On Ideal and Worst-case GMRES

Petr Tichý
joint work with
Jörg Liesen and Vance Faber
Institute of Computer Science AS CR

June 27, 2007, Dundee

GMRES, Worst-case GMRES and Ideal GMRES

$\mathbf{A} x=b, \mathbf{A} \in \mathbb{C}^{n \times n}$ is nonsingular, $b \in \mathbb{C}^{n}$, $x_{0}=\mathbf{0}$ and $\|b\|=1$ for simplicity.
GMRES computes $x_{k} \in \mathcal{K}_{k}(\mathbf{A}, b)$ such that $r_{k} \equiv b-\mathbf{A} x_{k}$ satisfies

$$
\begin{align*}
\left\|r_{k}\right\| & =\min _{p \in \pi_{k}}\|p(\mathbf{A}) b\| & & \text { (GMRES) } \tag{GMRES}\\
& \leq \max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\| \equiv \psi_{k}(A) & & \text { (worst-case GMRES) } \\
& \leq \min _{p \in \pi_{k}}\|p(\mathbf{A})\| \equiv \varphi_{k}(A) & & \text { (ideal GMRES) }
\end{align*}
$$

How well does ideal GMRES characterize the GMRES worst-case behavior?

Toh's example

Worst-case GMRES can be very different from ideal GMRES!
Consider the 4 by 4 matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & \epsilon & & \\
& -1 & \epsilon^{-1} & \\
& & 1 & \epsilon \\
& & & -1
\end{array}\right], \quad \epsilon>0
$$

Then, for $k=3$,

$$
0 \stackrel{\epsilon \rightarrow 0}{\rightleftarrows} \psi_{k}(\mathbf{A})<\varphi_{k}(\mathbf{A})=\frac{4}{5} .
$$

[Toh '97, another example in Faber et al. '96]

Outline

(1) Basic results concerning $\psi_{k}(A)$ and $\varphi_{k}(A)$
(2) Theoretical tools
(3) Cross equality for worst-case GMRES vectors
(9) Results for a Jordan block

Basic results concerning $\psi_{k}(\mathbf{A})$ and $\varphi_{k}(\mathbf{A})$

Theorem

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a matrix with minimal polynomial degree $d(\mathbf{A})$. Then the following statements hold:
(1) $\psi_{0}(\mathbf{A})=\varphi_{0}(\mathbf{A})=1$.
(2) $\psi_{k}(\mathbf{A})$ and $\varphi_{k}(\mathbf{A})$ are both nonincreasing in k.
(3) $0<\psi_{k}(\mathbf{A}) \leq \varphi_{k}(\mathbf{A})$ for $0<k<d(\mathbf{A})$.
(9) If \mathbf{A} is nonsingular, then $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})=0$ for all $k \geq d(\mathbf{A})$.
(5) If \mathbf{A} is singular, then $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})=1$ for all $k \geq 0$.

Basic results concerning $\psi_{k}(\mathbf{A})$ and $\varphi_{k}(\mathbf{A})$

When does it hold that

$$
\underbrace{\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|}_{\psi_{k}(\mathbf{A})}=\underbrace{\min _{p \in \pi_{k}}\|p(\mathbf{A})\|}_{\varphi_{k}(\mathbf{A})} \text { ? }
$$

[Greenbaum \& Gurvits '94, Joubert '94]:

- if \mathbf{A} is normal,
- for $k=1$.

Theoretical tools

Ideal GMRES polynomial and ideal GMRES matrix

Definition

The polynomial $p_{*} \in \pi_{k}$ is called the k th ideal GMRES polynomial of $\mathbf{A} \in \mathbb{C}^{n \times n}$, if it satisfies

$$
\left\|p_{*}(\mathbf{A})\right\|=\min _{p \in \pi_{k}}\|p(\mathbf{A})\|
$$

We call the matrix $p_{*}(\mathbf{A})$ the k th ideal GMRES matrix of \mathbf{A}.

Existence and uniqueness of p_{*} proved by
[Greenbaum \& Trefethen '94]

Simple maximal singular value of $p_{*}(\mathbf{A})$

Lemma

If $p_{*}(\mathbf{A})$ has a simple max. singular value then $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$.

Is this situation frequent or rare for nonnormal matrices?

Normal case: $\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{*}, \mathbf{Q}^{*} \mathbf{Q}=\mathbf{I}$

$$
\min _{p \in \pi_{k}}\|p(\mathbf{A})\|=\min _{p \in \pi_{k}}\left\|\mathbf{Q} p(\boldsymbol{\Lambda}) \mathbf{Q}^{*}\right\|=\min _{p \in \pi_{k}} \max _{\lambda_{i}}\left|p\left(\lambda_{i}\right)\right| .
$$

$p_{*}(\xi)$ attains its maximum value on at least $k+1$ eigenvalues, i.e. the multiplicity of max. sing. value of $p_{*}(\mathbf{A})$ is at least $k+1$.

Multiplicity of the maximal singular value of $p_{*}\left(\mathbf{J}_{\lambda}\right)$

 computed using the software SDPT3 by TohJordan block $\mathbf{J}_{\lambda}, \lambda=1, n=20$.
Multiplicity of the maximal singular value of the kth ideal GMRES matrix

Characterization of the situation $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$

Let $\Sigma(\mathbf{B})$ be the span of maximal right singular vectors of \mathbf{B}.

Lemma

[T \& Liesen \& Faber '07, Faber et al. '96]

Suppose that a nonsingular matrix \mathbf{A} and a positive integer $k<d(\mathbf{A})$ are given.

Then $\psi_{k}(\mathbf{A})=\varphi_{k}(\mathbf{A})$ if and only if there exist a polynomial $q \in \pi_{k}$ and a unit norm vector $b \in \Sigma(q(\mathbf{A}))$, such that

$$
q(\mathbf{A}) b \perp \mathbf{A} \mathcal{K}_{k}(\mathbf{A}, b) .
$$

If such q and b exist, then $q=p_{*}$.

k-dimensional generalized field of values of A

$$
F_{k}(\mathbf{A}) \equiv\left\{\left(\begin{array}{c}
v^{*} \mathbf{A} v \\
\vdots \\
v^{*} \mathbf{A}^{k} v
\end{array}\right) \in \mathbb{C}^{k}: v^{*} v=1\right\}
$$

Theorem

For a nonsingular matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ the following statements hold:

- $\psi_{k}(\mathbf{A})=1 \Longleftrightarrow \mathbf{0} \in F_{k}(\mathbf{A})$,
- $\varphi_{k}(\mathbf{A})=1 \Longleftrightarrow \mathbf{0} \in \operatorname{cvx}\left[F_{k}(\mathbf{A})\right]$.

If $F_{k}(\mathbf{A})$ is convex then

$$
\psi_{k}(\mathbf{A})=1 \quad \Longleftrightarrow \quad \varphi_{k}(\mathbf{A})=1
$$

A possible connection

Using $F_{k}(\mathbf{A})$, it is possible to define two sets

$$
\begin{aligned}
\mathscr{G}_{k}(\mathbf{A}) & =\left\{\xi \in \mathbb{C}: \mathbf{0} \in F_{k}(\mathbf{A}-\xi \mathbf{I})\right\} \\
\mathscr{H}_{k}(\mathbf{A}) & =\left\{\xi \in \mathbb{C}: \mathbf{0} \in \operatorname{cvx}\left[F_{k}(\mathbf{A}-\xi \mathbf{I})\right]\right\}
\end{aligned}
$$

[Nevanlinna '93, Greenbaum '02]
Equivalent definitions:

$$
\begin{aligned}
\mathscr{G}_{k}(\mathbf{A}) & =\left\{\xi \in \mathbb{C}: \quad \exists b \forall p \in \mathcal{P}_{k}|p(\xi)|\right. \\
\mathscr{H}_{k}(\mathbf{A}) & =\{\xi \in(\mathbf{A}) b \|\} \\
& \left\{\xi \in \mathbb{C}: \quad \forall p \in \mathcal{P}_{k}|p(\xi)| \leq\|p(\mathbf{A})\|\right\}
\end{aligned}
$$

[Greenbaum '02, T. \& Faber \& Liesen '08]
where \mathcal{P}_{k} denotes the set of polynomials of degree k or less.
There might be a connection between convexity of $F_{k}(\mathbf{A})$ and the relation between ideal and worst-case GMRES.

Worst-case GMRES and the cross equality

Worst-case GMRES

For a given k, there exists a right hand side b^{w} such that

$$
\left\|r_{k}^{w}\right\|=\min _{p \in \pi_{k}}\left\|p(\mathbf{A}) b^{w}\right\|=\max _{\|b\|=1} \min _{p \in \pi_{k}}\|p(\mathbf{A}) b\|
$$

Theorem
[Zavorin '02, T. \& Faber \& Liesen '08]
Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a nonsingular matrix. Then GMRES achieves the same worst-case behavior for \mathbf{A} and \mathbf{A}^{*} at every iteration.

- Zavorin '02 \rightarrow only for diagonalizable matrices
- T '07 \rightarrow for all nonsingular matrices

Cross equality for worst-case GMRES vectors

Given: $\mathbf{A} \in \mathbb{C}^{n \times n}, k$

It holds that

$$
\left\|s_{k}\right\|=\left\|r_{k}^{w}\right\|=\psi_{k}(\mathbf{A}), \quad b^{w}=\frac{s_{k}}{\left\|s_{k}\right\|}
$$

[Zavorin '02, T. \& Faber \& Liesen '08]

Results for a Jordan block

Results for a Jordan block \mathbf{J}_{λ}

Consider an $n \times n$ Jordan block $\mathbf{J}_{\lambda}, \lambda \in \mathbb{C}$,
$\varrho_{k, n} \ldots$ the radius of the polynomial numerical hull $\mathscr{H}_{k}\left(\mathbf{J}_{\lambda}\right)$

$$
\frac{1}{2} \leq \varrho_{k, n}<1
$$

$\psi_{k}\left(\mathbf{J}_{\lambda}\right)=\varphi_{k}\left(\mathbf{J}_{\lambda}\right)$ if

- $|\lambda| \leq \varrho_{k, n}$,
- $|\lambda| \geq \varrho_{k, n-k}^{-1}$ and $k<n / 2$,
- k divides n,
- $k \geq n / 2, n-k$ divides n and $|\lambda| \geq 1$.
[T. \& Liesen \& Faber '07, Greenbaum '04]

Conclusions

(1) The relation between ideal and worst-case GMRES for nonnormal matrices is not well understood.
(2) There might be a connection between the convexity of the generalized field of values and the relation between ideal and worst-case GMRES.
(3) Worst-case GMRES achieves the same convergence behavior for A and \mathbf{A}^{*}. Worst-case GMRES vectors satisfy a cross equality.
(9) Based on numerical observation and theoretical results we conjecture that ideal GMRES = worst-case GMRES for a Jordan block.

Thank you for your attention!

More details can be found in
Tichý, P., Liesen, J. and Faber, V., On worst-case GMRES, ideal GMRES, and the polynomial numerical hull of a Jordan block, submitted to Electronic Transactions on Numerical Analysis (ETNA), March 2007.
http://www.cs.cas.cz/~tichy

