On best approximation by polynomials of matrices

Petr Tichý
joint work with
Jörg Liesen and Vance Faber
Institute of Computer Science, Academy of Sciences of the Czech Republic

June 13, 2011
Householder Symposium XVIII, Granlibakken, Tahoe City, California, USA

A classical problem of approximation theory

Best approximation by polynomials

$$
\min _{p \in \mathcal{P}_{k}} \max _{z \in \Omega}|f(z)-p(z)|
$$

where f is a given (nice) function, $\Omega \subset \mathbb{C}$ is compact, \mathcal{P}_{k} is the set of polynomials of degree at most k.

Such problems have been studied since the 1850s; numerous results on existence, uniqueness and rate of convergence for $k \rightarrow \infty$.
[Chebyshev 1854, Weierstrass 1885, de la Vallée Poussin 1908, Haar 1910,
Faber 1920, Remes 1936 ...]

Matrix function best approximation problem

A different kind of approximation problems involving matrices instead of scalars:

$$
\min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A})-p(\mathbf{A})\|, \quad \mathbf{A} \in \mathbb{C}^{n \times n}
$$

$\|\cdot\|$ is the spectral norm (the matrix 2-norm), f is analytic in neighborhood of A's spectrum.

- Does this problem have a unique solution $p_{*} \in \mathcal{P}_{k}$?
- Can we understand this problem for a particular choice of f ?

If \mathbf{A} is normal, the problem reduces to the frequently studied scalar approximation problem on the spectrum of \mathbf{A},

$$
\min _{p \in \mathcal{P}_{k}} \max _{\lambda \in \Lambda}|f(\lambda)-p(\lambda)| .
$$

If \mathbf{A} is non-normal, the problem appears to be a difficult one. Our main interest is the case of non-normal \mathbf{A}.

Examples of approximation problems involving matrices

- GMRES $(\mathbf{A} x=b)$:

$$
\min _{\substack{p \in \mathcal{P}_{k} \\ p(0)=1}}\|p(\mathbf{A}) b\| \quad \leftrightarrow \quad \min _{\substack{p \in \mathcal{P}_{k} \\ p(0)=1}}\|p(\mathbf{A})\|
$$

- Arnoldi $(\mathbf{A} v=\lambda v)$:

$$
\min _{p \in \mathcal{M}_{k}}\|p(\mathbf{A}) v\| \quad \leftrightarrow \quad \min _{p \in \mathcal{M}_{k}}\|p(\mathbf{A})\|
$$

where $\|\cdot\|$ denotes the Euclidean norm (for vectors) or the spectral norm (for matrices), \mathcal{M}_{k} is the class of monic polynomials of degree k.
[Greenbaum, Trefethen 1994]

General matrix approximation problems

Given

- k linearly independent matrices $\mathbf{A}_{1}, \ldots, \mathbf{A}_{k} \in \mathbb{C}^{n \times n}$,
- $\mathbb{A} \equiv \operatorname{span}\left\{\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}\right\}$,
- $\mathbf{B} \in \mathbb{C}^{n \times n} \backslash \mathbb{A}$,
- $\|\cdot\|$ is a matrix norm.

Consider the best approximation problem

$$
\min _{\mathbf{M} \in \mathbb{A}}\|\mathbf{B}-\mathbf{M}\|
$$

This problem has a unique solution if $\|\cdot\|$ is strictly convex.
[see, e.g., Cheney 1966]
The norm $\|\cdot\|$ is strictly convex if for all \mathbf{X}, \mathbf{Y},

$$
\|\mathbf{X}\|=\|\mathbf{Y}\|=1, \quad\|\mathbf{X}+\mathbf{Y}\|=2 \quad \Rightarrow \quad \mathbf{X}=\mathbf{Y}
$$

Spectral norm (matrix 2-norm)

The spectral norm is not strictly convex:

$$
\mathbf{X}=\left[\begin{array}{ll}
\mathbf{I} & \\
& \varepsilon
\end{array}\right], \quad \mathbf{Y}=\left[\begin{array}{ll}
\mathbf{I} & \\
& \delta
\end{array}\right], \quad \varepsilon, \delta \in\langle 0,1\rangle
$$

Then, for each $\varepsilon, \delta \in\langle 0,1\rangle$, we have

$$
\|\mathbf{X}\|=\|\mathbf{Y}\|=1 \quad \text { and } \quad\|\mathbf{X}+\mathbf{Y}\|=2
$$

but if $\varepsilon \neq \delta$, then $\mathbf{X} \neq \mathbf{Y}$.

- Consequently: Best approximation problems in the spectral norm are not guaranteed to have a unique solution.
- Hence, in addition to non-normality of \mathbf{A}, we have to deal with a norm that is not strictly convex.

Uniqueness of the solution

$$
\min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A})-p(\mathbf{A})\|
$$

Reformulation of the problem

Since $f(\mathbf{A})=p_{f}(\mathbf{A})$ for a polynomial p_{f}, we assume that $f(z)$ is a polynomial of degree $k+\ell+1(k \geq 0, \ell \geq 0)$. Then we can write

$$
\begin{array}{rrr}
f(z)= & z^{k+1} g(z)+ & f_{k} z^{k}+\ldots+f_{1} z+f_{0} \\
p(z)= & p_{k} z^{k}+\ldots+p_{1} z+p_{0}
\end{array}
$$

where g is a polynomial of degree ℓ, and

$$
f(z)-p(z)=z^{k+1} g(z)-h_{k} z^{k}-\ldots-h_{1} z-h_{0}
$$

where $h_{j}=p_{j}-f_{j}, j=0, \ldots, k$. Therefore,

$$
f(\mathbf{A})-p(\mathbf{A})=\mathbf{A}^{k+1} g(\mathbf{A})-h(\mathbf{A})
$$

where g is a given polynomial of degree ℓ.

Matrix polynomial approximation problems

We consider two matrix approximation problems:
(1)

$$
\min _{h \in \mathcal{P}_{k}}\left\|\mathbf{A}^{k+1} g(\mathbf{A})-h(\mathbf{A})\right\|
$$

where g is a given polynomial of degree ℓ, and
(2)

$$
\min _{g \in \mathcal{P}_{\ell}}\left\|\mathbf{A}^{k+1} g(\mathbf{A})-h(\mathbf{A})\right\|
$$

where h is a given polynomial of degree $\leq k$.

They generalize two particular approximation problems

$$
\min _{p \in \mathcal{P}_{k}}\left\|\mathbf{A}^{k+1}-p(\mathbf{A})\right\|, \quad \min _{p \in \mathcal{P}_{k}}\|\mathbf{I}-\mathbf{A} p(\mathbf{A})\|
$$

called ideal Arnoldi and ideal GMRES approximation problems. [Greenbaum, Trefethen 1994] proved uniqueness of the solution.

Uniqueness results

Theorem

(1) Given $g \in \mathcal{P}_{\ell}$. If the value

$$
\min _{h \in \mathcal{P}_{k}}\left\|\mathbf{A}^{k+1} g(\mathbf{A})-h(\mathbf{A})\right\| \neq 0
$$

the problem has a unique minimizer.
(2) Let \mathbf{A} be nonsingular and $h \in \mathcal{P}_{k}$ given. If the value

$$
\min _{g \in \mathcal{P}_{\ell}}\left\|\mathbf{A}^{k+1} g(\mathbf{A})-h(\mathbf{A})\right\| \neq 0
$$

the problem has a unique minimizer.
(The nonsingularity assumption cannot be omitted in general [Special thanks to Krystyna Ziętak].)

Idea of the proof

Inspired by [Greenbaum, Trefethen 1994], proof by contradiction.
-

$$
\mathcal{G} \equiv\left\{z^{k+1} g+h: g \in \mathcal{P}_{\ell} \text { is given, } h \in \mathcal{P}_{k}\right\}
$$

Let $q_{1}, q_{2} \in \mathcal{G}$ be two different solutions,
$\left\|q_{1}(\mathbf{A})\right\|=\left\|q_{2}(\mathbf{A})\right\|=C$.

- Define the polynomials

$$
\begin{gathered}
q \equiv \frac{1}{2}\left(q_{1}+q_{2}\right), \quad z^{k+1} g=\overbrace{\left(q_{2}-q_{1}\right) \cdot s}^{q}+r, \\
q_{\epsilon} \equiv(1-\epsilon) q+\epsilon \widetilde{q}
\end{gathered}
$$

so that $q_{\epsilon} \in \mathcal{G} \forall \epsilon$.

- Show that, for sufficiently small ϵ,

$$
\left\|q_{\epsilon}(\mathbf{A})\right\|<C
$$

Chebyshev polynomials of matrices

$$
\min _{p \in \mathcal{M}_{k}}\|p(\mathbf{A})\|
$$

Chebyshev polynomials of a compact set

- Chebyshev polynomials on the interval $[-1 ; 1]$ [Chebyshev 1859].
- Generalized by [G. Faber 1920] to the idea of Chebyshev polynomials of Ω, where Ω is a compact set in the complex plane \mathbb{C} : These polynomials $T_{k}^{\Omega}(z)$ solve the problem

$$
\min _{p \in \mathcal{M}_{k}} \max _{z \in \Omega}|p(z)|
$$

Examples:

Ω is an interval, a set of discrete points, the unit disk, etc.

Chebyshev polynomials of matrices

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a general matrix. We consider the problem

$$
\min _{p \in \mathcal{M}_{k}}\|p(\mathbf{A})\|=\min _{p \in \mathcal{P}_{k-1}}\left\|\mathbf{A}^{k}-p(\mathbf{A})\right\|
$$

i.e. a matrix function approximation problem for $f(\mathbf{A}) \equiv \mathbf{A}^{k}$.

- Introduced in [Greenbaum, Trefethen 1994], studied in [Toh PhD thesis 1996], [Toh, Trefethen 1998], [Trefethen, Embree 2005] .
- The unique solution $T_{k}^{\mathbf{A}}(z) \in \mathcal{M}_{k}$ is called the k th Chebyshev polynomial of \mathbf{A}.
- If \mathbf{A} is normal and $\Omega=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$, the problem is solved by Chebyshev polynomials of $\Omega, T_{k}^{\mathbf{A}}(z)=T_{k}^{\Omega}(z)$.
- If \mathbf{A} is non-normal, it is unclear whether some known scalar approximation problem is solved or not.

Motivation

Example: Let $\lambda \in \mathbb{C}$. Consider an n by n Jordan block \mathbf{J}_{λ}.
Chebyshev polynomials of \mathbf{J}_{λ} are given by

$$
T_{k}^{\mathbf{J}_{\lambda}}(z)=(z-\lambda)^{k}
$$

[Liesen, T. 2009]

- Observation: $T_{k}^{\mathbf{J}_{\lambda}}(z)=T_{k}^{\Omega}(z)$, where Ω is any disk in the complex plane centered at λ. In this example, the Chebyshev polynomial of a matrix (here: \mathbf{J}_{λ})
coincides with the Chebyshev polynomial of a compact set (here: disk centered at λ).
- Further such examples would be desirable as well as better understanding general properties of Chebyshev polynomials of matrices.

Shifts and scaling

Theorem

For $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\alpha \in \mathbb{C}$ the following hold:

$$
\begin{aligned}
\min _{p \in \mathcal{M}_{k}}\|p(\mathbf{A}+\alpha \mathbf{I})\| & =\min _{p \in \mathcal{M}_{k}}\|p(\mathbf{A})\| \\
\min _{p \in \mathcal{M}_{k}}\|p(\alpha \mathbf{A})\| & =|\alpha|^{k} \min _{p \in \mathcal{M}_{k}}\|p(\mathbf{A})\| .
\end{aligned}
$$

- Shift invariance: Not surprising, because the polynomials are normalized at infinity.
- Paper contains explicit relations between the coefficients of $T_{k}^{\mathbf{A}}(z), T_{k}^{\mathbf{A}+\alpha \mathbf{I}}(z)$, and $T_{k}^{\alpha \mathbf{A}}(z)$.

Alternation properties?

- Chebyshev polynomials of compact sets are characterized by alternation properties.
- E.g., $T_{k}^{\Omega}(z)$ for $\Omega=[a, b] \subset \mathbb{R}$ has $k+1$ alternations, the maximum absolute value is attained at $k+1$ points.

- It works also for Chebyshev polynomials of diagonal matrices.
- Is there an analogy, e.g., for block diagonal matrices?

Chebyshev polynomials of block diagonal matrices

$$
\begin{gathered}
\mathbf{A}=\operatorname{diag}\left(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{A}_{4}\right) \\
p(\mathbf{A})=\left[\begin{array}{ccc}
p\left(\mathbf{A}_{1}\right) & & \\
& p\left(\mathbf{A}_{2}\right) & \\
& & p\left(\mathbf{A}_{3}\right) \\
& & \\
& & \\
& & \\
& & \\
& & \\
& \\
& \\
& \\
\hline
\end{array}\right]
\end{gathered}
$$

Is the norm $\left\|T_{k}^{\mathbf{A}}(\mathbf{A})\right\|$ attained on several blocks for $p=T_{k}^{\mathbf{A}}$?

An alternation theorem for block diagonal matrices

Theorem

Consider a block-diagonal matrix $\mathbf{A}=\operatorname{diag}\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{h}\right)$ where $d\left(\mathbf{A}_{j}\right) \leq m, j=1, \ldots, h$. Then the matrix

$$
T_{k}^{\mathbf{A}}(\mathbf{A})=\operatorname{diag}\left(\mathbf{B}_{1}, \ldots, \mathbf{B}_{h}\right), \quad k<d(\mathbf{A})
$$

has at least $\lfloor k / m+1\rfloor$ diagonal blocks \mathbf{B}_{j} such that

$$
\left\|\mathbf{B}_{j}\right\|=\left\|T_{k}^{\mathbf{A}}(\mathbf{A})\right\|
$$

Example: If $\mathbf{A}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{C}^{n \times n}$, then $T_{k}^{\mathbf{A}}(\mathbf{A})$ has at least $k+1$ diagonal entries with the same maximal absolute value.

Experiment

Consider a block diagonal matrix

$$
\mathbf{A}=\operatorname{diag}\left(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{A}_{4}\right)
$$

where each $\mathbf{A}_{j}=\mathbf{J}_{\lambda_{j}}$ is a 3×3 Jordan block. The four eigenvalues are $-3,-0.5,0.5,0.75$, and $m=d\left(\mathbf{A}_{j}\right)=3$.

k	$\left\\|T_{k}^{\mathbf{A}}\left(\mathbf{A}_{1}\right)\right\\|$	$\left\\|T_{k}^{\mathbf{A}}\left(\mathbf{A}_{2}\right)\right\\|$	$\left\\|T_{k}^{\mathbf{A}}\left(\mathbf{A}_{3}\right)\right\\|$	$\left\\|T_{k}^{\mathbf{A}}\left(\mathbf{A}_{4}\right)\right\\|$
1	$\underline{2.6396}$	1.4620	2.3970	$\underline{2.6396}$
2	$\underline{4.1555}$	$\underline{4.1555}$	3.6828	$\underline{4.1555}$
3	$\underline{9.0629}$	5.6303	7.6858	$\underline{9.0629}$
4	$\underline{14.0251}$	$\underline{14.0251}$	11.8397	$\underline{14.0251}$
5	$\underline{22.3872}$	20.7801	17.6382	$\underline{22.3872}$
6	$\underline{22.6857}$	$\underline{22.6857}$	20.3948	$\underline{22.6857}$
7	$\underline{26.3190}$	$\underline{26.3190}$	$\underline{26.3190}$	$\underline{26.3190}$

Chebyshev polynomials of particular matrices

 and sets in the complex plane, special bidiagonal matrices$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{D} & & & \\
& \mathbf{D} & & \\
& & \ddots & \\
& & & \mathbf{D}
\end{array}\right]+\left[\begin{array}{llll}
0 & 1 & & \\
& 0 & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right]
$$

where $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$, and $\lambda_{1}, \ldots, \lambda_{\ell} \in \mathbb{C}$ are given.
[Reichel, Trefethen 1992]

- Let $p(z)=\left(z-\lambda_{1}\right) \cdots \cdot\left(z-\lambda_{\ell}\right)$,
- define the lemniscatic region $\mathcal{L}(p) \equiv\{z \in \mathbb{C}:|p(z)| \leq 1\}$.

Theorem

[Faber, Liesen, T. 2010]
For $m=1,2, \ldots, h-1$ it holds that

$$
T_{\ell \cdot m}^{\mathcal{L}(p)}(z)=T_{\ell \cdot m}^{\mathbf{A}}(z), \quad \max _{z \in \mathcal{L}(p)}\left|T_{\ell \cdot m}^{\mathcal{L}(p)}(z)\right|=\left\|T_{\ell \cdot m}^{\mathbf{A}}(\mathbf{A})\right\|
$$

Idea of the proof

- Show that $T_{\ell \cdot m}^{\mathbf{A}}(z)=\left(z-\lambda_{1}\right)^{m} \cdots \cdot\left(z-\lambda_{\ell}\right)^{m}$.
- Use the result of [Kamo, Borodin 1994], [Fischer, Peherstorfer 2001].

Chebyshev polynomials of Ω and Ψ
Let T_{k}^{Ω} be the k th Chebyshev polynomial of the infinite compact set $\Omega \subset \mathbb{C}$, let $p(z)$ be a monic polynomial of degree ℓ, and let

$$
\Psi \equiv p^{-1}(\Omega)=\{z \in \mathbb{C}: p(z) \in \Omega\}
$$

be the pre-image of Ω under the polynomial map p. Then

$$
T_{k \cdot \ell}^{\Psi}(z)=T_{k}^{\Omega}(p(z))
$$

Summary

- For a general (non-normal) A, we showed uniqueness of the matrix best approximation problem in the spectral norm,

$$
\min _{p \in \mathcal{P}_{k}}\|f(\mathbf{A})-p(\mathbf{A})\|
$$

- We considered Chebyshev polynomials of matrices and showed some general properties (shifts and scaling, alternation).
- We found explicit formulas of Chebyshev polynomials of certain classes of matrices and explored the connection to the Chebyshev polynomials of sets in the complex plane.
- Open question: Is it possible to translate the problem

$$
\min _{p \in \mathcal{M}_{k}}\|p(\mathbf{A})\|
$$

into the language of classical approximation problems?

Related papers

- A. Greenbaum and N. L. Trefethen, [GMRES/CR and Arnoldi/Lanczos as matrix approximation problems, SISC, 15 (1994), no. 2, pp. 359-368]
- K.-C. Toh and L. N. Trefethen, [The Chebyshev polynomials of a matrix, SIMAX, 20 (1998), pp. 400-419.]
- J. Liesen and P. Tichý, [On best approximations of polynomials in matrices in the matrix 2-norm, SIMAX, 31 (2009), pp. 853-863.]
- V. Faber, J. Liesen and P. Tichý, [On Chebyshev polynomials of matrices, SIMAX, 31 (2010), pp. 2205-2221.]

Software

- S. Benson, Y. Ye, and X. Zhang, [DSDP - Software for semidefinite programming, v. 5.8, January 2006.] http://www.mcs.anl.gov/hs/software/DSDP/
- K. C. Toh, M. J. Todd, and R. H. Tütüncü, [SDPT3 4.0 - a Matlab software package for semidefinite programming, 2006.] http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

Thank you for your attention!

