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Krylov subspace methods

Given A ∈ Rn×n, v ∈ Rn. Define the j-dimensional Krylov
subspace

Kj(A, v) ≡ span(v,Av, . . . ,Aj−1v) .
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Krylov subspace methods

Given A ∈ Rn×n, v ∈ Rn. Define the j-dimensional Krylov
subspace

Kj(A, v) ≡ span(v,Av, . . . ,Aj−1v) .

Krylov subspace methods:

Iterative methods for solving large and sparse linear systems
or eigenvalue problems,

they are based on projection onto the Krylov subspaces,

examples: Lanczos, CG, Arnoldi, GMRES, BiCG,

named after Aleksei Nikolaevich Krylov (1863-1945),
Russian navy general and scientist.
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Krylov subspace methods

A. N. Krylov, 1931

1931 Krylov employs the sequence
v,Av,A2v, . . . for determining
the minimal polynomial of A.

1952 First Krylov subspace methods
(Hestenes/Stiefel, Lanczos),
independently of Krylov’s work.

1959 Term Krylov sequence
(Householder/Bauer).

1980 Perception of space rather than
sequence; term Krylov subspace
(Parlett).

2000 Use of Krylov subspaces for
solving Ax = b considered
among Top 10 algorithmic ideas
of the 20th century
(AIP/IEEE/SIAM).
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Examples of Krylov subspace methods ideas
Projection onto the Krylov subspace

Ax = b ,

find xj such that

xj ∈ Kj(A, b), rj ⊥ AKj(A, b).

Ay = λy ,

find (yj, µj) such that

yj ∈ Kj(A, b), A yj − µj yj ⊥ Kj(A, v).
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Examples of Krylov subspace methods ideas
Projection onto the Krylov subspace

Ax = b ,

find xj such that

xj ∈ Kj(A, b), rj ⊥ AKj(A, b).

Ay = λy ,

find (yj, µj) such that

yj ∈ Kj(A, b), A yj − µj yj ⊥ Kj(A, v).

Each method must generate a basis of Kj(A, v), j = 1, 2, . . .
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Basis

The trivial choice v,Av, . . . ,Aj−1v is computationally
infeasible (recall the Power Method).
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Basis

The trivial choice v,Av, . . . ,Aj−1v is computationally
infeasible (recall the Power Method).

For numerical stability: Well conditioned basis.

For computational efficiency: Short recurrence.

Best of both worlds:
Orthogonal basis computed by short recurrence.

First such method for Ax = b:
Conjugate gradient (CG) method of Hestenes and Stiefel.
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The classical CG method of Hestenes and Stiefel

US Nat. Bureau of Standards Preprint No. 1659, March 10, 1952
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Properties of CG

If A is symmetric and positive definite,
the two coupled two-term recurrences yield

r0, . . . , rj−1, an orthogonal basis of Kj(A, r0),

p0, . . . , pj−1, an A-orthogonal basis of Kj(A, r0).
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Mathematically equivalent: One three-term recurrence

rj+1 = γjArj − αjrj − βjrj−1
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Properties of CG

If A is symmetric and positive definite,
the two coupled two-term recurrences yield

r0, . . . , rj−1, an orthogonal basis of Kj(A, r0),

p0, . . . , pj−1, an A-orthogonal basis of Kj(A, r0).

Mathematically equivalent: One three-term recurrence

rj+1 = γjArj − αjrj − βjrj−1

(Rutishauser implementation, 1959).

In the background of CG, one can see the Lanczos algorithm for
computation of orthogonal basis.
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MINRES and SYMMLQ

CG is for symmetric positive definite A.

In 1975, Paige and Saunders derived MINRES and SYMMLQ,
two short recurrence methods for symmetric indefinite A.

Similar to CG, both are based on three-term recurrences

rj+1 = γjArj − αjrj − βjrj−1

for generating an orthogonal basis r0, . . . , rj−1 of Kj(A, r0).
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Assumption: A is symmetric and positive definite (CG) or A

is symmetric (MINRES, SYMMLQ).
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Observation

Assumption: A is symmetric and positive definite (CG) or A

is symmetric (MINRES, SYMMLQ).

CG, MINRES, SYMMLQ are based on three-term recurrences

rj+1 = γjArj − αjrj − βjrj−1 .

These methods generate orthogonal (or A-orthogonal) Krylov
subspace basis.

They are optimal in the sense that they minimize some norm
of the error:

‖x− xj‖A in CG,

‖x− xj‖ATA = ‖rj‖ in MINRES,

‖x− xj‖ in SYMMLQ -here xj ∈ x0 + AKj(A, r0).
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Gene Golub

G. H. Golub, 1932–2007

By the end of the 1970s it was
unknown if such methods
existed also for general
unsymmetric A.

Golub posed this fundamental
question at Gatlinburg VIII (now
Householder VIII) held in Oxford
from July 5 to 11, 1981.

“A prize of $500 has been
offered by Gene Golub for the
construction of a 3-term
conjugate gradient like descent
method for non-symmetric real
matrices or a proof that there
can be no such method”.
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What kind of method Golub had in mind (1)

We want to solve Ax = b iteratively, starting from x0.
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What kind of method Golub had in mind (1)

We want to solve Ax = b iteratively, starting from x0.

Step j = 0, 1, . . . :

xj+1 = xj + αjpj ,

pj is a direction vector, αj is a scalar (to be determined).

This means

xj+1 ∈ x0 + span{p0, . . . , pj} .

This becomes a Krylov subspace method when

span{p0, . . . , pj} = Kj+1(A, r0)

(r0 = b−Ax0).
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What kind of method Golub had in mind (2)

Error in step j + 1:

x− xj+1 ∈ x− x0 + span{p0, . . . , pj} .

14



What kind of method Golub had in mind (2)

Error in step j + 1:

x− xj+1 ∈ x− x0 + span{p0, . . . , pj} .

CG-like descent method: error is minimized in some given

inner product norm, ‖ · ‖B = 〈·, ·〉1/2B .

14



What kind of method Golub had in mind (2)

Error in step j + 1:

x− xj+1 ∈ x− x0 + span{p0, . . . , pj} .

CG-like descent method: error is minimized in some given

inner product norm, ‖ · ‖B = 〈·, ·〉1/2B .

‖x− xj+1‖B is minimal iff

x− xj+1 ⊥B span{p0, . . . , pj} .

14



What kind of method Golub had in mind (2)

Error in step j + 1:

x− xj+1 ∈ x− x0 + span{p0, . . . , pj} .

CG-like descent method: error is minimized in some given

inner product norm, ‖ · ‖B = 〈·, ·〉1/2B .

‖x− xj+1‖B is minimal iff

x− xj+1 ⊥B span{p0, . . . , pj} .

By construction, this is satisfied iff

αj =
〈x− xj, pj〉B
〈pj , pj〉B

and 〈pj, pi〉B = 0 ,

for i = 0, . . . , j − 1.
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What kind of method Golub had in mind (2)

Error in step j + 1:

x− xj+1 ∈ x− x0 + span{p0, . . . , pj} .

CG-like descent method: error is minimized in some given

inner product norm, ‖ · ‖B = 〈·, ·〉1/2B .

‖x− xj+1‖B is minimal iff

x− xj+1 ⊥B span{p0, . . . , pj} .

By construction, this is satisfied iff

αj =
〈x− xj, pj〉B
〈pj , pj〉B

and 〈pj, pi〉B = 0 ,

for i = 0, . . . , j − 1.

p0, . . . , pj has to be a B-orthogonal basis of Kj+1(A, r0).
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Faber and Manteuffel, 1984

Faber and Manteuffel gave the answer in 1984:
For a general matrix A there exists no short recurrence
for generating orthogonal Krylov subspace bases.

What are the details of this statement?

15



Outline

1 Introduction

2 Formulation of the problem

3 The Faber-Manteuffel theorem

4 Historical remarks

5 Further results of Barth, Manteuffel, Liesen

16



Formulation of the problem
B-inner product

Our goal is to generate a B-orthogonal basis of Kj(A, v).

B ∈ Cn×n, Hermitian positive definite (HPD),

defining the B-inner product,

〈x, y〉B ≡ y
∗
B x .
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Formulation of the problem
B-inner product

Our goal is to generate a B-orthogonal basis of Kj(A, v).

B ∈ Cn×n, Hermitian positive definite (HPD),

defining the B-inner product,

〈x, y〉B ≡ y
∗
B x .

If B 6= I, we can change the basis:

〈x, y〉B = 〈B1/2x,B1/2y〉,

and consider the problem for Â ≡ B
1/2

AB
−1/2 and v̂ ≡ B

1/2v.

Without loss of generality, B = I.
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Formulation of the problem
Input, Notation and Goal

Input data:

A ∈ Cn×n, a nonsingular matrix.

v ∈ Cn, an initial vector.
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Input data:

A ∈ Cn×n, a nonsingular matrix.

v ∈ Cn, an initial vector.

Notation:

dmin(A) . . . the degree of the minimal polynomial of A.

d = d(A, v) . . . the grade of v with respect to A,

K1(A, v) ⊂ . . . ⊂ Kd(A, v) = Kd+1(A, v) = . . . = Kn(A, v) .

Kd(A, v) is invariant under multiplication with A.
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Formulation of the problem
Input, Notation and Goal

Input data:

A ∈ Cn×n, a nonsingular matrix.

v ∈ Cn, an initial vector.

Notation:

dmin(A) . . . the degree of the minimal polynomial of A.

d = d(A, v) . . . the grade of v with respect to A,

K1(A, v) ⊂ . . . ⊂ Kd(A, v) = Kd+1(A, v) = . . . = Kn(A, v) .

Kd(A, v) is invariant under multiplication with A.

Our goal:

Generate an orthogonal basis v1, . . . , vd of Kd(A, v),

1. span{v1, . . . , vj} = Kj(A, v), for j = 1, . . . , d,
2. 〈vi, vj〉 = 0, for i 6= j, i, j = 1, . . . , d.
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Formulation of the problem
Arnoldi’s method

Standard way for generating the orthogonal basis
(no normalization for convenience):

v1 = v ,

v2 = Av1 − h1,1 v1 ,

v3 = Av2 − h1,2 v1 − h2,2 v2 ,

...

vj+1 = Avj −
j∑

i=1

hi,j vi , hi,j =
〈Avj , vi〉

〈vi, vi〉
.

...

vd = Avd−1 −
d−1∑

i=1

hi,d−1 vi .
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Formulation of the problem
Arnoldi’s method - matrix formulation

In matrix notation:

v1 = v ,

A [v1, . . . , vd−1]︸ ︷︷ ︸
≡ Vd−1

= [v1, . . . , vd]︸ ︷︷ ︸
≡ Vd




h1,1 · · · h1,d−1

1
. . .

...
. . . hd−1,d−1

1




︸ ︷︷ ︸
≡ Hd,d−1

,

V
∗

dVd is diagonal , d = dimKn(A, v) .
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Formulation of the problem
Optimal short recurrences

The full recurrence in Arnoldi’s method,

vj+1 = A vj −
j∑

i=1

hi,jvi ,

(j = 1, . . . , d− 1)
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Formulation of the problem
Optimal short recurrences

The full recurrence in Arnoldi’s method,

vj+1 = A vj −
j∑

i=1

hi,jvi ,

(j = 1, . . . , d− 1) is an optimal (s+ 2)-term recurrence when

vj+1 = A vj −
j∑

i=j−s

hi,jvi .

CG, MINRES, SYMMLQ: s = 1 → optimal 3-term recurrence,

vj+1 = A vj − hj,j vn − hj−1,j vj−1 .

Why optimal?

1. Only the previous s+ 1 vectors are required.

2. Only one multiplication with A is performed.
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Formulation of the problem
Optimal short recurrences (matrix formulation)

Nonzero structure of the matrices Hd,d−1:
Optimal (s+ 2)-term recurrence:

s+ 1︷ ︸︸ ︷

A Vd−1 = Vd




• · · · •

•
. . .

. . .
. . .

. . . •

. . .
. . .

...
. . . •
•




︸ ︷︷ ︸
d− 1

Hd,d−1 is (s+ 2)-band Hessenberg,
e.g. 3-band Hessenberg = tridiagonal.
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Formulation of the problem
Range of s

s+ 1︷ ︸︸ ︷

A Vd−1 = Vd




• · · · •

•
. . .

. . .
. . .

. . . •

. . .
. . .

...
. . . •
•




︸ ︷︷ ︸
d− 1

s ≥ 0
a nonnegative
integer.

Practical cases:
s is a small
positive integer.

If
s+ 2 = dmin(A),
the upper part
of Hd,d−1 is full

Interesting cases
0 ≤ s < dmin(A)− 2 .
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Formulation of the problem
Optimal short recurrences (Definition - Liesen and Strakoš, 2008)

A admits an optimal (s+ 2)-term recurrence, if

for any v, Hd,d−1 is at most (s+ 2)-band Hessenberg, and

for at least one v, Hd,d−1 is (s+ 2)-band Hessenberg.

s+ 1︷ ︸︸ ︷

A Vd−1 = Vd




• · · · •

•
. . .

. . .
. . .

. . . •

. . .
. . .

...
. . . •
•




︸ ︷︷ ︸
d− 1
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Formulation of the problem
Basic question

What are sufficient and necessary conditions for A to admit an
optimal (s+ 2)-term recurrence?
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Formulation of the problem
Basic question

What are sufficient and necessary conditions for A to admit an
optimal (s+ 2)-term recurrence?

In other words, how can we characterize matrices A such that for
any v, the Arnoldi’s method applied to A and v generates an
orthogonal basis via short recurrence of length s+ 2.

Example of sufficiency: If A is hermitian, then s = 1 and A admits
an optimal 3-term recurrence.
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A sufficient condition

Hd,d−1 is at most (s+ 2)-band Hessenberg if

0 = hi,j =
〈Avj , vi〉

〈vi, vi〉
=
〈vj ,A∗vi〉

〈vi, vi〉
,

for i < j − s, j = 1, . . . , d− 1 .
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Since vj ⊥ Kj−1(A, v),

it would be sufficient if A
∗vi ∈ Kj−1(A, v),.
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〈vi, vi〉
,

for i < j − s, j = 1, . . . , d− 1 .

Since vj ⊥ Kj−1(A, v),

it would be sufficient if A
∗vi ∈ Kj−1(A, v),.

If A
∗ = ps(A) for a polynomial of degree s, then

A
∗vi = ps(A)qi(A)v ∈ Ki+s(A, v) ⊆ Kj−1(A, v)

for i < j − s.
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A sufficient condition

Hd,d−1 is at most (s+ 2)-band Hessenberg if

0 = hi,j =
〈Avj , vi〉

〈vi, vi〉
=
〈vj ,A∗vi〉

〈vi, vi〉
,

for i < j − s, j = 1, . . . , d− 1 .

Since vj ⊥ Kj−1(A, v),

it would be sufficient if A
∗vi ∈ Kj−1(A, v),.

If A
∗ = ps(A) for a polynomial of degree s, then

A
∗vi = ps(A)qi(A)v ∈ Ki+s(A, v) ⊆ Kj−1(A, v)

for i < j − s.

In other words:
A
∗ = ps(A) =⇒ Hd,d−1 is at most (s+ 2)-band Hessenberg.

27



Normal(s) property

Definition. If A
∗ = ps(A), where ps is a polynomial of the

smallest possible degree s, A is called normal(s).
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smallest possible degree s, A is called normal(s).

A is normal means A
∗
A = AA

∗, or,

A = UΛU
∗, U

∗
U = I , Λ is diagonal ,

see [Elsner and Ikramov, 1997] for equivalent definitions of normality.
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Normal(s) property

Definition. If A
∗ = ps(A), where ps is a polynomial of the

smallest possible degree s, A is called normal(s).

A is normal means A
∗
A = AA

∗, or,

A = UΛU
∗, U

∗
U = I , Λ is diagonal ,

see [Elsner and Ikramov, 1997] for equivalent definitions of normality.

Let A be normal, i.e. A = UΛU
∗ and A

∗ = UΛ
∗
U
∗. Then there

exists the unique interpolating polynomial p such that

p(λi) = λi, i = 1, . . . , n, i.e. p(Λ) = Λ
∗ .

p is of degree at most dmin(A)− 1. Therefore

p(A) = Up(Λ)U∗ = UΛ
∗
U
∗ = A

∗.

“normal(s)” can be understood as a grade of normality.
28



The Faber-Manteuffel theorem

Theorem. [Faber and Manteuffel, 1984], [Liesen and Strakoš, 2008]

Let A be a nonsingular matrix with minimal polynomial degree
dmin(A). Let s be a nonnegative integer, s+ 2 < dmin(A):

A admits an optimal (s+ 2)-term recurrence

if and only if

A is normal(s).
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The Faber-Manteuffel theorem

Theorem. [Faber and Manteuffel, 1984], [Liesen and Strakoš, 2008]

Let A be a nonsingular matrix with minimal polynomial degree
dmin(A). Let s be a nonnegative integer, s+ 2 < dmin(A):

A admits an optimal (s+ 2)-term recurrence

if and only if

A is normal(s).

Sufficiency is rather straightforward, necessity is not. Key
words from the proof of necessity in (Faber and Manteuffel,
1984) include: “continuous function” (analysis), “closed set of
smaller dimension” (topology), “wedge product” (multilinear
algebra).
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The Faber-Manteuffel theorem
Why is necessity so hard?

Optimal (s+ 2)-term recurrence:

s+ 1︷ ︸︸ ︷

A Vd−1 = Vd




• · · · •

•
. . .

. . .
. . .

. . . •

. . .
. . .

...
. . . •
•




︸ ︷︷ ︸
d− 1

Prove something about the linear operator A, without complete
knowledge of the structure of its matrix representation.
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The Faber-Manteuffel theorem
Why is necessity so hard?

Since Kd(A, v) is invariant, Avd ∈ Kd(A, v) and

Avd =
d∑

i=1

hid vi.

s+ 1︷ ︸︸ ︷

A Vd = Vd




• · · · • •

•
. . .

. . .
...

. . .
. . . • •
. . .

. . .
...

...
. . . • •
• •




︸ ︷︷ ︸
d− 1
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The Faber-Manteuffel theorem
The role of the matrix B defining scalar product

Let B ∈ Cn×n be a Hermitian positive definite (HPD), defining
the B-inner product, 〈x, y〉B ≡ y

∗
Bx.
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The Faber-Manteuffel theorem
The role of the matrix B defining scalar product

Let B ∈ Cn×n be a Hermitian positive definite (HPD), defining
the B-inner product, 〈x, y〉B ≡ y

∗
Bx.

B-normal(s) matrices: there exist a polynomial ps of the smallest
possible degree s such that

A
+ ≡ B

−1
A
∗
B = ps(A),

where A
+ the B-adjoint of A.
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The Faber-Manteuffel theorem
The role of the matrix B defining scalar product

Let B ∈ Cn×n be a Hermitian positive definite (HPD), defining
the B-inner product, 〈x, y〉B ≡ y

∗
Bx.

B-normal(s) matrices: there exist a polynomial ps of the smallest
possible degree s such that

A
+ ≡ B

−1
A
∗
B = ps(A),

where A
+ the B-adjoint of A.

Theorem. [Faber and Manteuffel, 1984], [Liesen and Strakoš, 2008]

For A, B as above, and an integer s ≥ 0 with s+ 2 < dmin(A):

A admits for the given B an optimal (s+ 2)-term recurrence
if and only if A is B-normal(s).
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The Faber-Manteuffel theorem
Characterization of B-normal(s) matrices

Theorem. [Liesen and Strakoš, 2008]

A is B-normal(s) if and only if

1. A is diagonalizable (A = WΛW
−1), and

2. B = (WDW
∗)−1, where D is HPD and block diagonal with

blocks corresponding to those of Λ, and

3. Λ
∗ = ps(Λ) for a polynomial ps of (smallest possible) degree s.
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The Faber-Manteuffel theorem
Characterization of B-normal(s) matrices

Theorem. [Liesen and Strakoš, 2008]

A is B-normal(s) if and only if

1. A is diagonalizable (A = WΛW
−1), and

2. B = (WDW
∗)−1, where D is HPD and block diagonal with

blocks corresponding to those of Λ, and

3. Λ
∗ = ps(Λ) for a polynomial ps of (smallest possible) degree s.

s = 1: If A is diagonalizable and Λ
∗ = p1(Λ) ,

then there exists B such that A is B-normal(1).
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The Faber-Manteuffel theorem
When is a matrix B-normal(s)?

Λ
∗ = ps(Λ) .

Theorem. [Faber and Manteuffel, 1984], [Khavinson and Świa̧tek, 2003]

1. s = 1 if and only if the eigenvalues of A lie on a line in C.

2. If the eigenvalues of A are not on a line, then
s ≥ dmin(A)/3 + 2.
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The Faber-Manteuffel theorem
When is a matrix B-normal(s)?

Λ
∗ = ps(Λ) .

Theorem. [Faber and Manteuffel, 1984], [Khavinson and Świa̧tek, 2003]

1. s = 1 if and only if the eigenvalues of A lie on a line in C.

2. If the eigenvalues of A are not on a line, then
s ≥ dmin(A)/3 + 2.

This results is connected with the question: How many roots can
have the harmonic polynomial∗ ps(z)− z?

Answer [Khavinson and Świa̧tek, 2003]: with s > 1 it may have at most

3s− 2 roots.

∗ A harmonic polynomial is a function of the form p(z) + q(z), where p

and q are polynomials.
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The Faber-Manteuffel theorem
Example - the most interesting cases

The previous results is very pessimistic:

Except for a few unimportant cases, the length of the optimal
recurrence is either 3 or dmin(A)− 1.

The most interesting cases are

1. The Hermitian case (A = A
∗)

A
∗ = p1(A) for p1(z) = z .

2. The skew-Hermitian case (A = −A
∗):

A
∗ = p1(A) for p1(z) = −z .
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The Faber-Manteuffel theorem
Example - the role of the matrix B

We can try to find a HPD matrix B ∈ Cn×n such that

B
−1

A
∗
B = ±A.

Example: Saddle point matrix:

A =

[
A1 AT2
−A2 A3

]
,

where A1 = AT1 > 0, A3 = AT3 ≥ 0 has full rank k ≤ m. Define

B = B(γ) =

[
A1 − γIm AT2
A2 γIk −A3

]
,

This matrix satisfies B
−1

A
∗
B = A. How to choose γ such that

B(γ) is positive definite? Conditions can be found in
[Fischer et al., 1998], [Benzi and Simoncini, 2006], [Liesen and Parlett, 2007].
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Summary
Generating of B-orthogonal basis of Kk(A, v) via optimal short recurrences

Arnoldi-type recurrence
(s + 2)-term

m

A is B-normal(s)
A

+ = p(A)

l

the only interesting case
is s = 1,
collinear eigenvalues
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2 Formulation of the problem

3 The Faber-Manteuffel theorem

4 Historical remarks

5 Further results of Barth, Manteuffel, Liesen
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The Faber-Manteuffel theorem
Historical remarks

1981 Golub posed the question

1984 V. Faber and T. Manteuffel, [Necessary and sufficient conditions for the

existence of a conjugate gradient method, SIAM J. Numer. Anal. 21 , 352-362].

1981 V. V. Voevodin and E. E. Tyrtyshnikov, [On Generalization of

Conjugate Direction Methods, Numerical Methods of Algebra (Chislennye

Metody Algebry), Moscow State University Press, 3-9].

- Axelsson (1987), Greenbaum (1997) - sufficiency part

2005 J. Liesen and P. E. Saylor, [Orthogonal Hessenberg reduction and

orthogonal Krylov subspace bases, SIAM J. Numer. Anal., 2005 , 42,

2148-2158].

2008 J. Liesen and Z. Strakoš, [On optimal short recurrences for generating

orthogonal Krylov subspace bases, to appear in SIAM Review, 2008].

2008 V. Faber, J. Liesen and P. Tichý, [The Faber-Manteuffel Theorem for

Linear Operators, to appear in SIAM Journal on Numerical Analysis, 2008].
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Faber and Manteuffel, 1984
Necessary and sufficient conditions for the existence of a conjugate gradient method

Their definition of “A admits an optimal (s+ 2)-term
recurrence” (in the paper called A ∈ CG(s+ 2))
is not unique in the following sense:

if A ∈ CG(s+ 2), then also A ∈ CG(s+ 3).
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Their definition of “A admits an optimal (s+ 2)-term
recurrence” (in the paper called A ∈ CG(s+ 2))
is not unique in the following sense:

if A ∈ CG(s+ 2), then also A ∈ CG(s+ 3).

The original version of the Faber-Manteuffel theorem:

A ∈ CG(s+ 2) if and only if
s+ 2 ≥ dmin(A) or A is normal(k) with k ≤ s.
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Faber and Manteuffel, 1984
Necessary and sufficient conditions for the existence of a conjugate gradient method

Their definition of “A admits an optimal (s+ 2)-term
recurrence” (in the paper called A ∈ CG(s+ 2))
is not unique in the following sense:

if A ∈ CG(s+ 2), then also A ∈ CG(s+ 3).

The original version of the Faber-Manteuffel theorem:

A ∈ CG(s+ 2) if and only if
s+ 2 ≥ dmin(A) or A is normal(k) with k ≤ s.

This “non uniqueness” in the definition complicated
understanding the theorem and led to some
misunderstandings in later papers.
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V. V. Voevodin and E. E. Tyrtyshnikov, 1981
On Generalization of Conjugate Direction Methods

A similar result was announced by V.V. Voevodin,

V. V. Voevodin, [The problem of a non-selfadjoint generalization of the

conjugate gradient method has been closed, U.S.S.R. Comput. Math. and

Math. Phys., 1983, 23, 143–144].

Its proof (difficult to understand) appeared in

V. V. Voevodin and E. E. Tyrtyshnikov, [On Generalization of

Conjugate Direction Methods, Numerical Methods of Algebra (Chislennye

Metody Algebry), Moscow State University Press, 3-9].

Two big differences:

Assumptions: A is nonderogatory (dmin(A) = n),

Characterization of necessity only for 3s+ 2 ≤ n.

Incorrect understanding of (s+ 2)-term recurrence.
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V. V. Voevodin and E. E. Tyrtyshnikov, 1981
On Generalization of Conjugate Direction Methods

Faber and Manteuffel: A admits (s + 2)-term recurrences if

s+ 1︷ ︸︸ ︷

A Vd = Vd




• · · · • •

•
. . .

. . .
...

. . .
. . . • •
. . .

. . .
...

...
. . . • •
• •




︸ ︷︷ ︸
d− 1
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V. V. Voevodin and E. E. Tyrtyshnikov, 1981
On Generalization of Conjugate Direction Methods

Voevodin and Tyrtyshnikov: A admits (s + 2)-term recurrences if

s+ 1︷ ︸︸ ︷

A Vd = Vd




• · · · •

•
. . .

. . .
. . .

. . . •

. . .
. . .

... •
. . . •

...
• •




︸ ︷︷ ︸
d− 1

i.e. A is orthogonally reduced to (s+ 2)-band Hessenberg form.
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J. Liesen and P. E. Saylor, 2005
Orthogonal Hessenberg reduction and orthogonal Krylov subspace bases

They study necessary and sufficient conditions that A can be
B-orthogonally reduced to (s + 2)-band upper Hessenberg form.

A similar result to Voevodin and Tyrtyshnikov.

The authors explain the difference between
reducibility to (s+ 2)-band upper Hessenberg form
and (s+ 2)-term recurrence.

Assumption: A is nonderogatory.

Complete characterization of necessity
(not only for 3s + 2 ≤ n).
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J. Liesen and Z. Strakoš, 2008
On optimal short recurrences for generating orthogonal Krylov subspace bases

Completely reworked the theory of short recurrences for
generating orthogonal Krylov subspace bases; new,
mathematically rigorous definitions of all important concepts
have been given,

unique definition of “A admits an optimal (s+ 2)-term
recurrence”,

a stronger version of the Faber-Manteuffel theorem,

characterization of the B-normal(s) property,

it is desirable to find an alternative, and possibly simpler proof.

Moreover ... (see the next slide)
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J. Liesen and Z. Strakoš, 2008
On optimal short recurrences for generating orthogonal Krylov subspace bases

For simplicity assume that B = I.

Theorem. Let s be a nonnegative integer, s+ 2 < dmin(A). Then
the following three assertions are equivalent:

1. A admits an optimal (s+ 2)-term recurrence.

2. A is normal(s).

3. A is orthogonally reducible to (s+ 2)-band Hessenberg form.
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V. Faber, J. Liesen and P. Tichý., 2008
The Faber-Manteuffel Theorem for Linear Operators

Motivated by the paper [J. Liesen and Z. Strakoš, 2008],

in terms of linear operators on finite dimensional Hilbert
spaces,

two new proofs of the Faber-Manteuffel theorem,

use more elementary tools,

first proof - improved version of the Faber-Manteuffel proof,

second proof - completely new proof based on orthogonal
transformations of upper Hessenberg matrices.
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Idea of the second proof (1)
V. Faber, J. Liesen and P. Tichý, 2008

(for simplicity, we omit indices by Vd and Hd,d)

Let A admits an optimal (s+ 2)-term recurrence

A V = V H, V
∗
V = I .

Up to the last column, H is (s+ 2)-band Hessenberg.

47



Idea of the second proof (1)
V. Faber, J. Liesen and P. Tichý, 2008

(for simplicity, we omit indices by Vd and Hd,d)

Let A admits an optimal (s+ 2)-term recurrence

A V = V H, V
∗
V = I .

Up to the last column, H is (s+ 2)-band Hessenberg.
Let G be a d× d unitary matrix, G

∗
G = I. Then

A (VG)︸ ︷︷ ︸
W

= (VG)︸ ︷︷ ︸
W

(G∗HG)︸ ︷︷ ︸
H̃

.

W is unitary.
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Idea of the second proof (1)
V. Faber, J. Liesen and P. Tichý, 2008

(for simplicity, we omit indices by Vd and Hd,d)

Let A admits an optimal (s+ 2)-term recurrence

A V = V H, V
∗
V = I .

Up to the last column, H is (s+ 2)-band Hessenberg.
Let G be a d× d unitary matrix, G

∗
G = I. Then

A (VG)︸ ︷︷ ︸
W

= (VG)︸ ︷︷ ︸
W

(G∗HG)︸ ︷︷ ︸
H̃

.

W is unitary. If G is chosen such that H̃ is again unreduced upper
Hessenberg matrix, then

A W = W H̃ .

represents result of the Arnoldi’s method applied to A and w1.
Up to the last column, H̃ has to be (s + 2)-band Hessenberg.
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Idea of the second proof (2)
V. Faber, J. Liesen and P. Tichý, 2008

Proof by contradiction. Let A admits an optimal (s+ 2)-term
recurrence and A is not normal(s).

Then there exists a starting vector v such that h1,d 6= 0.

A V = V




• · · · • •
•

. . .
. . .

...
. . .

. . . • •

. . .
. . .

...
...

. . . • •
• •



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Idea of the second proof (2)
V. Faber, J. Liesen and P. Tichý, 2008

Proof by contradiction. Let A admits an optimal (s+ 2)-term
recurrence and A is not normal(s).

Then there exists a starting vector v such that h1,d 6= 0.

A (VG) = (VG) G
∗




• · · · • •
•

. . .
. . .

...
. . .

. . . • •

. . .
. . .

...
...

. . . • •
• •




G
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Idea of the second proof (2)
V. Faber, J. Liesen and P. Tichý, 2008

Proof by contradiction. Let A admits an optimal (s+ 2)-term
recurrence and A is not normal(s).

Then there exists a starting vector v such that h1,d 6= 0.

A (VG) = (VG) G
∗




• · · · • •
•

. . .
. . .

...
. . .

. . . • •

. . .
. . .

...
...

. . . • •
• •




G

Find unitary G (a product of Givens rotations) such that H̃ is
unreduced upper Hessenberg, but H̃ is not (s+ 2)-band (up to the
last column) - contradiction.
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Unitary matrices
Example

Consider a unitary matrix A with different eigenvalues.

A is normal =⇒ A
∗ is a polynomial in A

A
∗ = p(A) .
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Unitary matrices
Example

Consider a unitary matrix A with different eigenvalues.

A is normal =⇒ A
∗ is a polynomial in A

A
∗ = p(A) .

The smallest degree of such polynomial is n− 1
(n is the size of the matrix), i.e. A is normal(n − 1)
[Liesen, 2007].

50



Unitary matrices
Example

Consider a unitary matrix A with different eigenvalues.

A is normal =⇒ A
∗ is a polynomial in A

A
∗ = p(A) .

The smallest degree of such polynomial is n− 1
(n is the size of the matrix), i.e. A is normal(n − 1)
[Liesen, 2007].

Using Faber-Manteuffel theorem: generating orthogonal
Krylov subspace bases for unitary matrices via the Arnoldi
process would require a full recurrence.
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Unitary matrices
Isometric Arnoldi process

Gragg (1982) discovered the isometric Arnoldi process:
Orthogonal Krylov subspace bases for unitary A can be
generated by a 3-term recurrence of the form

vj+1 = βj,jAvj − βj−1,jAvj−1 − σj,jvj−1

(stable implementation - two coupled 2-term recurrences).

Used for solving unitary eigenvalue problems and linear
systems with shifted unitary matrices [Jagels and Reichel, 1994].

This short recurrence is not of the “Arnoldi-type”.
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Generalization: (ℓ,m)-recursion
Barth and Manteuffel, 2000

Generate a B-orthogonal basis via the (ℓ,m)-recursion of the form

(1) vj+1 =
j∑

i=j−m

βi,jA vi −
j∑

i=j−ℓ

σi,j vi ,

(ℓ,m) = (0, 1) if A is unitary,
(ℓ,m) = (1, 1) if A is shifted unitary.
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Generalization: (ℓ,m)-recursion
Barth and Manteuffel, 2000

Generate a B-orthogonal basis via the (ℓ,m)-recursion of the form

(1) vj+1 =
j∑

i=j−m

βi,jA vi −
j∑

i=j−ℓ

σi,j vi ,

(ℓ,m) = (0, 1) if A is unitary,
(ℓ,m) = (1, 1) if A is shifted unitary.

A sufficient condition [Barth and Manteuffel, 2000]:
A

+ = B
−1

A
∗
B is a rational function in A,

A
+ = r(A) ,

where r = p/q, p and q have degrees ℓ and m.

Example: Unitary matrices, A
∗ = A

−1, i.e. r = 1/z.

Matrices A such that A
+ = r(A) are called B-normal(ℓ,m).
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Degree of a rational function, degrees of normality
normal degree of A, McMillan degree of A

Definition. McMillan degree of a rational function r = p/q where
p and q are relatively prime is defined as

deg r = max{deg p,deg q}.
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Degree of a rational function, degrees of normality
normal degree of A, McMillan degree of A

Definition. McMillan degree of a rational function r = p/q where
p and q are relatively prime is defined as

deg r = max{deg p,deg q}.

Definition. Let A be a diagonalizable matrix.

dp(A) . . . normal degree of A

the smallest degree of a polynomial p that satisfies

p(λ) = λ for all eigenvalues λ of A .
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Degree of a rational function, degrees of normality
normal degree of A, McMillan degree of A

Definition. McMillan degree of a rational function r = p/q where
p and q are relatively prime is defined as

deg r = max{deg p,deg q}.

Definition. Let A be a diagonalizable matrix.

dp(A) . . . normal degree of A

the smallest degree of a polynomial p that satisfies

p(λ) = λ for all eigenvalues λ of A .

dr(A) . . . McMillan degree of A

the smallest McMillan degree of a rational function r that satisfies

r(λ) = λ for all eigenvalues λ of A .
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When is A
+ a low degree rational function in A ?

Collinear or concyclic eigenvalues

Are there any other matrices A whose adjoint A
+ (for some B) is

a low degree rational function in A?

Application of results from rational interpolation theory:

Theorem. [Liesen, 2007] Let A be a diagonalizable matrix with
k ≥ 4 distinct eigenvalues.

If the eigenvalues are collinear, then dr(A) = dp(A) = 1.

If the eigenvalues are concyclic, then dr(A) = 1,
dp(A) = k − 1.

In all other cases dr(A) > k
5
, dp(A) > k

3
.
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When is A
+ a low degree rational function in A ?

Collinear or concyclic eigenvalues

Are there any other matrices A whose adjoint A
+ (for some B) is

a low degree rational function in A?

Application of results from rational interpolation theory:

Theorem. [Liesen, 2007] Let A be a diagonalizable matrix with
k ≥ 4 distinct eigenvalues.

If the eigenvalues are collinear, then dr(A) = dp(A) = 1.

If the eigenvalues are concyclic, then dr(A) = 1,
dp(A) = k − 1.

In all other cases dr(A) > k
5
, dp(A) > k

3
.

In other words, there is a HPD matrix B such that A
+ = r(A)

with small deg r if and only if either dmin(A) is small,
or A is diagonalizable with collinear or concyclic eigenvalues.
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Summary
Generating of B-orthogonal basis of Kk(A, v) via short recurrences

Arnoldi-type recurrence
(s + 2)-term

m

A is B-normal(s)
A

+ = p(A)

l

the only interesting case
is s = 1,
collinear eigenvalues

Barth-Manteuffel
(ℓ,m)-recursion

⇑

A is B-normal(ℓ,m)
A

+ = r(A)

l

the only interesting cases
are (0, 1) or (1, 1)
concyclic eigenvalues
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Summary
Practical usage

Given A.

If eigenvalues of A are collinear or concyclic, then there exists
a HPD matrix B such that A admits short recurrences for
generating a B-orthogonal basis.

Find a preconditioner P so that PA is B-normal(1)
(B-normal(0, 1), B-normal(1, 1)) for some B,
e.g. [Concus and Golub, 1978], [Widlund, 1978].
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Further Generalization
Generalized B-normal(ℓ,m) matrices

T. Barth and T. Manteuffel, [Multiple recursion conjugate gradient

algorithms. I. Sufficient conditions. SIAM J. Matrix Anal. Appl., 2000 , 21 ,

768-79].

Generalized B-normal(ℓ,m) matrices A

are characterized through the existence of polynomials pℓ(λ) and
qm(λ) of degree ℓ and m, respectively, such that

Q(A) = A
+qm(A)− pℓ(A),

where Q(A) is a matrix of a low rank s.
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Further Generalization
Generalized B-normal(ℓ,m) matrices

T. Barth and T. Manteuffel, [Multiple recursion conjugate gradient

algorithms. I. Sufficient conditions. SIAM J. Matrix Anal. Appl., 2000 , 21 ,

768-79].

Generalized B-normal(ℓ,m) matrices A

are characterized through the existence of polynomials pℓ(λ) and
qm(λ) of degree ℓ and m, respectively, such that

Q(A) = A
+qm(A)− pℓ(A),

where Q(A) is a matrix of a low rank s.

[Barth and Manteuffel, 2000]: It is possible to construct a B-orthogonal
basis of Kj(A, v) using short multiple recursion.
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Further Generalization
Generalized B-normal(ℓ,m) matrices

B. Beckermann and L. Reichel, [The Arnoldi process and GMRES for

nearly symmetric matrices, to appear in SIAM J. Matrix Anal. Appl., 2008].

Computation of an orthogonal basis of the Krylov space Kj(A, v),
where A is a matrix with a skew-symmetric part of low rank,

A−A
∗ =

s∑

k=1

fkg
∗

k, fk, gk ∈ R
n, s≪ n .
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Further Generalization
Generalized B-normal(ℓ,m) matrices

B. Beckermann and L. Reichel, [The Arnoldi process and GMRES for

nearly symmetric matrices, to appear in SIAM J. Matrix Anal. Appl., 2008].

Computation of an orthogonal basis of the Krylov space Kj(A, v),
where A is a matrix with a skew-symmetric part of low rank,

A−A
∗ =

s∑

k=1

fkg
∗

k, fk, gk ∈ R
n, s≪ n .

Efficient implementation of a GMRES-like algorithm
- “Progressive GMRES” .

Application: Path following methods (Bratu problem) .
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Conclusions

We considered two kinds of recurrences for generating a
B-orthogonal basis of Krylov subspaces.
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Conclusions

We considered two kinds of recurrences for generating a
B-orthogonal basis of Krylov subspaces.

We characterized matrices for which these recurrences are
short (B-normal(s), B-normal(ℓ,m) matrices).

Practical cases: Eigenvalues of A are collinear or concyclic,
s = 1, (ℓ,m) = (0, 1), (ℓ,m) = (1, 1).
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Conclusions

We considered two kinds of recurrences for generating a
B-orthogonal basis of Krylov subspaces.

We characterized matrices for which these recurrences are
short (B-normal(s), B-normal(ℓ,m) matrices).

Practical cases: Eigenvalues of A are collinear or concyclic,
s = 1, (ℓ,m) = (0, 1), (ℓ,m) = (1, 1).

It is possible to generate a B-orthogonal basis via short
recurrences for generalized B-normal(ℓ,m) matrices.
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Related papers

J. Liesen and Z. Strakoš, [On optimal short recurrences for generating

orthogonal Krylov subspace bases, to appear in SIAM Review, 2008].
Completely reworked the theory of short recurrences for generating

orthogonal Krylov subspace bases

V. Faber, J. Liesen and P. Tichý, [The Faber-Manteuffel Theorem for

Linear Operators, to appear in SIAM Journal on Numerical Analysis, 2008].
New proofs of the fundamental theorem of Faber and Manteuffel

J. Liesen, [When is the adjoint of a matrix a low degree rational function in

the matrix? SIAM J. Matrix Anal. Appl., 2007 , 29 , 1171-1180].
A nice application of results from rational approximation theory.

More details can be found at

http://www.math.tu-berlin.de/˜liesen

http://www.cs.cas.cz/˜strakos

http://www.cs.cas.cz/˜tichy
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