\mathbf{H}_d \in \mathbb{C}^{d \times d}$ is unreduced upper Hessenberg matrix.

We say that A is orthogonally reducible to (s + 2)-band Hessenberg form if \mathbf{H}_d is (s + 2)-band Hessenberg matrix for each starting vector v_1 .

What are necessary and sufficient conditions on A to be orthogonally reducible to (s + 2)-band Hessenberg form?

When is ${f A}$ orthogonally reducible

to (s+2)-band Hessenberg form?

When is ${\bf A}$ orthogonally reducible

to (s+2)-band Hessenberg form?

Theorem

[Liesen, Strakoš 2008]

Let s be a nonnegative integer, $s+2 < d_{\min}(\mathbf{A}).$ Then the following three assertions are equivalent:

- 1. A admits an optimal (s+2)-term recurrence.
- 2. A is normal(s).

3. A is orthogonally reducible to (s+2)-band Hessenberg form.

- 1 \iff 2: [Faber, Manteuffel 1984].
- 2 \iff 3: a simple proof in [Faber, Liesen, T. 2009].
- The subtle difference between 1. and 3. → source of confusions [Voevodin, Tyrtyshnikov 1981], [Liesen, Saylor 2005].

The role of the matrix ${f B}$

Faber-Manteuffel theorem

Let $\mathbf{B} \in \mathbb{C}^{n \times n}$ be a Hermitian positive definite (HPD), defining the B-inner product, $\langle x, y \rangle_{\mathbf{B}} \equiv y^* \mathbf{B} x$.

B-normal(s) matrices: there exists a polynomial p_s of the smallest possible degree s such that

$$\mathbf{A}^+ \equiv \mathbf{B}^{-1} \mathbf{A}^* \mathbf{B} = p_s(\mathbf{A}),$$

where A^+ the B-adjoint of A.

Theorem[Faber, Manteuffel 1984], [Liesen, Strakoš 2008]For A, B as above, and an integer $s \ge 0$ with $s + 2 < d_{\min}(\mathbf{A})$:A admits for the given B an optimal (s + 2)-term recurrenceif and only if A is B-normal(s).

The role of the matrix **B**: Examples

The only interesting case: \mathbf{B} -normal(1) matrices

- If A is diagonalizable and the eigenvalues are collinear, then there exists an HPD B such that A is B-normal(1).
 [Liesen, Strakoš 2008] → complete parametrization of all B's.
- Find a preconditioner P so that PA is B-normal(1) for some B, e.g. [Concus, Golub 1976], [Widlund 1978], [Eisenstat 1983], [Bramble, Pasciak 1988], [Stoll, Wathen 2008].
- Saddle point matrix:

$$\mathbf{A} = \begin{bmatrix} A_1 & A_2^T \\ -A_2 & A_3 \end{bmatrix}, \qquad \mathbf{B}_{\gamma} = \begin{bmatrix} A_1 - \gamma I_m & A_2^T \\ A_2 & \gamma I_k - A_3 \end{bmatrix}$$

where $A_1=A_1^T>0\text{, }A_3=A_3^T\geq0\text{, }A_2$ full rank.

This matrix satisfies $\mathbf{B}_{\gamma}^{-1} \mathbf{A}^* \mathbf{B}_{\gamma} = \mathbf{A}$.

How to choose γ such that \mathbf{B}_{γ} is positive definite? [Fischer et al. 1998], [Benzi, Simoncini 2006], [Liesen, Parlett 2007].

Other types of recurrences

The existence of an optimal Krylov subspace method with short recurrences

For which A is it possible to generate an orthogonal basis of the Krylov subspace using short recurrences?

- We can use a different kind of recurrences than Arnoldi-like.
- For (shifted) unitary matrices: Isometric Arnoldi process [Gragg 1982; Jagels, Reichel 1994].
- Generalized by [Barth, Manteuffel 2000] to (l, m)-recursion.
 A sufficient condition: A* is a low degree rational func. of A.
 Practical use: matrices with concyclic eigenvalues [Liesen 2007].
- [Barth, Manteuffel 2000]: Short multiple recursion for \mathbf{A} such that $\Delta \equiv \mathbf{A}^* q_m(\mathbf{A}) p_\ell(\mathbf{A})$ has low rank.
- [Beckermann, Reichel 2008]: GMRES-like algorithm with short recurrences for A such that $\Delta \equiv A^* A$ is of low rank. Application: Path following methods.

Conclusions

- We characterized matrices for which it is possible to generate an orthogonal basis of Krylov subspaces via short recurrences.
- We presented ideas of a new proof of the Faber-Manteuffel theorem and studied its consequences.
- Practical case: If eigenvalues of A are collinear or concyclic, then there exists an HPD matrix B such that A admits short recurrences for generating a B-orthogonal basis.
- Examples: Find a preconditioner **P** so that short recurrences exist for **PA**, saddle point matrices.

An interesting case to study:

• Short multiple recursion for A such that $A^*q_m(A) - p_\ell(A)$ has low rank. Practical cases? Algorithmic realizations?

Related papers

- V. Faber and T. Manteuffel, [Necessary and sufficient conditions for the existence of a conjugate gradient method, SIAM J. Numer. Anal., 21 (1984), pp. 352–362.]
- T. Barth and T. Manteuffel, [Multiple recursion conjugate gradient algorithms. I. Sufficient conditions, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 768–796.]
- J. Liesen and Z. Strakoš, [On optimal short recurrences for generating orthogonal Krylov subspace bases, SIAM Review, 50, 2008, pp. 485-503].
- J. Liesen, [When is the adjoint of a matrix a low degree rational function in the matrix? SIAM J. Matrix Anal. Appl., 2007, 29, 1171-1180].
- V. Faber, J. Liesen and P. Tichý, [The Faber-Manteuffel Theorem for Linear Operators, SIAM J. Numer. Anal., 46 (2008), pp. 1323-1337.]
- V. Faber, J. Liesen, and P. Tichý, [On orthogonal reduction to Hessenberg form with small bandwidth, Numer. Algorithms, 51 (2009), pp. 133–142.]

Thank you for your attention!