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A tensorial Hencky measure of strain and strain rate for finite deformations 
J. Edmund Fitzgerald 
School o/Civil Engineering. Georgia Institute o/Technology. Atlanta. Georgia 30332 

A proper tensoriallogarithmic strain measure and its associated time rate of change is developed 
using an equivalence between the expressions for an isotropic tensor function and the Sylvester­
Lagrange formalism. It is shown that the specific Cauchy stress T / p is derivable from a potential 
with respect to this strain measure. A modified stress TF is shown to be derivable from a potential 
with respect to the left polar decomposition of the deformation gradient. Advantages and 
disadvantages of this formulation are discussed. 

PACS numbers: 62.20.Dc 

I. INTRODUCTION 

In one-dimensional usage, the Hencky strain measure, j 
taken as the logarithm of the extension ratio, has certain 
well-documented advantages such as additivity of progres­
sive elongation increments. In three dimensions, however, 
there has heretofore been no readily usable tensorial form 
available except for the work of Hill. 7 

Dom and Latter2 state that the Hencky strain is mea­
sured by the logarithms of the principal values and off-diag­
onal terms which do not form components of any differentia­
ble invariant and, hence, are not admissible for isotropic 
media as intended. 

Truesdell and Toupin3 discuss the history of the various 
logarithmic measures and comment that, in effect, using an 
analytical continuation of the series for logarithms results in 
off-diagonal terms involving infinite series. Both of the 
above objections are eliminated in the present development. 

II. LOGARITHMIC STRAIN 

WhereA represents a one-dimensional stretch ratio, i.e., 
ratio of deformed to undeformed length, an additively sym­
metrical measure of strainf(A ) must satisfy3 

f(1/A) = - f(A), (1) 

and one of the infinitely many smooth functions that con­
form to Eq. (1) is 

f(A ) = 1M, (2) 

where In represents the natural logarithm. The problem at 
hand is to generalize Eq. (2) to a proper tensorial representa­
tion for finite-deformation theory. 

With dX and dX representing elements of length in the 
reference configuration and the deformed configuration, re­
spectively, we define the usual deformation gradient two-

point tensor F through 

aX; 
dx; = --dX), ax) 

aX; 
F.=--, 

IJ ax 
J 

(3) 

where, without loss of generality, Cartesian coordinates are 
used. 

The polar decomposition of Fyields V, the left Cauchy­
Green stretch tensor, and R, the proper orthogonal rotation 
tensor, related through 

F= VR. (4) 

The principal values of Vare herein defined as the posi­
tive square roots of the product FF T, where the superscript T 
denotes transpose. 

Based upon well-known theorems in matrix analysis,4 
an analytic function of a matrix may be expressed as a sec­
ond-degree polynomial in the matrix with scalar coefficients 
which are functions of the invariants of the matrix; since In V 
is analytic except for a singularity at V = 0, we can express it 
as 

InV=tPo l +tPjY +tP2y2, 

with the restriction V> 0, which means 

V -Oct+ym. 

(5) 

(6) 

Consider Vand hence In V, which is an isotropic tensor func­
tion of V) as diagonalized, permitting the interchangeability 
of the matrix Vwith its principal valuesA j,A2, andA3, which 
are the principal stretches of the deformation, then Eq. (5) 
yields 

IM j =tPo+tP\A\ +tP0L 
1M2 = 1,60 + tP\A2 + tP0~, 

(7) 
1M3 = 1,60 + tP\A3 + tP0~, 
1,6; =tP;(A\,A2,A3), i= 1,2,3. 

By successive substitution in Eq. (7), the solutions for the scalars 1,6; are obtained as 

1,60 = A03 1M \ + A\A3 1M2 + A\A2 IM3 , 
(A\ -A2)(A\ -A3) (A2 -A j )(A2 -A3) (A3 -A\)(A3 -A2) 

(A2 + A3) 1M \-1 (AI + A3) 1M 2-\ (Aj + A2) 1M 3- 1 

1,6\ = + +, (8) 
(A2 -A2)(A\ -A3) (A 2 -A j )(A2 -A3) (A3 -A J)(A3 -A2) 

~ ~J ~2 ~3 
'1'2= + + 

(A\ -A2)(A\ -A3) (A2 -A\)(A2 -A3) (A3 -A J)(A3 -A2) 

Thus, from Eqs. (5) and (8), the symmetric matrix In Vis given explicitly by Eq. (9), where the off-diagonal terms contain 
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but two entries, 

cPO+cPIVII +cPz{V 2)11 * 

InV= (9) 

As an alternate approach, one could use the Sylvester-Lagrange interpolation which for In V takes the form 

I V 
(V-A21)(V-A3I)lnAl (V-AII)(V- A3I)lnA2 (V-AII)(V-A21) InA3 

n = + + , (10) 
(AI -,,1,2)(,,1,1 -A) (,,1,2 -,,1,1)(,,1,2 -,,1,3) (,,1,3 -,,1,1)(,,1,3 -,,1,2) 

and upon carrying out the indicated multiplication, it is identical to Eq. (5) with coefficients (S).5 

III. LINEAR STRESS-STRAIN RELATION 

The first invariant II of In V has the interesting proper­
ty3 that 

II = tr(ln V) = InA I + lnA2 + lnA3 
= lnAIA03 = In(detV), (II) 

where tr and det denote the trace and determinant, respec­
tively. For an example of the above, consider the Cauchy 
stress T as a linear function of In V, then 

T = a o tr(lnV)1 + a l In V. (12) 

The first term on the right-hand side is a logarithmic mea­
sure of volume change by Eq. (II) since detVrepresents the 
ratio of deformed volume to undeformed. Further, Eq. (12) 
satisfies the rest condition that T = 0 for V = 1. 

IV. HYPERELASTICITY 

Assume the existence of a scalar potential function of 
three independent invariants of In V. Two different sets will 
be examined. 

I I = tr(ln V), i l = tr(ln V), 
- 2 12 = ![tr2(lnV) - tr(lnV)2], 12 = tr(lnV) , (13) 

13 = det(lnV), ~ = tr(lnV)3. 

For some stress S to be derivable from a potential function ¢ 
with respect to the strain measure In V, where 

¢ = ¢(II' 12 , 13) 

or 
¢ = U(~, iz, ~), 

we employ the chain rule 

S=~= a¢~ 
a(lnV) all a(lnV) 

+ a¢ ~+ a¢ aI) 
aI2 a(ln V) aI3 a In V 

Evaluating the terms oI;la In V yields 

~=l 
alnV ' 

~ = tr(lnV)1 - (lnV)T = III -lnV, 
alnV 

aI3 =1 (InV)-1 
alnV 3 , 

[Note: 13(lnV)-I~ as V_I] 
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(14) 

(15) 

(16) 

ail = I 
alnV ' 

ai2 = 21nV: 
alnV ' 

Thus Eqs. (15)-(17) give 

S = aol + a l InV + a 2(lnV)-1 (ISa) 

and 

(lSb) 

wi th a" p, scalar functions of the in varian ts ofln Vand the 
material properties a¢/ aI,. 

For the stressS, an isotropic function oflnV, Eqs. (1 Sa) 
and (ISb) could have been written directly from relation (5). 
However, in general, the coefficient ai' Pi would then not 
necessarily have the restrictions imposed by Eq. (15), 
namely, 

aao aa l -- = --, etc. 
aI2 all 

(19) 

Klausner6 defines a Hencky strain as 

H =! Ina'j' 
E, I (r) 

(20) 

where his a'j is our V 2
• He then defines a strain rate as 

if =! Ina'j = !(a,/a,). (21) 
£, I (r) 

Neither of the above expressions is tensorially proper. The 
rate expression is also incorrect since 

-'- I a(lna) 
H = H Ina )'j = - IJ akl' 

<" (r) 2 aakl 

V. EVALUATION OF (d/dt)(InV) 

From Eq. (5), it is obvious that 

(22) 

(23) 

For the symmetric matrix representation of the tensor In V, 
there exists a rotation R such that 

(24) 

The chain rule applied to the time derivative of In V yields 
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and 

d . InVAt + h) -lnVAt) 
-lnVd(t)=hm , 
dt h""'{} h 

(25b) 

or alternatively, 

• d a (lnVd)ij . -I . 
InVd = -lnVd = ---"- Vd = V d Vd' 

dt avd " " 

(26) 

which is a diagonalized matrix with V d- 1 commuting with 
Vd so that Eq. (25a) becomes 

~(lnV)=I~V =R-1Vd-1VdR+ [R-I(lnVd)R 
dt 

+ [R -1(lnVd)R VJ, 
(27) 

where the term in curly brackets is symmetric and whose 
diagonal terms vanish, whereas the first term on the right­
hand side is diagonalizable. 

With Eqs. (24) and (27) multiplied by R on the left and 
R -Ion the right, 

R (InV)R -I = InVd = (lnV)d (28a) 

R (lnV)R -I = V d- I Vd + (lnVd)RR -I + RR T(lnVd)' 
(28b) 

showing that yvhere R diagonalizes In V it clearly does not 

diagonalize In V unless, in general, R = O. 
The V d- 1 Vd term is essentially the rate of change of the 

principal stretch ratios A. i with respect to the current value of 
A. i , i.e., 

o 0 

o o (29) 

o o 
The RR -I term and its transpose RR T are not, however, the 
rate of change of rotation with respect to the current rotation 
R that diagonalizes V. Rather, RR -I represents the instanta­
neous value of the rate of change of the Eulerian angles of the 
principal directions ofln V. For example, for a rotation about 
the 3 -3 axis ofln V of OJ, 

~ 
0, I, 

RR -I =' -1, 0, 

0, 0, 

showing that it is a function only of the current rate of 
change of OJ. 

VI. STRESS POWER 

(30) 

In this section we shall formally form a stress power for 
the Cauchy stress T and In V, with which it commutes. Justi­
fication for calling the above formed scalar product a stress 
power will be a given in Sec. VII. 

Take the scalar product of T and In V [Eq. (25a)] with 
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which T does not in general commute 

. . 
T·lnV = tr[ TR -llnVd R + TR T(lnVd)R 

+ TR -1(lnVd)R ]. (31) 

Consider the second term on the right-hand side and insert 
RR -I = I before InVd , and it becomes 

tr~T~~~, D~ 

which by Eq. (24) yields 

trTR TR In V, (33) 

and with the cycle property of trace becomes 

trR TR (InV)T = 0, (34) 

since R TR is antisymmetric and T commutes with In V and 
is symmetric. 

Similarly the last term vanishes. 

trTR -1(lnVd)R = O. 

Thus Eq. (31) with Eq. (26) yields 

T.lnV = trTR -I V d- I Vd R = trTV-1R -I Vd R . 

Now similarly to Eqs. (24) and (25), 

V=R -IVdR, 

hence V = R -I Vd R + R TVdR + R -I Vd R, 

so that 

Vd = RVR -I - RR TVd - VdRR -I, 

(35) 

(36) 

(37) 

(38) 

where the last two terms contain the antisymmetric mat rice 
RR T and RR -I so that Eq. (36) with Eq. (38) becomes 

T-lnV =trTV-1V= TV-1.V= T·VV-1. (39) 

VII. STRESS DERIVABLE FROM A POTENTIAL 

Assume the existence of a hyperelastic material where­
in the stress is derivable from a potential t/! which is itself a 
function of the invariants of its associated strain measure. 
Many such forms are in use. 

The usual form for the Cauchy stress uses a specific 
strain energy potential t/! (which is the isothermal free-ener­
gy potential) and the left Cauchy-Green stretch tensor B for 
isotropic hyperelastic materials with p being the density in 
the deformed configuration to give 

I.. = 2B at/! = V at/!, B = V 2 • 

p aB av 
(40) 

The above may be written in terms of rates to yield the stress 
power as 

(T Ip)V-1.V = "'. 
From Eq. (39) we can then write 

T- . 
-·lnV = t/! or 
p 

(41) 

(42) 

Thus, the Cauchy specific stress Tip is derivable from a po­
tential with respect to InVbut not T itself (see Ref. 7). 
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VIII. MODIFIED STRESS TF 

Let us define a modified stress TF through 

Tr =JTV-I, J=Polp, (43) 

where Po is the density in the underformed configuration. 
Then by using Eqs. (40) and (41), we obtain 

Tp'V=polp, TF =Po ;t, (44) 

so that the modified stress is derivable from a potential with 
respect to the left Cauchy-Green stretch tensor V. 

The modified stress is essentially a symmetric tensor 
whose principal values are the surface tractions per unit area 
of undeformed configuration. 

Where the first Piola-Kirchhoff stress S is defined 
through 

alf . ..: 
S = Po aF' S·F = Poif;, (4S) 

it is well known that the relation of S to Tis 

(46) 

so that the modified stress T p is the symmetric left polar 
decomposition of S, 

IX. EQUILIBRIUM EQUATIONS 

The equilibrium equations for T and S 3 are 

divT + pb = PX, 

DivS + Pob = PaX, 

(47) 

(48a) 

(48b) 

where b is the body force, X is the acceleration term, and div 
and Div are the divergence operators with respect to X and 
X, respectively. 

Both of the above equations for elastostatic zero-body 
force problems become 

divT= 0, DivS = 0, (49) 

which are "nice" in the sense that a wealth of mathematical 
literature exists for the existence, uniqueness, and solutions 
of the above. 

The modified stress Tp does not possess such a "nice" 
equilibrium equation; 

(SO) 

(It should again be stressed that Vis the positive square root 
of B). 

X. APPLICATION OF THE LOGARITHMIC STRAIN 
MEASURE 

Consider a deformation gradient mapping from the ref­
erence configuratin to a deformed configuration at time t, 
i.e., F(t). Now consider a mapping from the reference con­
figuration to a later time r>t, i.e., F (r). The relative deforma­
tion gradient from t to r will be denoted F(,) (r) and the com­
position of mapping yields 

J r)=F(l)(r)F(t) (Sla) 
or 

(SIb) 
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SinceF (t )andF- I
( r) exist and are unique and invertible, then 

F (t-/ (r) exists and is unique and the polar decomposition 
applies, 

F(I)(r) = R(t) (r)U(t) (r) = V(t/r)R(t)(p). (S2) 

NowletF(r) = V(r)R (r)andF-I(t) = R -1(t)V-I(t )sothat 
Eq. (Sib) is 

F(I)(r) = V(r)R (r)R -1(t)V-I(t), (S3) 

which, when t = r, yields 

(S4) 

Assume thatthe rotationsR (r)andR (t ) are equal, that 
is, no change in R occurs from t to r, 

(SS) 

Unfortunately, VCr) and V-I(t )donot, in general, com­
mute. For example, in simple shear, the principal directions 
of Vare a function of the amount of shear, so that neither 
R (r) = R (t) nor VCr) and Vet) commute. 

The only case where V (r) commutes with V (t ) is where 
the deformation gradient at t and r consists of nonrotating 
principal directions. 

F(t) = Vd(t) and F(r) = VAr). (S6) 

It is thus only in this highly restrictive instance that the 
advantage of using a logarithmic strain measure exists. 

For example, in the one-dimensional case, it is generally 
shown that with 10 the original length and Ila deformed 
length that 

A(I) = lIllo, lnA(I) = In(/l/lo). (S7) 

For a subsequent increase in the length to 13, In(l2/11) 
defines A (2) , and so forth up to the nth extension to length In' 
where we define 

InA = In(lJlo), 

which can also be written 

InA = Inln In_ I ••• 12 II 
In _ I In _ 2 ••• / 1 10 

In In _ I 
=In--+ In--+ .. ·+ 

[n-I [n-2 
or 

InA = lnA(n) + lnA(n I) + ... + lnA(2) + lnA(I)' 

(S8) 

(S9) 

so that a progressive straining in logarithmic terms forms an 
additive group. 

It is the above attribute that is claimed as an advantage 
for Hencky strain when applying a strain measure to plastic 
deformations, materials with damage and permanent set, 
and materials with slow viscous flow effects. 

For a proper tensorial representation of In V as given 
herein, the relative stretch tensor defined similarly to Eq. 
(SI) is 

VCr) = V(t)(r)V(t), (60) 
so that 

lnV(t)(r) = InV(r)V-1(t). 

Expression (SS) may be written 

InV(,)(r) = InV(r) -lnV(t) 

J. Edmund Fitzgerald 
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analogously to Eq. (53)ifand only if V (7) and V(t ) commute 
for all times t and 7, respectively. 

For all practical purposes, the above means that V(7) 
and V (t ) diagonalize together for all times, so that one might 
as well define In V as 

InV= InVdiag , (63) 

where Vdiag is known and its directions do not change with 
time. Then and only then does the additivity ofEq. (59) exist. 
Tensorial transformations are then lost. 

The off-diagonal terms with the above definition then 
consist of functions of the A i and the rotation angles. 

The rate of change ofln Vis given as before in Eq. (27) or 
Eq. (26). 

XI. CONCLUSION 

A proper tensorial measure of logarithmic strain His 
presented, where 

Hij = (lnV)i; = ¢JrPij + ¢Jl V;j + ¢J2(V 2)ij' (64) 

with the scalar coefficients ¢Ji given by Eq. (8). The time 
derivative of H is derived in Eq. (27). 

The stress power relation (39) yields 

T·R = trTV- 1 V = T· VV- 1
• (39) 

I t is shown that the specific Cauchy stress T / p is deriv-
able from a potential with respect to H, i.e., 

5115 

I.. = at{! 
p aH 
A modified stress TF is developed wherein 

Tp =Po at{! . 
av 
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(42) 

(44) 

The main conclusion then is that the tensoriallogarith­
mic strain measure presented is not of particular usefulness 
except when V (t ) is diagonalized with respect to a fixed set of 
coordinates for all tE(O, (0). This conclusion holds for any 
tensoriallogarithmic strain measure because the logarithmic 
tensor forms a non-Abelian group under addition. Thus, the 
desirable logarithmic additivity property of scalars holds for 
tensors if and only if each relative deformation from one time 
to the next commutes. 

For example, a simple stretching V (t ) followed by a sim­
ple shear relative to the stretch V(l) (7) produces 

InV(7) = InV(t)(7)V(t), (64) 

and the right-hand side cannot be decomposed into 

In V(l) (7) + InV(t). 
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