On efficient numerical approximation of the bilinear form $c^{*} \mathbf{A}^{-1} b$

Petr Tichý
joint work with
Zdeněk Strakoš
Institute of Computer Science AS CR

$$
\begin{aligned}
& \text { June } 21-25,2010, \\
& \text { the } 16 \text { th ILAS conference, } \\
& \text { Pisa, Italy }
\end{aligned}
$$

Formulation of the problem

Given a nonsingular matrix \mathbf{A} and vectors b and c.
We want to approximate

$$
c^{*} \mathbf{A}^{-1} b
$$

Equivalently, we look for an approximation to $c^{*} x \quad$ such that $\quad \mathbf{A} x=b$.

Motivation

- Approximation of the j th component of the solution
- i.e., we want to approximate $e_{j}^{T} \mathbf{A}^{-1} b$.
- Signal processing (the scattering amplitude)
- b and c represent incoming and outgoing waves, respectively, and the operator A relates the incoming and scattered fields on the surface of an object,
- $\mathbf{A} x=b$ determines the field x from the signal b. The signal is received on an antenna c. The signal received by the antenna is then $c^{*} x$. The value $c^{*} x$ is called the scattering amplitude.
- Optimization
- Nuclear physics, quantum mechanics, other disciplines

Krylov subspace methods approach

Projection of the original problem onto Krylov subspaces

$$
\mathcal{K}_{n}(\mathbf{A}, b)=\operatorname{span}\left\{b, \mathbf{A} b, \ldots \mathbf{A}^{n-1} b\right\}
$$

A possible approach: compute x_{n} using a Krylov subspace method,

$$
c^{*} \mathbf{A}^{-1} b=c^{*} x \approx c^{*} x_{n}
$$

- Due to finite precision arithmetic, the explicit numerical computation of $c^{*} x_{n}$ can be highly inefficient.
[HPD case: Strakoš \& T. '02, '05]
- If \mathbf{A} is HPD and $c=b$, there are several efficient methods. [Golub \& Meurant '94, '97, Axelsson \& Kaporin '01, Strakoš \& T. '02, '05]
- How to generalize ideas from the HPD case to a general case?

Outline

(1) Vorobyev moment problem
(2) Approximation of the bilinear form $c^{*} \mathbf{A}^{-1} b$
(3) Numerical experiments

Vorobyev moment problem, Vorobyev '58, '65

Popularized by Brezinski '97, Strakoš '08

Find a linear operator \mathbf{A}_{n} on $\mathcal{K}_{n}(\mathbf{A}, v)$ such that

$$
\begin{aligned}
\mathbf{A}_{n} v & =\mathbf{A} v, \\
\mathbf{A}_{n}^{2} v & =\mathbf{A}^{2} v, \\
& \vdots \\
\mathbf{A}_{n}^{n-1} v & =\mathbf{A}^{n-1} v, \\
\mathbf{A}_{n}^{n} v & =\mathbf{Q}_{n} \mathbf{A}^{n} v,
\end{aligned}
$$

where Q_{n} is a given linear projection operator.

- Some Krylov subspace methods can be identified with the Vorobyev moment problem.
- Useful formulation for understanding approximation properties of Krylov subspace methods.

Non-Hermitian Lanczos and Arnoldi algorithms

Given a nonsingular \mathbf{A}, v and w.
Non-Hermitian Lanczos algorithm is represented by

$$
\begin{aligned}
\mathbf{A} \mathbf{V}_{n} & =\mathbf{V}_{n} \mathbf{T}_{n}+\delta_{n+1} v_{n+1} e_{n}^{T} \\
\mathbf{A}^{*} \mathbf{W}_{n} & =\mathbf{W}_{n} \mathbf{T}_{n}^{*}+\eta_{n+1}^{*} w_{n+1} e_{n}^{T}
\end{aligned}
$$

where $\mathbf{W}_{n}^{*} \mathbf{V}_{n}=\mathbf{I}$ and $\mathbf{T}_{n}=\mathbf{W}_{n}^{*} \mathbf{A} \mathbf{V}_{n}$ is tridiagonal.

Arnoldi algorithm is represented by

$$
\mathbf{A} \mathbf{V}_{n}=\mathbf{V}_{n} \mathbf{H}_{n}+h_{n+1, n} v_{n+1} e_{n}^{T}
$$

where $\mathbf{V}_{n}^{*} \mathbf{V}_{n}=\mathbf{I}$, and $\mathbf{H}_{n}=\mathbf{V}_{n}^{*} \mathbf{A} \mathbf{V}_{n}$ is upper Hessenberg.

Vorobyev moment problem,

Non-Hermitian Lanczos and Arnoldi

Lanczos: \mathbf{Q}_{n} projects onto $\mathcal{K}_{n}(\mathbf{A}, v)$ orthog. to $\mathcal{K}_{n}\left(\mathbf{A}^{*}, w\right)$,

$$
\mathbf{Q}_{n}=\mathbf{V}_{n} \mathbf{W}_{n}^{*}, \quad \mathbf{A}_{n}=\mathbf{V}_{n} \mathbf{T}_{n} \mathbf{W}_{n}^{*}
$$

Arnoldi: \mathbf{Q}_{n} projects onto $\mathcal{K}_{n}(\mathbf{A}, v)$ orthog. to $\mathcal{K}_{n}(\mathbf{A}, v)$,

$$
\mathbf{Q}_{n}=\mathbf{V}_{n} \mathbf{V}_{n}^{*}, \quad \mathbf{A}_{n}=\mathbf{V}_{n} \mathbf{H}_{n} \mathbf{V}_{n}^{*}
$$

Matching moments property:

$$
w^{*} \mathbf{A}^{k} v=w^{*} \mathbf{A}_{n}^{k} v
$$

$k=0, \ldots, 2 n-1$ for Lanczos, $k=0, \ldots, n-1$ for Arnoldi.
[Gragg \& Lindquist '83, Villemagne \& Skelton '87]
[Gallivan \& Grimme \& Van Dooren '94, Antoulas '05]
[a simple proof using the Vorobyev moment problem - Strakoš '08]

Approximation of $c^{*} \mathrm{~A}^{-1} b$

General framework, Strakoš \& T. '10

Vorobyev moment problem: $\mathbf{A} \rightarrow \mathbf{A}_{n}$
Define approximation: $\quad c^{*} \mathbf{A}^{-1} b \approx c^{*} \mathbf{A}_{n}^{-1} b$
\mathbf{A}_{n}^{-1} is the matrix representation of the inverse of the reduced order operator \mathbf{A}_{n} which is restricted onto $\mathcal{K}_{n}(\mathbf{A}, b)$.

Examples:

- $\mathbf{A}_{n}^{-1}=\mathbf{V}_{n} \mathbf{T}_{n}^{-1} \mathbf{W}_{n}^{*}$ (Non-Hermitian Lanczos)
- $\mathbf{A}_{n}^{-1}=\mathbf{V}_{n} \mathbf{H}_{n}^{-1} \mathbf{V}_{n}^{*} \quad$ (Arnoldi)

Questions:

- How to compute $c^{*} \mathbf{A}_{n}^{-1} b$ efficiently?
- Relationship to the existing approximations?

We concentrate only to non-Hermitian Lanczos approach.

Non-Hermitian Lanczos approach

Define

$$
v_{1}=\frac{b}{\|b\|}, \quad w_{1}=\frac{c}{c^{*} v_{1}}, \quad \text { i.e. } \quad w_{1}^{*} v_{1}=1
$$

Then

$$
c^{*} \mathbf{A}_{n}^{-1} b=c^{*} \mathbf{V}_{n} \mathbf{T}_{n}^{-1} \mathbf{W}_{n}^{*} b=\left(c^{*} v_{1}\right)\|b\|\left(\mathbf{T}_{n}^{-1}\right)_{1,1}
$$

Let $x_{0}=0$. We also know that $x_{n}=\|b\| \mathbf{V}_{n} \mathbf{T}_{n}^{-1} e_{1}$ is the approximate solution computed via BiCG . Therefore,

$$
c^{*} \mathbf{A}_{n}^{-1} b=c^{*}\|b\| \mathbf{V}_{n} \mathbf{T}_{n}^{-1} \mathbf{W}_{n}^{*} \mathbf{V}_{n} e_{1}=c^{*} x_{n}
$$

- BiCG can be used for computing $c^{*} \mathbf{A}_{n}^{-1} b$!
- We used the global biorthogonality!

Do the identities hold in finite precision computations?

The BiCG method

Simultaneous solving of

$$
\mathbf{A} x=b, \quad \mathbf{A}^{*} y=c
$$

input \mathbf{A}, b, c

$$
\begin{aligned}
& x_{0}=y_{0}=0 \\
& r_{0}=p_{0}=b, s_{0}=q_{0}=c
\end{aligned}
$$

for $n=0,1, \ldots$.

$$
\begin{array}{ll}
\alpha_{n}=\frac{s_{*}^{*} r_{n}}{q_{n}^{*} \mathbf{A} p_{n}}, & \\
x_{n+1}=x_{n}+\alpha_{n} p_{n}, & y_{n+1}=y_{n}+\alpha_{n}{ }^{*} q_{n} \\
r_{n+1}=r_{n}-\alpha_{n} \mathbf{A} p_{n}, & s_{n+1}=s_{n}-\alpha_{n}^{*} \mathbf{A}^{*} q_{n} \\
\beta_{n+1}=\frac{s_{n+1}^{*} r_{n+1}}{s_{n}^{*} r_{n}}, & \\
p_{n+1}=r_{n+1}+\beta_{n+1} p_{n}, & q_{n+1}=s_{n+1}+\beta_{n+1}^{*} q_{n}
\end{array}
$$

end

An efficient approximation based on the BiCG method

How to compute $c^{*} \mathbf{A}_{n}^{-1} b$ in BiCG without using the global biorthogonality?
Using local biorthogonality we can show that

$$
s_{j}^{*} \mathbf{A}^{-1} r_{j}-s_{j+1}^{*} \mathbf{A}^{-1} r_{j+1}=\alpha_{j} s_{j}^{*} r_{j}
$$

Consequently,

$$
c^{*} \mathbf{A}^{-1} b=\sum_{j=0}^{n-1} \alpha_{j} s_{j}^{*} r_{j}+s_{n}^{*} \mathbf{A}^{-1} r_{n}
$$

Moreover, it can be shown that (using global biorthogonality) that

$$
c^{*} \mathbf{A}^{-1} b=c^{*} x_{n}+s_{n}^{*} \mathbf{A}^{-1} r_{n}
$$

Finally,

$$
c^{*} \mathbf{A}_{n}^{-1} b=c^{*} x_{n}=\sum_{j=0}^{n-1} \alpha_{j} s_{j}^{*} r_{j}
$$

Approximations based on the BiCG method

and finite precision arithmetic
It holds that

$$
c^{*} \mathbf{A}^{-1} b=\sum_{j=0}^{n-1} \alpha_{j} s_{j}^{*} r_{j}+\underbrace{s_{n}^{*} \mathbf{A}^{-1} r_{n}}_{\text {error }} .
$$

It can be shown that

$$
c^{*} \mathbf{A}^{-1} b=c^{*} x_{n}+\underbrace{y_{n}^{*} r_{n}+s_{n}^{*} \mathbf{A}^{-1} r_{n}}_{\text {error } \sim\left\|y_{n}\right\|\left\|r_{n}\right\|} .
$$

In exact arithmetic $y_{n}^{*} r_{n}=0$.
If the global biorthogonality is lost, one can expect that

$$
\left|y_{n}^{*} r_{n}\right| \sim\left\|y_{n}\right\|\left\|r_{n}\right\|
$$

Yet another approach

Hybrid BiCG methods
We know that

$$
c^{*} \mathbf{A}_{n}^{-1} b=\sum_{j=0}^{n-1} \alpha_{j} s_{j}^{*} r_{j} \quad \text { and } \quad s_{j}^{*} r_{j}=\left(c^{*} b\right) \prod_{k=0}^{j-1} \beta_{k} .
$$

In hybrid BiCG methods like CGS, BiCGStab, BiCGStab(ℓ), the BiCG coefficients are available, i.e. we can compute the approximation $c^{*} \mathbf{A}_{n}^{-1} b$ during the run of these method.
Question: Hybrid BiCG methods produce approximations \mathbf{x}_{n}, better than x_{n} produced by BiCG.
Is $c^{*} \mathbf{x}_{n}$ a better approximation of $c^{*} \mathbf{A}^{-1} b$ than $c^{*} x_{n}$?
No. We showed that mathematically [Strakoš \& T. '10],

$$
c^{*} \mathbf{x}_{n}=c^{*} x_{n} .
$$

Summary (non-Hermitian Lanczos approach)

How to compute $c^{*} \mathbf{A}_{n}^{-1} b$?
Algorithm of choice:

- non-Hermitian Lanczos
- BiCG
- hybrid BiCG methods

Way of computing the approximation:

- $c^{*} x_{n}$
- $\left(c^{*} v_{1}\right)\|b\|\left(\mathbf{T}_{n}^{-1}\right)_{1,1}$
- complex Gauss quadrature (Saylor-Smolarski approach)
- from the BiCG coefficients, or, in BiCG using

$$
\xi_{n}^{B} \equiv \sum_{j=0}^{n-1} \alpha_{j} s_{j}^{*} r_{j}
$$

Numerical experiments

Diffraction of light on periodic structures, RCWA method
[Hench \& Strakoš '08]

$$
\mathbf{A} x \equiv\left[\begin{array}{cccc}
-\mathbf{I} & \mathbf{I} & e^{\mathbf{i} \sqrt{\mathbf{C}} \varrho} & 0 \\
\mathbf{Y}_{I} & \sqrt{\mathbf{C}} & -\sqrt{\mathbf{C}} e^{\mathbf{i} \sqrt{C} \varrho} & 0 \\
0 & e^{\mathbf{i} \sqrt{\mathbf{C}} \varrho} & I & -\mathbf{I} \\
0 & \sqrt{\mathbf{C}} e^{\mathbf{i} \sqrt{\mathbf{C}} \varrho} & -\sqrt{\mathbf{C}} & -\mathbf{Y}_{\mathrm{II}}
\end{array}\right] x=b
$$

$\mathbf{Y}_{\mathrm{I}}, \mathbf{Y}_{\mathrm{II}}, \mathbf{C} \in \mathbb{C}^{(2 M+1) \times(2 M+1)}, \varrho>0, M$ is the discretization parameter representing the number of Fourier modes used for approximation of the electric and magnetic fields as well as the material properties.

Typically, one needs only the dominant $(M+1)$ st component

$$
e_{M+1}^{*} \mathbf{A}^{-1} b
$$

In our experiments $M=20$, i.e. $\mathbf{A} \in \mathbb{C}^{164 \times 164}$. [Strakoš \& T. '10]

Approximations based on the BiCG method

Mathematically equivalent approximations ξ_{n}^{B} and $c^{*} x_{n}, \varsigma \equiv c^{*} \mathbf{A}^{-1} b$

TE2001

$$
\begin{aligned}
\left|c^{*} \mathbf{A}^{-1} b-c^{*} x_{n}\right| & =\left|y_{n}^{*} r_{n}+s_{n}^{*} \mathbf{A}^{-1} r_{n}\right| \\
\left|c^{*} \mathbf{A}^{-1} b-\xi_{n}^{B}\right| & =\left|s_{n}^{*} \mathbf{A}^{-1} r_{n}\right|
\end{aligned}
$$

Non-Hermitian Lanczos approach

Mathematically equivalent approximations based on hybrid BiCG methods

TE2001

The BiCGStab and CGS approximations are significantly more affected by rounding errors than the BiCG approximations.

Conclusions

- Generalization of the HPD case:
- Via Vorobyev moment problem \rightarrow very natural and general.
- no assumptions on A, based on approximation properties
- Complex Gauss Quadrature approach
- A has to be diagonalizable, just a formalism
- We proved mathematical equivalence of the existing approximations based on Non-Hermitian Lanczos.
- Preferable approximation

$$
\xi_{n}^{B} \equiv \sum_{j=0}^{n-1} \alpha_{j} s_{j}^{*} r_{j}
$$

It is simple and numerically better justified.

- In finite precision arithmetic, the identities need not hold.

A justification is necessary (e.g. local biorthogonality).

Related papers

- Z. Strakoš and P . Tichý, [On efficient numerical approximation of the bilinear form $c^{*} \mathbf{A}^{-1} b$, submitted to SISC, 2009].
- G. H. Golub, M. Stoll, and A. Wathen, [Approximation of the scattering amplitude and linear systems, Electron. Trans. Numer. Anal., 31 (2008), pp. 178-203].
- Z. Strakoš and P. Tichý, [On error estimation in the conjugate gradient method and why it works in finite precision computations, Electron. Trans. Numer. Anal., 13 (2002), pp. 56-80].
- P. E. Saylor and D. C. Smolarski, [Why Gaussian quadrature in the complex plane?, Numer. Algorithms, 26 (2001), pp. 251-280].
- G. H. Golub and G. Meurant, [Matrices, moments and quadrature, in Numerical analysis 1993 (Dundee, 1993), vol. 303 of Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, 1994, pp. 105-156].

More details

More details can be found at

http://www.cs.cas.cz/strakos http://www.cs.cas.cz/tichy

Thank you for your attention!

The matrix A

Spectrum of A computed via the Matlab command eig

Spectrum of A

Some eigenvalues have large imaginary parts in comparison to the real parts, $\kappa(\mathbf{A}) \approx 104$.

Non-Hermitian Lanczos, Arnoldi, GLSQR

TE2001

GLSQR: [Golub \& Stoll \& Wathen '08], [Saunders \& Simon \& Yip '88]

Different approaches with preconditioning

Non-Hermitian Lanczos, Arnoldi, GLSQR

