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Formulation of the problem

Given a nonsingular matrix A and vectors b and c.

We want to approximate

c
∗
A

−1
b .

Equivalently, we look for an approximation to

c
∗
x such that Ax = b .
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Motivation

Approximation of the jth component of the solution

i.e., we want to approximate eT
j A−1b.
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i.e., we want to approximate eT
j A−1b.

Signal processing (the scattering amplitude)

b and c represent incoming and outgoing waves, respectively,
and the operator A relates the incoming and scattered fields
on the surface of an object,

Ax = b determines the field x from the signal b. The signal is
received on an antenna c. The signal received by the antenna
is then c∗x. The value c∗x is called the scattering amplitude.

Optimization (the primal linear output)

Nuclear physics, quantum mechanics, other disciplines
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Krylov subspace methods approach
Projection of the original problem onto Krylov subspaces

Kn(A, b) = span{b, Ab, . . . An−1b}.
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Kn(A, b) = span{b, Ab, . . . An−1b}.

A possible approach: compute xn using a Krylov subspace method,

c∗A−1b = c∗x ≈ c∗xn .

Due to numerical instabilities, the explicit numerical
computation of c∗xn can be highly inefficient.
[HPD case: Strakoš & T. ’02, ’05]

If A is HPD and c = b, there are several efficient methods.
[Golub & Meurant ’94, ’97, Axelsson & Kaporin ’01, Strakoš & T. ’02, ’05]

How to generalize ideas from the HPD case to a general case?
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Outline

1 Vorobyev moment problem

2 Approximation of the scattering amplitude

3 Numerical experiments
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Vorobyev moment problem, Vorobyev ’58, ’65
Popularized by Brezinski ’97, Strakoš ’08

Find a linear operator An on Kn(A, v) such that

An v = A v,

A2
n v = A2 v,

...

An−1
n v = An−1 v,

An
n v = QnAn v ,

where Qn is a given linear projection operator.
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Vorobyev moment problem, Vorobyev ’58, ’65
Popularized by Brezinski ’97, Strakoš ’08

Find a linear operator An on Kn(A, v) such that

An v = A v,

A2
n v = A2 v,

...

An−1
n v = An−1 v,

An
n v = QnAn v ,

where Qn is a given linear projection operator.

Some Krylov subspace methods can be interpreted as
methods that solve the Vorobyev moment problem.

Useful formulation for understanding approximation properties
of Krylov subspace methods (matching moments properties).
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Non-Hermitian Lanczos

Given a nonsingular A, v and w.

Non-Hermitian Lanczos algorithm is represented by

AVn = VnTn + δn+1vn+1eT
n ,

A∗Wn = WnT∗
n + η∗

n+1wn+1eT
n ,

where W∗
nVn = I and Tn = W∗

nAVn is tridiagonal,

Tn =















γ1 η2

δ2 γ2
. . .

. . .
. . . ηn

δn γn















.
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Arnoldi algorithm

Given a nonsingular A and v.

Arnoldi algorithm is represented by

AVn = VnHn + hn+1,nvn+1eT
n ,

where V∗
nVn = I, and Hn =V∗

nAVn is upper Hessenberg,

Hn =















h1,1 h1,2 . . . h1,n

h2,1 h2,2
. . .

...
. . .

. . . hn−n,n

hn,n−1 hn.n















.
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Vorobyev moment problem,
Non-Hermitian Lanczos and Arnoldi

Lanczos: Qn projects onto Kn(A, v) orthog. to Kn(A∗, w),

Qn = VnW∗
n , An = VnTnW∗

n .
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Vorobyev moment problem,
Non-Hermitian Lanczos and Arnoldi

Lanczos: Qn projects onto Kn(A, v) orthog. to Kn(A∗, w),

Qn = VnW∗
n , An = VnTnW∗

n .

Arnoldi: Qn projects onto Kn(A, v) orthog. to Kn(A, v),

Qn = VnV∗
n , An = VnHnV∗

n .

Matching moments property:

w∗Akv = w∗Ak
nv ,

k = 0, . . . , 2n − 1 for Lanczos, k = 0, . . . , n − 1 for Arnoldi.
[Gragg & Lindquist ’83, Villemagne & Skelton ’87]

[Gallivan & Grimme & Van Dooren ’94, Antoulas ’05]

[a simple proof using the Vorobyev moment problem - Strakoš ’08]
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Approximation of c
∗
A

−1
b

General framework, Strakoš & T. ’09

Vorobyev moment problem: A → An

Define approximation: c∗A−1b ≈ c∗A−1
n b

A−1
n is the matrix representation of the inverse of the reduced

order operator An which is restricted onto Kn(A, b).
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General framework, Strakoš & T. ’09

Vorobyev moment problem: A → An

Define approximation: c∗A−1b ≈ c∗A−1
n b

A−1
n is the matrix representation of the inverse of the reduced

order operator An which is restricted onto Kn(A, b).

Examples:

A−1
n = VnT−1

n W∗
n (Non-Hermitian Lanczos)

A−1
n = VnH−1

n V∗
n (Arnoldi)

Questions:

How to compute c∗A−1
n b efficiently?

Relationship to the existing approximations?

We concentrate only to non-Hermitian Lanczos approach.
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Non-Hermitian Lanczos approach

Define

v1 =
b

‖b‖ , w1 =
c

c∗v1
, i.e. w∗

1v1 = 1 .

Then

c∗A−1
n b = c∗VnT−1

n W∗
nb = (c∗v1) ‖b‖ (T−1

n )1,1 .
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Non-Hermitian Lanczos approach

Define

v1 =
b

‖b‖ , w1 =
c

c∗v1
, i.e. w∗

1v1 = 1 .

Then

c∗A−1
n b = c∗VnT−1

n W∗
nb = (c∗v1) ‖b‖ (T−1

n )1,1 .

Let x0 = 0. We also know that xn = ‖b‖VnT−1
n e1 is the

approximate solution computed via BiCG. Therefore,

c∗A−1
n b = c∗‖b‖VnT−1

n W∗
nVne1 = c∗xn .

BiCG can be used for computing c∗A−1
n b !

We used the global biorthogonality !
Do the identities hold in finite precision computations?
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The BiCG method

Simultaneous solving of

Ax = b , A∗y = c .

input A, b, c

x0 = y0 = 0
r0 = p0 = b, s0 = q0 = c

for n = 0, 1, . . .

αn = s∗

nrn

q∗

nApn
,

xn+1 = xn + αn pn , yn+1 = yn + αn
∗ qn ,

rn+1 = rn − αn Apn , sn+1 = sn − α∗
n A∗qn ,

βn+1 =
s∗

n+1
rn+1

s∗

nrn
,

pn+1 = rn+1 + βn+1 pn , qn+1 = sn+1 + β∗
n+1 qn

end
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An efficient approximation based on the BiCG method
How to compute c

∗

A
−1
n b in BiCG without using the global biorthogonality?

Using local biorthogonality we can show that

s∗
jA−1rj − s∗

j+1A−1rj+1 = αjs∗
jrj .
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An efficient approximation based on the BiCG method
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∗
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nA−1rn .

Moreover, it can be shown (using global biorthogonality) that

c∗A−1b = c∗xn + s∗
nA−1rn .
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c∗A−1
n b = (c∗v1) ‖b‖ (T−1

n )1,1 = c∗xn =
n−1
∑

j=0
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Saylor-Smolarski approach
For diagonalizable matrices

[Saylor & Smolarski ’01] introduce

formally orthogonal polynomials,

complex Gauss quadrature,

as a tool for approximating the quantity c∗A−1b. Motivated by
[Freund & Hochbruck ’93], [Golub & Meurant ’94, ’97].
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(

λ−1
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ωj

ζj

,

ζj . . . eigenvalues of T̂n, ωj . . . scaled and squared first
components of the normalized eigenvectors of T̂n.
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formally orthogonal polynomials,

complex Gauss quadrature,

as a tool for approximating the quantity c∗A−1b. Motivated by
[Freund & Hochbruck ’93], [Golub & Meurant ’94, ’97].

Non-Hermitian Lanczos → T̂n (complex) symmetric. Define

c∗A−1b ≈ G
(

λ−1
)

≡
n

∑

j=1

ωj

ζj

,

ζj . . . eigenvalues of T̂n, ωj . . . scaled and squared first
components of the normalized eigenvectors of T̂n.

[Warnick ’00] showed:

G
(

λ−1
)

= c∗xn .
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Yet another approach
Hybrid BiCG methods

We know that

c∗A−1
n b =

n−1
∑

j=0

αj s∗
jrj and s∗

jrj = (c∗b)
j−1
∏

k=0

βk .
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We know that

c∗A−1
n b =

n−1
∑

j=0

αj s∗
jrj and s∗

jrj = (c∗b)
j−1
∏

k=0

βk .

In hybrid BiCG methods like CGS, BiCGStab, BiCGStab(ℓ),
the BiCG coefficients are available, i.e. we can compute the
approximation c∗A−1

n b during the run of these method.

Question: Hybrid BiCG methods produce approximations xn,
better than xn produced by BiCG.

Is c∗xn a better approximation of c∗A−1b than c∗xn?

No. We showed that mathematically [Strakoš & T. ’09],

c∗xn = c∗xn.
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Summary (non-Hermitian Lanczos approach)
How to compute c

∗

A
−1
n b?

Algorithm of choice:

non-Hermitian Lanczos

BiCG

hybrid BiCG methods

Way of computing the approximation:

c∗xn

(c∗v1) ‖b‖ (T−1
n )1,1

complex Gauss quadrature

from the BiCG coefficients, or, in BiCG using

εB

n ≡
n−1
∑

j=0

αj s∗
jrj .

18



Outline

1 Vorobyev moment problem

2 Approximation of the scattering amplitude

3 Numerical experiments

19



Numerical experiments
Diffraction of light on periodic structures, RCWA method

[Hench & Strakoš ’08]

A x ≡













−I I ei
√

C̺ 0

YI

√
C −

√
Cei

√
C̺ 0

0 ei
√

C̺ I −I

0
√

Cei
√

C̺ −
√

C −YII













x = b ,

YI, YII, C ∈ C(2M+1)×(2M+1), ̺ > 0, M is the discretization
parameter representing the number of Fourier nodes used for
approximation of the electric and magnetic fields as well as the
material properties.
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[Hench & Strakoš ’08]

A x ≡













−I I ei
√

C̺ 0

YI

√
C −

√
Cei

√
C̺ 0

0 ei
√

C̺ I −I

0
√

Cei
√

C̺ −
√

C −YII













x = b ,

YI, YII, C ∈ C(2M+1)×(2M+1), ̺ > 0, M is the discretization
parameter representing the number of Fourier nodes used for
approximation of the electric and magnetic fields as well as the
material properties.

Typically, one needs only the dominant (M + 1)st component

e∗
M+1A−1b.

In our experiments M = 20, i.e. A ∈ C164×164. [Strakoš & T. ’09]
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Non-Hermitian Lanczos approach
Mathematically equivalent estimates I

0 20 40 60 80 100 120 140 160 180 200
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

Error |c*A−1b − c*A
n
−1b|

 

 

εB
n

c*x
n

using e
1
T T

n
−1e

1

complex GQ

Comparison of mathematically equivalent approximations
based on BiCG and non-Hermitian Lanczos.
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Non-Hermitian Lanczos approach
Mathematically equivalent estimates II

0 20 40 60 80 100 120 140 160 180 200
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

Error |c*A−1b − c*A
n
−1b|

 

 

εB
n
 BiCG

εB
n
 BiCG (reo)

BiCGStab
CGS

The BiCGStab and CGS approximations are significantly more
affected by rounding errors than the BiCG approximations.
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Conclusions

Generalization of the HPD case:
Via Vorobyev moment problem → very natural and general.
- no assumptions on A, based on approximation properties
Complex Gauss Quadrature approach
- A has to be diagonalizable, just a formalism

We proved mathematical equivalence of the existing
approximations based on Non-Hermitian Lanczos.

Preferable approximation

εB

n ≡
n−1
∑

j=0

αj s∗
jrj .

It is simple and numerically better justified.

In finite precision arithmetic, the identities need not hold.
A justification is needed (e.g. local biorthogonality).

23



Related papers

Z. Strakoš and P. Tichý, [On efficient numerical approximation of the

scattering amplitude c∗
A

−1b via matching moments, submitted to SISC, 2009].

G. H. Golub, M. Stoll, and A. Wathen, [Approximation of the

scattering amplitude and linear systems, Electron. Trans. Numer. Anal., 31

(2008), pp. 178–203].

Z. Strakoš and P. Tichý, [On error estimation in the conjugate gradient

method and why it works in finite precision computations, Electron. Trans.

Numer. Anal., 13 (2002), pp. 56–80].

P. E. Saylor and D. C. Smolarski, [Why Gaussian quadrature in the

complex plane?, Numer. Algorithms, 26 (2001), pp. 251–280].

G. H. Golub and G. Meurant, [Matrices, moments and quadrature, in

Numerical analysis 1993 (Dundee, 1993), vol. 303 of Pitman Res. Notes Math.

Ser., Longman Sci. Tech., Harlow, 1994, pp. 105–156].

24



More details

More details can be found at

http://www.cs.cas.cz/˜strakos

http://www.cs.cas.cz/˜tichy
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More details

More details can be found at

http://www.cs.cas.cz/˜strakos

http://www.cs.cas.cz/˜tichy

Thank you for your attention!
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The matrix A

Spectrum of A computed via the Matlab command eig

−6 −4 −2 0 2 4 6
−40

−20

0

20

40
Spectrum of A

real axis

im
ag

in
ar

y 
ax

is

Some eigenvalues have large imaginary parts
in comparison to the real parts, κ(A) ≈ 104.

26



Non-Hermitian Lanczos, Arnoldi, GLSQR
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GLSQR: [Golub & Stoll & Wathen ’08], [Saunders & Simon & Yip ’88]
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Different approaches with preconditioning
Non-Hermitian Lanczos, Arnoldi, GLSQR
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