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Ideal Arnoldi approximation problem

min
p∈Mm+1

‖ p(A) ‖ = min
p∈Pm
‖A
m+1 − p(A) ‖ ,

whereMm+1 is the class of monic polynomials of degree m+ 1,
Pm is the class of polynomials of degree at most m.
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Ideal Arnoldi approximation problem

min
p∈Mm+1

‖ p(A) ‖ = min
p∈Pm
‖A
m+1 − p(A) ‖ ,

whereMm+1 is the class of monic polynomials of degree m+ 1,
Pm is the class of polynomials of degree at most m.

Introduced in [Greenbaum and Trefethen, 1994], paper contains
uniqueness result (→ story of the proof).

The unique polynomial that solves the problem is called
the (m+ 1)st ideal Arnoldi polynomial of A,
or the (m+ 1)st Chebyshev polynomial of A .

Some work on these polynomials in [Toh PhD thesis, 1996],
[Toh and Trefethen, 1998], [Trefethen and Embree, 2005] .
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Matrix function best approximation problem

We consider the matrix approximation problem

min
p∈Pm
‖ f(A)− p(A) ‖

‖ · ‖ is the spectral norm (matrix 2-norm), A ∈ Cn×n, f is analytic
in neighborhood of A’s spectrum.
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Matrix function best approximation problem

We consider the matrix approximation problem

min
p∈Pm
‖ f(A)− p(A) ‖

‖ · ‖ is the spectral norm (matrix 2-norm), A ∈ Cn×n, f is analytic
in neighborhood of A’s spectrum.

Well known: f(A) = pf (A) for a polynomial pf depending on
values and possibly derivatives of f on A’s spectrum.

Without loss of generality we assume that f is a given polynomial.
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Matrix function best approximation problem

We consider the matrix approximation problem

min
p∈Pm
‖ f(A)− p(A) ‖

‖ · ‖ is the spectral norm (matrix 2-norm), A ∈ Cn×n, f is analytic
in neighborhood of A’s spectrum.

Well known: f(A) = pf (A) for a polynomial pf depending on
values and possibly derivatives of f on A’s spectrum.

Without loss of generality we assume that f is a given polynomial.

Does this problem have a unique solution p∗ ∈ Pm?
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General matrix approximation problems

Given

m linearly independent matrices A1, . . . ,Am ∈ C
n×n,

A ≡ span {A1, . . . ,Am},

B ∈ C
n×n\A,

‖ · ‖ is a matrix norm.

Consider the best approximation problem

min
M∈A
‖B−M ‖ .
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General matrix approximation problems

Given

m linearly independent matrices A1, . . . ,Am ∈ C
n×n,

A ≡ span {A1, . . . ,Am},

B ∈ C
n×n\A,

‖ · ‖ is a matrix norm.

Consider the best approximation problem

min
M∈A
‖B−M ‖ .

This problem has a unique solution if ‖ · ‖ is strictly convex.

[see, e.g., Sreedharan, 1973]
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Strictly convex norms

The norm ‖ · ‖ is strictly convex if for all X, Y,

‖X‖ = ‖Y‖ = 1 , ‖X + Y‖ = 2 ⇒ X = Y .
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Strictly convex norms

The norm ‖ · ‖ is strictly convex if for all X, Y,

‖X‖ = ‖Y‖ = 1 , ‖X + Y‖ = 2 ⇒ X = Y .

Which matrix norms are strictly convex?

Let σ1 ≥ σ2 ≥ · · · ≥ σn be singular values of X and 1 ≤ p ≤ ∞.

The cp-norm: ‖X‖p ≡

(
n∑

i=1

σ
p
i

)1/p

.

p = 2 . . . Frobenius norm,

p =∞ . . . spectral norm, matrix 2-norm, ‖X‖∞ = σ1,

p = 1 . . . trace (nuclear) norm.
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Strictly convex norms

The norm ‖ · ‖ is strictly convex if for all X, Y,

‖X‖ = ‖Y‖ = 1 , ‖X + Y‖ = 2 ⇒ X = Y .

Which matrix norms are strictly convex?

Let σ1 ≥ σ2 ≥ · · · ≥ σn be singular values of X and 1 ≤ p ≤ ∞.

The cp-norm: ‖X‖p ≡

(
n∑

i=1

σ
p
i

)1/p

.

p = 2 . . . Frobenius norm,

p =∞ . . . spectral norm, matrix 2-norm, ‖X‖∞ = σ1,

p = 1 . . . trace (nuclear) norm.

Theorem. If 1 < p <∞ then the cp-norm is strictly convex.
[see, e.g., Ziȩtak, 1988]
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Spectral norm (matrix 2-norm)

A useful matrix norm in many applications: spectral norm

‖X‖ ≡ σ1 .
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Spectral norm (matrix 2-norm)

A useful matrix norm in many applications: spectral norm

‖X‖ ≡ σ1 .

This norm is not strictly convex:

X =

[
I

ε

]
, Y =

[
I

δ

]
, ε, δ ∈ 〈0, 1〉 .

Then we have, for each ε, δ ∈ 〈0, 1〉,

‖X‖ = ‖Y‖ = 1 and ‖X + Y‖ = 2

but if ε 6= δ then X 6= Y.
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Spectral norm (matrix 2-norm)

A useful matrix norm in many applications: spectral norm

‖X‖ ≡ σ1 .

This norm is not strictly convex:

X =

[
I

ε

]
, Y =

[
I

δ

]
, ε, δ ∈ 〈0, 1〉 .

Then we have, for each ε, δ ∈ 〈0, 1〉,

‖X‖ = ‖Y‖ = 1 and ‖X + Y‖ = 2

but if ε 6= δ then X 6= Y.

Consequently: Best approximation problems in the spectral norm
are not guaranteed to have a unique solution.
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Matrix approximation problems in spectral norm

min
M∈A
‖B−M ‖ = ‖B−A∗ ‖

A∗ ∈ A achieving the minimum is called a spectral approximation
of B from the subspace A.

Open question: When does this problem have a unique solution?
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A∗ ∈ A achieving the minimum is called a spectral approximation
of B from the subspace A.

Open question: When does this problem have a unique solution?

Ziȩtak’s sufficient condition

Theorem [Ziȩtak, 1993]. If the residual matrix B−A∗ has an n-fold
maximal singular value, then the spectral approximation A∗ of B

from the subspace A is unique.
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Matrix approximation problems in spectral norm

min
M∈A
‖B−M ‖ = ‖B−A∗ ‖

A∗ ∈ A achieving the minimum is called a spectral approximation
of B from the subspace A.

Open question: When does this problem have a unique solution?

Ziȩtak’s sufficient condition

Theorem [Ziȩtak, 1993]. If the residual matrix B−A∗ has an n-fold
maximal singular value, then the spectral approximation A∗ of B

from the subspace A is unique.

Is this sufficient condition satisfied, e.g., for the ideal Arnoldi
approximation problem?
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General characterization of spectral approximations

General characterization by [Lau and Riha, 1981] and [Ziȩtak, 1993, 1996]

→ based on the Singer’s theorem [Singer, 1970].
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General characterization of spectral approximations

General characterization by [Lau and Riha, 1981] and [Ziȩtak, 1993, 1996]

→ based on the Singer’s theorem [Singer, 1970].

Define ||| · ||| (trace norm, nuclear norm, c1-norm) and 〈·, ·〉 by

|||X||| = σ1 + · · ·+ σn , 〈Z,X〉 ≡ tr(Z∗X) .

10



General characterization of spectral approximations

General characterization by [Lau and Riha, 1981] and [Ziȩtak, 1993, 1996]

→ based on the Singer’s theorem [Singer, 1970].

Define ||| · ||| (trace norm, nuclear norm, c1-norm) and 〈·, ·〉 by

|||X||| = σ1 + · · ·+ σn , 〈Z,X〉 ≡ tr(Z∗X) .

Characterization: [Ziȩtak, 1996] A∗ ∈ A is a spectral approximation
of B from the subspace A iff there exists Z ∈ C

n×n, s.t.

|||Z ||| = 1, 〈Z,X〉 = 0, ∀X ∈ A ,

and
Re〈Z,B−A∗〉 = ‖B−A∗‖ .
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Chebyshev polynomials of Jordan blocks

Theorem. Let Jλ be the n× n Jordan block. Consider the ideal
Arnoldi approximation problem

min
p∈Mm

‖ p(Jλ) ‖ = min
M∈A

‖B−M ‖ ,

where B = J
m
λ , A = span {I,Jλ, . . . ,J

m−1
λ }. The minimum is

attained by the polynomial p∗ = (z − λ)m [Liesen and T., 2008].
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Theorem. Let Jλ be the n× n Jordan block. Consider the ideal
Arnoldi approximation problem

min
p∈Mm

‖ p(Jλ) ‖ = min
M∈A

‖B−M ‖ ,

where B = J
m
λ , A = span {I,Jλ, . . . ,J

m−1
λ }. The minimum is

attained by the polynomial p∗ = (z − λ)m [Liesen and T., 2008].

Proof. For p = (z − λ)m , the residual matrix B−M is given by

B−M = p(Jλ) = (Jλ − λI)m = J
m
0 .
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Chebyshev polynomials of Jordan blocks

Theorem. Let Jλ be the n× n Jordan block. Consider the ideal
Arnoldi approximation problem

min
p∈Mm

‖ p(Jλ) ‖ = min
M∈A

‖B−M ‖ ,

where B = J
m
λ , A = span {I,Jλ, . . . ,J

m−1
λ }. The minimum is

attained by the polynomial p∗ = (z − λ)m [Liesen and T., 2008].

Proof. For p = (z − λ)m , the residual matrix B−M is given by

B−M = p(Jλ) = (Jλ − λI)m = J
m
0 .

Define Z ≡ e1e
T
m+1. It holds that

|||Z||| = 1, 〈Z,Jkλ〉 = 0, k = 0, . . . ,m− 1

and

〈Z,B−M〉 = 〈Z,Jm0 〉 = 1 = ‖B−M‖
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Chebyshev polynomials of Jordan blocks

Theorem. Let Jλ be the n× n Jordan block. Consider the ideal
Arnoldi approximation problem

min
p∈Mm

‖ p(Jλ) ‖ = min
M∈A

‖B−M ‖ ,

where B = J
m
λ , A = span {I,Jλ, . . . ,J

m−1
λ }. The minimum is

attained by the polynomial p∗ = (z − λ)m [Liesen and T., 2008].

Proof. For p = (z − λ)m , the residual matrix B−M is given by

B−M = p(Jλ) = (Jλ − λI)m = J
m
0 .

Define Z ≡ e1e
T
m+1. It holds that

|||Z||| = 1, 〈Z,Jkλ〉 = 0, k = 0, . . . ,m− 1

and

〈Z,B−M〉 = 〈Z,Jm0 〉 = 1 = ‖B−M‖ ⇒ M = A∗.
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Ziȩtak’s sufficient condition

Theorem [Ziȩtak, 1993]. If the residual matrix B−A∗ has an n-fold
maximal singular value, then the spectral approximation A∗ of B

from the subspace A is unique.

For the ideal Arnoldi approximation problem and the Jordan block
Jλ, we have shown that

B−A∗ = J
m
0 .

One is (n−m)-fold maximal singular value of B−A∗,
zero is m-fold singular value of B−A∗.
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Ziȩtak’s sufficient condition

Theorem [Ziȩtak, 1993]. If the residual matrix B−A∗ has an n-fold
maximal singular value, then the spectral approximation A∗ of B

from the subspace A is unique.

For the ideal Arnoldi approximation problem and the Jordan block
Jλ, we have shown that

B−A∗ = J
m
0 .

One is (n−m)-fold maximal singular value of B−A∗,
zero is m-fold singular value of B−A∗.

The spectral approximation is unique [Greenbaum and Trefethen. 1994],
but, apparently, Ziȩtak’s sufficient condition is not satisfied!
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The problem and known results

min
p∈Pm
‖ f(A)− p(A) ‖ .

where ‖ · ‖ is the spectral norm and f is a given polynomial.
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The problem and known results

min
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‖ f(A)− p(A) ‖ .

where ‖ · ‖ is the spectral norm and f is a given polynomial.

Known results

If A is normal, the problem reduces to the well studied scalar
approximation problem on the spectrum of A,

min
p∈Pm

max
λ∈Λ
| f(λ)− p(λ) | .
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The problem and known results

min
p∈Pm
‖ f(A)− p(A) ‖ .

where ‖ · ‖ is the spectral norm and f is a given polynomial.

Known results

If A is normal, the problem reduces to the well studied scalar
approximation problem on the spectrum of A,

min
p∈Pm

max
λ∈Λ
| f(λ)− p(λ) | .

For general A - only a special case of f(A) = A
m+1

is known to have a unique solution [Greenbaum and Trefethen, 1994].
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Reformulation of the problem

Let f be a polynomial of degree m+ ℓ+ 1 (m ≥ 0, ℓ ≥ 0). Then

f(z) = zm+1g(z) + fmz
m + · · · + f1z + f0 ,

where g is a polynomial of degree at most ℓ. Approximate f by p

p(z) = pmz
m + · · ·+ p1z + p0 .
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where g is a polynomial of degree at most ℓ. Approximate f by p

p(z) = pmz
m + · · ·+ p1z + p0 .

It is easy to show that

min
p∈Pm

‖f(A)− p(A)‖ = min
h∈Pm

‖Am+1g(A) − h(A)‖ .
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Reformulation of the problem

Let f be a polynomial of degree m+ ℓ+ 1 (m ≥ 0, ℓ ≥ 0). Then

f(z) = zm+1g(z) + fmz
m + · · · + f1z + f0 ,

where g is a polynomial of degree at most ℓ. Approximate f by p

p(z) = pmz
m + · · ·+ p1z + p0 .

It is easy to show that

min
p∈Pm

‖f(A)− p(A)‖ = min
h∈Pm

‖Am+1g(A) − h(A)‖ .

Without loss of generality we can consider the problem

min
h∈Pm

‖Am+1g(A) − h(A)‖ ,

where g is a given polynomial of degree at most ℓ.
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Matrix polynomial approximation problems

We consider the problem

min
h∈Pm

‖A
m+1g(A) − h(A) ‖ ,

where g is a given polynomial of degree at most ℓ.
For g ≡ 1 we obtain the ideal Arnoldi approximation problem.
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Matrix polynomial approximation problems

We consider the problem

min
h∈Pm

‖A
m+1g(A) − h(A) ‖ ,

where g is a given polynomial of degree at most ℓ.
For g ≡ 1 we obtain the ideal Arnoldi approximation problem.

Related problem:

min
g∈Pℓ
‖A
m+1g(A) − h(A) ‖ ,

where h is a given polynomial of degree at most m.
For h ≡ 1 we obtain the ideal GMRES approximation problem.
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Matrix polynomial approx. problems - general notation

We consider matrix approximation problems of the form

min
M∈A
‖B−M ‖ .

1

B ≡ A
m+1g(A) , g ∈ Pℓ given

A ≡ span {I,A, . . . ,Am} ,

2

B ≡ h(A) , h ∈ Pm given

A ≡ span {Am+1,Am+2, . . . ,Am+ℓ+1} .

B ∈ C
n×n\A means that the minimum > 0.
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Uniqueness results

Theorem [Liesen and T., 2008].

1 Given g ∈ Pℓ, the problem

min
h∈Pm

‖A
m+1g(A) − h(A) ‖ > 0,

has the unique minimizer.
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Uniqueness results

Theorem [Liesen and T., 2008].

1 Given g ∈ Pℓ, the problem

min
h∈Pm

‖A
m+1g(A) − h(A) ‖ > 0,

has the unique minimizer.

2 Let A be nonsingular and h ∈ Pm given. Then the problem

min
g∈Pℓ
‖A
m+1g(A) − h(A) ‖ > 0,

has the unique minimizer.

19



Uniqueness results

Theorem [Liesen and T., 2008].

1 Given g ∈ Pℓ, the problem

min
h∈Pm

‖A
m+1g(A) − h(A) ‖ > 0,

has the unique minimizer.

2 Let A be nonsingular and h ∈ Pm given. Then the problem

min
g∈Pℓ
‖A
m+1g(A) − h(A) ‖ > 0,

has the unique minimizer.

The nonsingularity in (2) cannot be omitted in general.
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Idea of the proof (by contradiction)

Based on the proof by [Greenbaum and Trefethen, 1994].
Consider the problem

min
p∈G

(g)
ℓ,m

‖p(A)‖

where

G(g)

ℓ,m ≡
{
zm+1g + h : g ∈ Pℓ is given, h ∈ Pm

}
.

Let q1 and q2 be two different solutions, ‖q1(A)‖ = ‖q2(A)‖ = C.
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Idea of the proof (by contradiction)

Based on the proof by [Greenbaum and Trefethen, 1994].
Consider the problem

min
p∈G

(g)
ℓ,m

‖p(A)‖

where

G(g)

ℓ,m ≡
{
zm+1g + h : g ∈ Pℓ is given, h ∈ Pm

}
.

Let q1 and q2 be two different solutions, ‖q1(A)‖ = ‖q2(A)‖ = C.

Use q1 and q2 to construct the polynomial

qǫ = (1− ǫ) q + ǫ q̃ ∈ G(g)

ℓ,m

and show that, for sufficiently small ǫ,

‖qǫ(A)‖ < C.
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Ideal Arnoldi versus ideal GMRES polynomials

Ideal Arnoldi and ideal GMRES problems

min
p∈Mm

‖p(A)‖ , min
p∈πm

‖p(A)‖ .

The ideal Arnoldi polynomial is (z − λ)m [Liesen and T., 2008].
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For λ 6= 0, we can write

(z − λ)m = (−λ)m (1− λ−1z)m .

(1− λ−1z)m is a candidate for solving ideal GMRES problem.
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Ideal Arnoldi versus ideal GMRES polynomials

Ideal Arnoldi and ideal GMRES problems

min
p∈Mm

‖p(A)‖ , min
p∈πm

‖p(A)‖ .

The ideal Arnoldi polynomial is (z − λ)m [Liesen and T., 2008].

For λ 6= 0, we can write

(z − λ)m = (−λ)m (1− λ−1z)m .

(1− λ−1z)m is a candidate for solving ideal GMRES problem.

Is the ideal GMRES polynomial a scaled version of the ideal
Arnoldi polynomial (at least for Jλ)?

No! Determination of ideal GMRES polynomials for Jλ is very
complicated and intriguing problem [T., Liesen and Faber, 2007].
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Ideal Arnoldi and ideal GMRES polynomials for Jλ

Theorem [T., Liesen and Faber, 2007]. The mth ideal GMRES
polynomial is (1− λ−1z)m iff 0 ≤ m < n

2
and |λ| ≥ ̺−1

m,n−m.

̺k,n is the radius of the polynomial numerical hull of degree k
of an n× n Jordan block (independent of λ).
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Ideal Arnoldi and ideal GMRES polynomials for Jλ

Theorem [T., Liesen and Faber, 2007]. The mth ideal GMRES
polynomial is (1− λ−1z)m iff 0 ≤ m < n

2
and |λ| ≥ ̺−1

m,n−m.

̺k,n is the radius of the polynomial numerical hull of degree k
of an n× n Jordan block (independent of λ).

Example: Let n be even and consider m = n
2
.

If |λ| ≤ 2−
2
n , the ideal GMRES polynomial is 1.

If |λ| ≥ 2−
2
n , the ideal GMRES polynomial is equal to

2

4λn + 1
+

4λn − 1

4λn + 1
(1− λ−1z)

n
2 .
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Ideal Arnoldi and ideal GMRES polynomials for Jλ

Theorem [T., Liesen and Faber, 2007]. The mth ideal GMRES
polynomial is (1− λ−1z)m iff 0 ≤ m < n

2
and |λ| ≥ ̺−1

m,n−m.

̺k,n is the radius of the polynomial numerical hull of degree k
of an n× n Jordan block (independent of λ).

Example: Let n be even and consider m = n
2
.

If |λ| ≤ 2−
2
n , the ideal GMRES polynomial is 1.

If |λ| ≥ 2−
2
n , the ideal GMRES polynomial is equal to

2

4λn + 1
+

4λn − 1

4λn + 1
(1− λ−1z)

n
2 .

Obviously, neither 1 nor the above polynomial are scalar multiples
of the corresponding ideal Arnoldi polynomial.
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Summary

We showed uniqueness of two matrix best approximation
problems in spectral norm,

min
p∈Pm

‖ f(A)− p(A) ‖

and
min
p∈Pℓ
‖h(A) − A

m+1p(A) ‖ .
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Summary

We showed uniqueness of two matrix best approximation
problems in spectral norm,

min
p∈Pm

‖ f(A)− p(A) ‖

and
min
p∈Pℓ
‖h(A) − A

m+1p(A) ‖ .

Generalization of ideal Arnoldi and ideal GMRES problems.

Nontrivial problem for nonnormal A.

Ideal Arnoldi and Ideal GMRES polynomials can differ.

Open question: When does the general problem

min
M∈A

‖B −M ‖

have a unique solution?
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Thank you for your attention!
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