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A fundamental theorem in the area of iterative methods is the Faber-Manteuffel Theorem [2].
It shows that a short recurrence for orthogonalizing Krylov subspace bases for a matrix A exists
if and only if the adjoint of A is a low degree polynomial in A. This result is important, since it
characterizes all matrices, for which an optimal Krylov subspace method with short recurrences
can be constructed. Here optimal means that the error is minimized in the norm induced by
the given inner product. Of course, such methods are highly desirable, due to convenient work
and storage requirements for generating the orthogonal basis vectors. Examples are the CG
method [3] for solving systems of linear algebraic equations with a symmetric positive definite
matrix A, or the MINRES method [6] for solving symmetric but indefinite systems.

Now we briefly describe the result of Faber and Manteuffel. Let A be a nonsingular matrix and
v be a vector of grade d (d is the degree of the uniquely determined monic polynomial of smallest
degree that annihilates v). For theoretical as well as practical purposes it is often convenient
to orthogonalize the basis v, . . . , Ad−1v of the cyclic subspace Kd(A, v). The classical approach
to orthogonalization is to use the Arnoldi method, that produces mutually orthogonal vectors
v1, . . . , vd satisfying span{v1, . . . , vn} = span{v, . . . , An−1v}, n = 1, . . . , d. The algorithm can
be written in a matrix form

v1 = v , (1)

A [v1, . . . , vd−1]
︸ ︷︷ ︸

≡ Vd−1

= [v1, . . . , vd]
︸ ︷︷ ︸

≡ Vd












h1,1 · · · h1,d−1

1
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...
. . . hd−1,d−1
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︸ ︷︷ ︸

≡ Hd,d−1

, (2)

(vi, vj) = 0 for i 6= j , i, j = 1, . . . , d . (3)

As described above, for efficiency reasons, it is desirable to generate such an orthogonal basis
with a short recurrence, meaning that in each iteration step only a few of the latest basis
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vectors are required to generate the new basis vector. This corresponds to the situation when
the matrix Hd,d−1 in (2) is, for each starting vector v1, low-band Hessenberg matrix. Note
that an unreduced upper Hessenberg matrix is called (s + 2)-band Hessenberg, when its s-th
superdiagonal contains at least one nonzero entry, and all its entries above its s-th superdiagonal
are zero. We say that A admits an optimal (s+2)-term recurrence if Hd,d−1 is for each starting
vector at most (s + 2)-band Hessenberg and, moreover, there exists an initial vector such that
Hd,d−1 is exactly (s+2)-band Hessenberg (the s-th superdiagonal contains at least one nonzero
entry). The fundamental question is, what properties are necessary and sufficient for A to admit
an optimal (s + 2)-term recurrence. This question was answered by Faber and Manteuffel [2].

Theorem (Faber-Manteuffel) Let A be a nonsingular matrix with minimal polynomial degree
dmin(A). Let s be a nonnegative integer, s + 2 < dmin(A). Then A admits an optimal (s + 2)-
term recurrence if and only if A∗ = p(A), where p is a polynomial of smallest degree s having
this property (i.e. A is normal(s)).

While the sufficiency of the normal(s) condition is rather easy to prove, the proof of necessity
given by Faber and Manteuffel is based on a clever, highly nontrivial construction by using
results from mathematical analysis (“continuous function”), topology (“closed set of smaller
dimension”) or multilinear algebra (“wedge product”).

In [5], Liesen and Strakoš discuss and clarify the existing important results in the context of
the Faber-Manteuffel Theorem. They suggest that, in light of the fundamental nature of the
result, it is desirable to find an alternative, and possibly simpler proof of the necessity part.

In our recent paper [1] we address this issue and give two new proofs of the necessity part, which
use more elementary tools. In particular, we avoid topological and analytical arguments, and
use linear algebra tools instead. In this talk we will present the proof which employs elementary
Givens rotations to prove the necessity part by contradiction. In particular, the proof is based
on orthogonal transformations (“rotations”) of upper Hessenberg matrices. We will also discuss
why the proof of the necessity part is much more difficult than the proof of sufficiency.
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[1] V. Faber, J. Liesen and P. Tichý, The Faber-Manteuffel Theorem for linear operators,
SIAM J. Numer. Anal., accepted (2007).

[2] V. Faber and T. Manteuffel, Necessary and sufficient conditions for the existence of a
conjugate gradient method, SIAM J. Numer. Anal., 21 (1984), pp. 352–362.

[3] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear sys-
tems, J. Research Nat. Bur. Standards, 49 (1952), pp. 409–436.

[4] J. Liesen and P. E. Saylor, Orthogonal Hessenberg reduction and orthogonal Krylov
subspace bases, SIAM J. Numer. Anal., 42 (2005), pp. 2148–2158.

2
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