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Krylov subspace methods
Basis

Methods based on projection onto the Krylov subspaces

Kj(A, v) ≡ span(v,Av, . . . ,Aj−1v) j = 1, 2, . . . .

A ∈ Rn×n, v ∈ Rn.
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Kj(A, v) ≡ span(v,Av, . . . ,Aj−1v) j = 1, 2, . . . .

A ∈ Rn×n, v ∈ Rn.

Each method must generate a basis of Kj(A, v).

The trivial choice v,Av, . . . ,Aj−1v is computationally
infeasible (recall the Power Method).

For numerical stability: Well conditioned basis.

For computational efficiency: Short recurrence.
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Krylov subspace methods
Basis

Methods based on projection onto the Krylov subspaces

Kj(A, v) ≡ span(v,Av, . . . ,Aj−1v) j = 1, 2, . . . .

A ∈ Rn×n, v ∈ Rn.

Each method must generate a basis of Kj(A, v).

The trivial choice v,Av, . . . ,Aj−1v is computationally
infeasible (recall the Power Method).

For numerical stability: Well conditioned basis.

For computational efficiency: Short recurrence.

Best of both worlds:
Orthogonal basis computed by short recurrence.
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Optimal Krylov subspace methods
with short recurrences

CG (1952), MINRES, SYMMLQ (1975)

based on three-term recurrences

rj+1 = γjArj − αjrj − βjrj−1 ,
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Optimal Krylov subspace methods
with short recurrences

CG (1952), MINRES, SYMMLQ (1975)

based on three-term recurrences

rj+1 = γjArj − αjrj − βjrj−1 ,

generate orthogonal (or A-orthogonal) Krylov subspace basis,

optimal in the sense that they minimize some error norm:

‖x− xj‖A in CG,

‖x− xj‖ATA = ‖rj‖ in MINRES,

‖x− xj‖ in SYMMLQ -here xj ∈ x0 + AKj(A, r0).

An important assumption on A:
A is symmetric (MINRES, SYMMLQ) & pos. definite (CG).
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Gene Golub

G. H. Golub, 1932–2007

By the end of the 1970s it was
unknown if such methods
existed also for general
unsymmetric A.

Gatlinburg VIII (now
Householder VIII) held in
Oxford from July 5 to 11, 1981.

“A prize of $500 has been
offered by Gene Golub for the
construction of a 3-term
conjugate gradient like descent
method for non-symmetric real
matrices or a proof that there
can be no such method”.
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What kind of method Golub had in mind

We want to solve Ax = b using CG-like descent method:
error is minimized in some given inner product norm,

‖ · ‖B = 〈·, ·〉
1/2
B .
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What kind of method Golub had in mind

We want to solve Ax = b using CG-like descent method:
error is minimized in some given inner product norm,

‖ · ‖B = 〈·, ·〉
1/2
B .

Starting from x0, compute

xj+1 = xj + αjpj , j = 0, 1, . . . ,

pj is a direction vector, αj is a scalar (to be determined),

span{p0, . . . , pj} = Kj+1(A, r0), r0 = b−Ax0 .

‖x− xj+1‖B is minimal iff

αj =
〈x− xj, pj〉B
〈pj , pj〉B

and 〈pj, pi〉B = 0 .

p0, . . . , pj has to be a B-orthogonal basis of Kj+1(A, r0).
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Faber and Manteuffel, 1984

Faber and Manteuffel gave the answer in 1984:
For a general matrix A there exists no short recurrence
for generating orthogonal Krylov subspace bases.

What are the details of this statement?
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Formulation of the problem
B-inner product, Input and Notation

Without loss of generality, B = I. Otherwise change the basis:

〈x, y〉B = 〈B1/2x,B1/2y〉, Â ≡ B
1/2

AB
−1/2, v̂ ≡ B

1/2v .
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Formulation of the problem
B-inner product, Input and Notation

Without loss of generality, B = I. Otherwise change the basis:

〈x, y〉B = 〈B1/2x,B1/2y〉, Â ≡ B
1/2

AB
−1/2, v̂ ≡ B

1/2v .

Input data:

A ∈ Cn×n, a nonsingular matrix.

v ∈ Cn, an initial vector.

Notation:

dmin(A) . . . the degree of the minimal polynomial of A.

d = d(A, v) . . . the grade of v with respect to A,
the smallest d s.t. Kd(A, v) is invariant under mult. with A.
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Formulation of the problem
Our Goal

Generate a basis v1, . . . , vd of Kd(A, v) s.t.

1. span{v1, . . . , vj} = Kj(A, v), for j = 1, . . . , d,
2. 〈vi, vj〉 = 0, for i 6= j, i, j = 1, . . . , d.
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Formulation of the problem
Our Goal

Generate a basis v1, . . . , vd of Kd(A, v) s.t.

1. span{v1, . . . , vj} = Kj(A, v), for j = 1, . . . , d,
2. 〈vi, vj〉 = 0, for i 6= j, i, j = 1, . . . , d.

Arnoldi’s algorithm:

Standard way for generating the orthogonal basis
(no normalization for convenience): v1 ≡ v,

vj+1 = Avj −
j∑

i=1

hi,j vi , hi,j =
〈Avj , vi〉

〈vi, vi〉
,

j = 0, . . . , d− 1.
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Formulation of the problem
Arnoldi’s algorithm - matrix formulation

In matrix notation:

v1 = v ,

A [v1, . . . , vd−1]︸ ︷︷ ︸
≡ Vd−1

= [v1, . . . , vd]︸ ︷︷ ︸
≡ Vd




h1,1 · · · h1,d−1

1
. . .

...
. . . hd−1,d−1

1




︸ ︷︷ ︸
≡ Hd,d−1

,

V
∗

dVd is diagonal , d = dimKn(A, v) .
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Formulation of the problem
Arnoldi’s algorithm - matrix formulation

In matrix notation:

v1 = v ,

A [v1, . . . , vd−1]︸ ︷︷ ︸
≡ Vd−1

= [v1, . . . , vd]︸ ︷︷ ︸
≡ Vd




h1,1 · · · h1,d−1

1
. . .

...
. . . hd−1,d−1

1




︸ ︷︷ ︸
≡ Hd,d−1

,

V
∗

dVd is diagonal , d = dimKn(A, v) .

(s+ 2)-term recurrence: vj+1 = A vj −
j∑

i=j−s

hi,jvi .
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Formulation of the problem
Optimal short recurrences (Definition - Liesen and Strakoš, 2008)

A admits an optimal (s+ 2)-term recurrence, if

for any v, Hd,d−1 is at most (s+ 2)-band Hessenberg, and
for at least one v, Hd,d−1 is (s+ 2)-band Hessenberg.

s+ 1︷ ︸︸ ︷

A Vd−1 = Vd




• · · · •

•
. . .

. . .
. . .

. . . •

. . .
. . .

...
. . . •
•




︸ ︷︷ ︸
d− 1
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Formulation of the problem
Optimal short recurrences (Definition - Liesen and Strakoš, 2008)

A admits an optimal (s+ 2)-term recurrence, if

for any v, Hd,d−1 is at most (s+ 2)-band Hessenberg, and
for at least one v, Hd,d−1 is (s+ 2)-band Hessenberg.

s+ 1︷ ︸︸ ︷

A Vd−1 = Vd




• · · · •

•
. . .

. . .
. . .

. . . •

. . .
. . .

...
. . . •
•




︸ ︷︷ ︸
d− 1

Sufficient and necessary conditions on A?
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The Faber-Manteuffel theorem

Definition. If A
∗ = ps(A), where ps is a polynomial of the

smallest possible degree s, A is called normal(s).
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Theorem. [Faber and Manteuffel, 1984], [Liesen and Strakoš, 2008]

Let A be a nonsingular matrix with minimal polynomial degree
dmin(A). Let s be a nonnegative integer, s+ 2 < dmin(A):
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The Faber-Manteuffel theorem

Definition. If A
∗ = ps(A), where ps is a polynomial of the

smallest possible degree s, A is called normal(s).

Theorem. [Faber and Manteuffel, 1984], [Liesen and Strakoš, 2008]

Let A be a nonsingular matrix with minimal polynomial degree
dmin(A). Let s be a nonnegative integer, s+ 2 < dmin(A):

A admits an optimal (s+ 2)-term recurrence

if and only if

A is normal(s).

Sufficiency is rather straightforward, necessity is not. Key
words from the proof of necessity in (Faber and Manteuffel,
1984) include: “continuous function” (analysis), “closed set of
smaller dimension” (topology), “wedge product” (multilinear
algebra).
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V. Faber, J. Liesen and P. Tichý, 2008
The Faber-Manteuffel Theorem for Linear Operators

Motivated by the paper [J. Liesen and Z. Strakoš, 2008] which

contains a completely reworked theory of short recurrences for

generating orthogonal Krylov subspace bases.

“It is unknown if a simpler proof of the necessity part can be found.

In view of the fundamental nature of the Faber-Manteuffel

Theorem, such proof would be a welcome addition to the existing

literature. It would lead to a better understanding of the theorem by

enlightening some (possibly unexpected) relationships, and it would

also be more suitable for classroom teaching.”
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V. Faber, J. Liesen and P. Tichý, 2008
The Faber-Manteuffel Theorem for Linear Operators

Motivated by the paper [J. Liesen and Z. Strakoš, 2008] which

contains a completely reworked theory of short recurrences for

generating orthogonal Krylov subspace bases.

“It is unknown if a simpler proof of the necessity part can be found.

In view of the fundamental nature of the Faber-Manteuffel

Theorem, such proof would be a welcome addition to the existing

literature. It would lead to a better understanding of the theorem by

enlightening some (possibly unexpected) relationships, and it would

also be more suitable for classroom teaching.”

We give two new proofs of the Faber-Manteuffel theorem that
use more elementary tools,

first proof - improved version of the Faber-Manteuffel proof,

second proof - completely new proof based on orthogonal
transformations of upper Hessenberg matrices.
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Idea of the second proof
Optimal (s+ 2)-term recurrence

s+ 1︷ ︸︸ ︷

A Vd−1 = Vd




• · · · •

•
. . .

. . .
. . .

. . . •

. . .
. . .

...
. . . •
•




︸ ︷︷ ︸
d− 1
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

• · · · •

•
. . .

. . .
. . .

. . . •

. . .
. . .

...
. . . •
•




︸ ︷︷ ︸
d− 1

Since Kd(A, v) is invariant, Avd ∈ Kd(A, v) and

Avd =
d∑

i=1

hid vi.
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Idea of the second proof
Matrix representation of A in Vd

s+ 1︷ ︸︸ ︷

A Vd = Vd




• · · · • •

•
. . .

. . .
...

. . .
. . . • •
. . .

. . .
...

...
. . . • •
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

︸ ︷︷ ︸
d− 1

19



Idea of the second proof
Matrix representation of A in Vd

s+ 1︷ ︸︸ ︷

A Vd = Vd




• · · · • •

•
. . .

. . .
...

. . .
. . . • •
. . .

. . .
...

...
. . . • •
• •




︸ ︷︷ ︸
d− 1

Prove something about the linear operator A, without complete
knowledge of the structure of its matrix representation.
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Idea of the second proof
V. Faber, J. Liesen and P. Tichý, 2008

(for simplicity, we omit indices by Vd and Hd,d)

Let A admit an optimal (s+ 2)-term recurrence

A V = V H, V
∗
V = I .

Up to the last column, H is (s+ 2)-band Hessenberg.
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Let A admit an optimal (s+ 2)-term recurrence

A V = V H, V
∗
V = I .

Up to the last column, H is (s+ 2)-band Hessenberg.
Let G be a d× d unitary matrix, G

∗
G = I. Then

A (VG)︸ ︷︷ ︸
W

= (VG)︸ ︷︷ ︸
W

(G∗HG)︸ ︷︷ ︸
H̃

.

W is unitary.
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Idea of the second proof
V. Faber, J. Liesen and P. Tichý, 2008

(for simplicity, we omit indices by Vd and Hd,d)

Let A admit an optimal (s+ 2)-term recurrence

A V = V H, V
∗
V = I .

Up to the last column, H is (s+ 2)-band Hessenberg.
Let G be a d× d unitary matrix, G

∗
G = I. Then

A (VG)︸ ︷︷ ︸
W

= (VG)︸ ︷︷ ︸
W

(G∗HG)︸ ︷︷ ︸
H̃

.

W is unitary. If G is chosen such that H̃ is again unreduced upper
Hessenberg matrix, then

A W = W H̃ .

represents the result of Arnoldi’s algorithm applied to A and w1.
Up to the last column, H̃ has to be (s + 2)-band Hessenberg.
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Idea of the second proof
V. Faber, J. Liesen and P. Tichý, 2008

Proof by contradiction. Let A admit an optimal (s + 2)-term
recurrence and A not be normal(s).

Then there exists a starting vector v such that h1,d 6= 0.

A V = V




• · · · • •
•

. . .
. . .

...
. . .

. . . • •

. . .
. . .

...
...

. . . • •
• •



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∗
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Idea of the second proof
V. Faber, J. Liesen and P. Tichý, 2008

Proof by contradiction. Let A admit an optimal (s + 2)-term
recurrence and A not be normal(s).

Then there exists a starting vector v such that h1,d 6= 0.

A (VG) = (VG) G
∗




• · · · • •
•

. . .
. . .

...
. . .

. . . • •

. . .
. . .

...
...

. . . • •
• •




G

Find unitary G (a product of Givens rotations) such that H̃ is
unreduced upper Hessenberg, but H̃ is not (s+ 2)-band (up to the
last column) - contradiction.

21



Summary
Generating an orthogonal basis of Kd(A, v) via Arnoldi-type recurrence

Arnoldi-type recurrence
(s + 2)-term

m

A is normal(s)
A
∗ = p(A)

When is A normal(s)?
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m
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A
∗ = p(A)

When is A normal(s)?

A is normal and
[Faber and Manteuffel, 1984],
[Khavinson and Świa̧tek, 2003]

[Liesen and Strakoš, 2008]

1. s = 1 if and only if the
eigenvalues of A lie on
a line in C.

2. If the eigenvalues of A

are not on a line, then
dmin(A) ≤ 3s− 2.
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Summary
Generating an orthogonal basis of Kd(A, v) via Arnoldi-type recurrence

Arnoldi-type recurrence
(s + 2)-term

m

A is normal(s)
A
∗ = p(A)

l

the only interesting case
is s = 1,
collinear eigenvalues

When is A normal(s)?

A is normal and
[Faber and Manteuffel, 1984],
[Khavinson and Świa̧tek, 2003]

[Liesen and Strakoš, 2008]

1. s = 1 if and only if the
eigenvalues of A lie on
a line in C.

2. If the eigenvalues of A

are not on a line, then
dmin(A) ≤ 3s− 2.

All classes of “interesting”
matrices are known.
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Unitary matrices
Example

Consider a unitary matrix A with different eigenvalues.

A is normal =⇒ A
∗ is a polynomial in A

A
∗ = p(A) .
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Consider a unitary matrix A with different eigenvalues.

A is normal =⇒ A
∗ is a polynomial in A

A
∗ = p(A) .

The smallest degree of such polynomial is n− 1
(n is the size of the matrix), i.e. A is normal(n − 1)
[Liesen, 2007].
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Unitary matrices
Example

Consider a unitary matrix A with different eigenvalues.

A is normal =⇒ A
∗ is a polynomial in A

A
∗ = p(A) .

The smallest degree of such polynomial is n− 1
(n is the size of the matrix), i.e. A is normal(n − 1)
[Liesen, 2007].

Using Faber-Manteuffel theorem: generating orthogonal
Krylov subspace bases for unitary matrices via the Arnoldi
process would require a full recurrence.

24



Unitary matrices
Isometric Arnoldi process

Gragg (1982) discovered the isometric Arnoldi process:
Orthogonal Krylov subspace bases for unitary A can be
generated by a 3-term recurrence of the form

vj+1 = βj,jAvj − βj−1,jAvj−1 − σj,jvj−1

(stable implementation - two coupled 2-term recurrences).

Used for solving unitary eigenvalue problems and linear
systems with shifted unitary matrices [Jagels and Reichel, 1994].

This short recurrence is not of the “Arnoldi-type”.
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Generalization: (ℓ,m)-recursion
Barth and Manteuffel, 2000

Generate an orthogonal basis via the (ℓ,m)-recursion of the form

(1) vj+1 =
j∑

i=j−m

βi,jA vi −
j∑

i=j−ℓ

σi,j vi ,

(ℓ,m) = (0, 1) if A is unitary,
(ℓ,m) = (1, 1) if A is shifted unitary.
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Generalization: (ℓ,m)-recursion
Barth and Manteuffel, 2000

Generate an orthogonal basis via the (ℓ,m)-recursion of the form

(1) vj+1 =
j∑

i=j−m

βi,jA vi −
j∑

i=j−ℓ

σi,j vi ,

(ℓ,m) = (0, 1) if A is unitary,
(ℓ,m) = (1, 1) if A is shifted unitary.

A sufficient condition [Barth and Manteuffel, 2000]:
A
∗ is a rational function in A,

A
∗ = r(A) ,

where r = p/q, p and q have degrees ℓ and m.

Example: Unitary matrices, A
∗ = A

−1, i.e. r = 1/z.

Matrices A such that A
∗ = r(A) are called normal(ℓ,m).
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Degree of a rational function, degrees of normality
normal degree of A, McMillan degree of A

Definition. McMillan degree of a rational function r = p/q where
p and q are relatively prime is defined as

deg r = max{deg p,deg q}.

27



Degree of a rational function, degrees of normality
normal degree of A, McMillan degree of A

Definition. McMillan degree of a rational function r = p/q where
p and q are relatively prime is defined as

deg r = max{deg p,deg q}.

Definition. Let A be a diagonalizable matrix.

dp(A) . . . normal degree of A

the smallest degree of a polynomial p that satisfies

p(λ) = λ for all eigenvalues λ of A .

27



Degree of a rational function, degrees of normality
normal degree of A, McMillan degree of A

Definition. McMillan degree of a rational function r = p/q where
p and q are relatively prime is defined as

deg r = max{deg p,deg q}.

Definition. Let A be a diagonalizable matrix.

dp(A) . . . normal degree of A

the smallest degree of a polynomial p that satisfies

p(λ) = λ for all eigenvalues λ of A .

dr(A) . . . McMillan degree of A

the smallest McMillan degree of a rational function r that satisfies

r(λ) = λ for all eigenvalues λ of A .
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When is A a low degree rational function in A ?
Collinear or concyclic eigenvalues

Application of results from rational interpolation theory:

Theorem. [Liesen, 2007] Let A be a diagonalizable matrix with
k ≥ 4 distinct eigenvalues.

If the eigenvalues are collinear, then dr(A) = dp(A) = 1.

If the eigenvalues are concyclic, then dr(A) = 1,
dp(A) = k − 1.

In all other cases dr(A) > k
5
, dp(A) > k

3
.
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Summary
Generating an orthogonal basis of Kk(A, v) via short recurrences

Arnoldi-type recurrence
(s + 2)-term

m

A is normal(s)
A
∗ = p(A)

l

the only interesting case
is s = 1,
collinear eigenvalues

Barth-Manteuffel
(ℓ,m)-recursion

⇑

A is normal(ℓ,m)
A
∗ = r(A)

l

the only interesting cases
are (0, 1) or (1, 1)
concyclic eigenvalues
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The role of the matrix B

Generating a B-orthogonal basis

Let B ∈ Cn×n be a Hermitian positive definite (HPD), defining
the B-inner product, 〈x, y〉B ≡ y∗Bx.
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The role of the matrix B

Generating a B-orthogonal basis

Let B ∈ Cn×n be a Hermitian positive definite (HPD), defining
the B-inner product, 〈x, y〉B ≡ y∗Bx.

B-normal(s) matrices: there exist a polynomial ps of the smallest
possible degree s such that

A
+ ≡ B

−1
A
∗
B = ps(A),

where A
+ the B-adjoint of A.
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The role of the matrix B

Generating a B-orthogonal basis

Let B ∈ Cn×n be a Hermitian positive definite (HPD), defining
the B-inner product, 〈x, y〉B ≡ y∗Bx.

B-normal(s) matrices: there exist a polynomial ps of the smallest
possible degree s such that

A
+ ≡ B

−1
A
∗
B = ps(A),

where A
+ the B-adjoint of A.

Theorem. [Faber and Manteuffel, 1984], [Liesen and Strakoš, 2008]

For A, B as above, and an integer s ≥ 0 with s+ 2 < dmin(A):

A admits for the given B an optimal (s+ 2)-term recurrence
if and only if A is B-normal(s).
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The role of the matrix B

Characterization of B-normal(s) matrices

Theorem. [Liesen and Strakoš, 2008]

A is B-normal(s) if and only if

1. A is diagonalizable (A = WΛW
−1), and

2. B = (WDW
∗)−1, where D is HPD and block diagonal with

blocks corresponding to those of Λ, and

3. Λ
∗ = ps(Λ) for a polynomial ps of (smallest possible) degree s.
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The role of the matrix B

Characterization of B-normal(s) matrices

Theorem. [Liesen and Strakoš, 2008]

A is B-normal(s) if and only if

1. A is diagonalizable (A = WΛW
−1), and

2. B = (WDW
∗)−1, where D is HPD and block diagonal with

blocks corresponding to those of Λ, and

3. Λ
∗ = ps(Λ) for a polynomial ps of (smallest possible) degree s.

The only interesting case: B-normal(1) matrices

If A is diagonalizable and the eigenvalues are collinear,
then there exists B such that A is B-normal(1).

Find a preconditioner P so that PA is B-normal(1)
for some B, e.g. [Concus and Golub, 1978], [Widlund, 1978].
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Conclusions

We characterized matrices for which it is possible to generate an
orthogonal basis of Krylov subspaces using short recurrences
(normal(s), normal(ℓ,m)).
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theorem.

Practical cases:

A is normal and the eigenvalues are collinear or concyclic.

If eigenvalues of A are collinear or concyclic, then there exists
a HPD matrix B such that A admits short recurrences for
generating a B-orthogonal basis.
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Conclusions

We characterized matrices for which it is possible to generate an
orthogonal basis of Krylov subspaces using short recurrences
(normal(s), normal(ℓ,m)).

We presented ideas of a new proof of the Faber-Manteuffel
theorem.

Practical cases:

A is normal and the eigenvalues are collinear or concyclic.

If eigenvalues of A are collinear or concyclic, then there exists
a HPD matrix B such that A admits short recurrences for
generating a B-orthogonal basis.

Find a preconditioner P so that PA is B-normal(1)
(B-normal(0, 1), B-normal(1, 1)) for some B.
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More details

More details can be found at

http://www.cs.cas.cz/˜tichy

http://www.math.tu-berlin.de/˜liesen

http://www.cs.cas.cz/˜strakos
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More details

More details can be found at

http://www.cs.cas.cz/˜tichy

http://www.math.tu-berlin.de/˜liesen

http://www.cs.cas.cz/˜strakos

Thank you for your attention!
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