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 LARGE ELASTIC DEFORMATIONS OF ISOTROPIC MATERIALS

 III. SOME SIMPLE PROBLEMS IN CYLINDRICAL

 POLAR CO-ORDINATES

 BY R. S. RIVLIN

 British Rubber Producers' Research Association, Welwyn Garden City

 (Communicated by E. K. Rideal, F.R.S.-Received 4 March 1946.--Revised 13 February 1947)

 Expressions for the components of strain and the incompressibility condition, for large deforma-
 tions, are obtained in a cylindrical polar co-ordinate system. The stress-strain relations, equations
 of motion and boundary conditions for an incompressible, neo-Hookean material, in such a co-
 ordinate system, are also obtained and specialized to the case of cylindrical symmetry. These results
 are applied to the special cases of the simple torsion of a solid cylinder and of a hollow, cylindrical
 tube and to their combined simple extension and simple torsion.

 In the case of a solid cylinder, it is found that a state of simple torsion can be maintained by
 surface tractions applied to the ends of the cylinder only, and these consist of a torsional couple
 together with a compressive force. The necessary torsional couple is proportional to the amount of
 torsion and the compressive force to the square of the torsion.

 In the case of a hollow, cylindrical tube, it is again necessary to exert a torsional couple, pro-
 portional to the torsion, and a compressive force, proportional to the square of the torsion, on the
 plane ends, but it is also necessary to exert a normal surface traction, acting in a positive radial
 direction, on one or other of the curved surfaces of the tube and proportional to the square of the
 torsion.

 1. INTRODUCTION

 In Part I of this series (Rivlin 1948) the concept of an incompressible, neo-Hookean material
 was introduced. Such a material is considered to be isotropic in its undeformed state and
 to be capable of large, elastic deformation. Also, its stress-strain relationships are defined
 and it is considered that these form the best possible basis for the development of a mathe-
 matical theory of the large, elastic deformation of an incompressible material, isotropic in
 the undeformed state. In this previous paper, the mathematical theory was developed with
 reference to a fixed, rectangular Cartesian co-ordinate system. In the present paper the
 principal results obtained there are expressed with reference to a cylindrical polar co-
 ordinate system (r, 0, z). The method used is essentially that of moving axes. The simpli-
 fication of the theory, when the deformation possesses cylindrical symmetry about the
 z-axis, is considered and the results obtained are applied to calculate the forces necessary to
 produce a large simple torsion and combined extension and torsion in a solid, right-circular
 cylinder and in a hollow, cylindrical tube of incompressible, neo-Hookean material. The
 results obtained are qualitatively different from those obtained from the classical, mathe-
 matical theory for the simple torsion of Hookean cylinders and tubes, but reduce to these
 for the case of vanishingly small torsions and extensions.
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 R. S. RIVLIN ON LARGE ELASTIC

 PART A. CYLINDRICAL POLAR CO-ORDINATES

 2. COMPONENTS OF STRAIN

 In a fixed, rectangular Cartesian co-ordinate system (x", y", z"), the components of strain

 (ex-x-,yy") zcz, 6ytzj, ezx),6xy_), at a point of a deformed body which was at (x",y",z") in
 the undeformed state, are defined by the relation

 (s')2 (1 + 22x.) (SX")2 + (1 + 2e,) (8y")2
 + (1 + 2z,,,,) (3z") 2 + 2yz,,y" 3z" +2,,x SZ"SX"+2, SX" Sy", (2.1)

 where Ss' is the length of a linear element in the deformed state. This element has com-
 ponents of length x", 8y" and Sz", in the undeformed state, parallel to the axes x", y" and z"
 respectively, and is situated at (x", y", z") in that state.

 If u, v" and w" are the components, parallel to the axes x", y" and z", of the displacement
 undergone by the point in the deformation, then

 1 + 2x,, = (1 + U)2 + (v",,)2 + (W') 2,

 1 + 2% ,- (U= ) + ( + v ,,)2 + (w,,) 2,

 1 + 2,Z -= (Uz) 2 + (Vz) 2 + (1 + WZ) 2,

 ?y T = utuz + (1 + vy) vj + wyt (1 +- wz),

 ?Z.,.- =U, (1 + U) + V,,Vx,,+ (I + w,,) w".
 and ey = (1 + u) uy + vx (1 + vy) + wx, w. ,

 The position of any point in the undeformed state may be defined by the cylindrical polar
 co-ordinates (r, 0, z). The cylindrical polar co-ordinate system to which the point is referred
 is considered to be fixed. Corresponding to each point (r, 0, z), we can choose a system of
 rectangular, Cartesian co-ordinates (x', y', z'), given by the lines of intersection of the tangent
 planes to the surfaces r = const., 0 const. and z = const., which pass through the point,
 taken in pairs. The x'-axis is the line of intersection of the tangent planes to the surfaces
 0 = const. and z = const. and so on. If such a co-ordinate system is chosen at each point,
 then the displacement of any point in a deformation may be expressed by its components
 u, v and w parallel to the axes x', y' and z' ofthe co-ordinate system whose origin is at the point.

 Now, let us choose a fixed, rectangular Cartesian co-ordinate system (x", y", z") to coincide
 with the system (x',y',z'), which has its origin at (r, 0, z) and let (u", v", w") be the com-
 ponents of the displacement of any point in this co-ordinate system.

 If two neighbouring points are considered, at (r, 0, z) and (r+ Sr, 0f + 0, z + 8z) in the
 cylindrical polar co-ordinate system, in the undeformed state, their co-ordinates in the
 system (", y", z") are (0, 0, 0) and (Ax", By", 3z") respectively, where

 x" (r + 8r) cos 80-r,
 y" = (r r+r) sin 30 (2-3)

 and 3z" = z.

 Since 80 is infinitesimally small,

 cos -3= 1 and sin 80 = 80. (2-4)

 3x" = 3r, 3y" = rS0 and 3z" = 6z.

 510

 Thus (2-3) becomes  (2.5)
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 DEFORMATIONS OF ISOTROPIC MATERIALS. III

 In the deformation, the point (rl, Oi, z,) undergoes a displacement (ul, vl, wI) in the co-
 ordinate system (x', y', z') whose origin is at (r1, 08 z1). Let its displacement in the co-ordinate
 system (x", y", z"), whose origin is at (r, 0, z), be (ul, vl, w').

 Then, ul' = u cos (0 - 0) - v sin (08 - 0),
 ' = ul sin (01-0) +vI cos (01-0) (2-6)

 and w'i = wl.

 Whence,

 u u' = Su1 cos (O8 -) -3v s sin ( -0) u sin (01-0) &01-vI cos (0 -0) 0i,,

 6v'l = ul sin (0,1-) +Sv, cos ( -0) +ul cos (~-0) 0, --v, sin (01 -) 801, (2-7)
 and Sw'M = 8w1.

 In the limit as 68 -0 and r, - >r, the displacement (u', v', w') becomes (u", v", w"), the dis-
 placement of the point (r, 0, z) parallel to the axes of the co-ordinate system (x", y", z"), and
 the displacement (ul, vl, wI) becomes (u, v, w), the displacement of the point (r, 6, z) parallel
 to the axes of the co-ordinate system (x', y', z') whose origin is at (r, 0, z). Thus, letting 01 -> 0

 in (2.7), we obtain u"= -vS,
 v" v+uS 0 (2-8)

 and Sw" = Sw.

 From (2-5) and (2-8), we obtain

 du" du du" 1 du v du" du

 dx" dr' dy" r d r' dz" dz'
 dv" dv dv" dv u dv" dv

 dx" dr' dy" rd r ' dz" dz'

 dw" dw dw" 1 dw dw" dw =W dW dW - and
 dx" = dr' dy" r d0 dz" dz,

 It is noted from (2.5) that ifx" is constant, &r = 0, if y" is constant, 80 = 0 and ifz" is constant,
 6z = 0.

 Introducing these relations, together with (2-5) and (2.2), into (201), we obtain

 (s')2 = (1 +2rr) (5r)2+ (1 +2e0) (r30)2+ (1 +2ezz) (Sz)2

 + 2o r 08z + 2ezrSz r+ 2ero rr80, (2.10)

 where 1 + 2 = (1 )2 + )2 + + 2,

 1+26 u-v l 2+ 1+-+-VO + w,

 1+2ez -- Uz+-v2+ (1+wz)2,

 e0 = (uo-v) z+ (l +r+r )z+rwo(1 +wz),

 6zr = u(1 + Ur) + vzvr+ (1 -+ W) Wr

 and erO (1+Ur) - (Uo - )) +v ++r + +v8) +wrW.
 r r I~ r r

 63-2

 511

This content downloaded from 195.113.30.252 on Wed, 04 Jan 2017 12:48:47 UTC
All use subject to http://about.jstor.org/terms



 R. S. RIVLIN ON LARGE ELASTIC

 Err 6E,0 C6zz) 60z 6zr and 6r0 are defined as the components of strain, at the point which is at
 (r, 0, z) in the undeformed state, in the cylindrical polar co-ordinate system (r, 8, z). It is
 readily seen that these components of strain are defined from (2-10) in a manner analogous
 to that in which the components of strain (2-2) are defined from (2.1).

 3. THE INCOMPRESSIBILITY CONDITION

 Using the notation of ? 2, the incompressibility condition is given, in the co-ordinate
 system (x",y", z"), by

 1 +u, u u,,

 T vx, 1 +v y,, Vz,, 1.
 I! I! l

 Wx, wy 1 - Wz,,

 Making use of the relations (2-9), this becomes

 1

 Wr -W 1+ W

 4. THE STRESS-STRAIN RELATIONSHIPS

 In the co-ordinate system (x", y", z"), the stress-strain relationships for an incompressible,
 neo-Hookean material are given (Rivlin I948, I, ? 3) by

 t^xm -3 E[ (iT + u )2 )I+ u"I + uZ"] +p

 y E[v"2 + (V1 + ) 2 + 2]+p ty.y" = ~'- -% vz = 1. Z.

 tzz - E[ + w + (1 + w[,) 2] +p,

 ty = E[v'WX + (1 + v" ) w4< + v1%(l( + wz')],

 t.. = ?E[w( 1 + ux " ') + (1 + wZ) u+ ]

 and t^ E .[(l +uj ) vx + u(l + - + uz v],

 at the point which, in the undeformed state of the material, lies at (x", y", z"). E is a physical
 constant characterizing the material.

 Choosing the co-ordinate system (xt, y", z") with its origin at the point (r, ,z) in the
 cylindrical polar co-ordinate system and with its axes directed along the intersections of
 the tangent planes to r = const., 0 = const. and z = const., as before, we have, employing
 the relations (2-9),

 512
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 DEFORMATIONS OF ISOTROPIC MATERIALS. III

 !ti"- E[(1+Ur)2+A (ul-V)2+ 2]+p

 t,.~. = ?E 2 + ( 2 +_ -- + uz] +p, 2 +r u -Vo + V2 +p,

 (4-1)

 tyz E= E +r(r+ (1+ !r r + v(1 +w)]
 1 tz,x = 1E[Wr(l +Ur) + Wo(U- V) + (1 + w) uz]

 and tx,y = E [(1l +Ur) Vr+r (u,-v) (l + r ) +z].

 In the deformation, the point whose cylindrical polar co-ordinates in the undeformed
 state are (r, 0, z) moves to a point whose cylindrical polar co-ordinates are (r + s, 0 + q, z + w).
 Let trr, t0,, tz, ... be the components of stress in a rectangular, Cartesian co-ordinate system
 whose origin is at (r+ s, 0 +, z + w) and whose axes are directed along the intersections of
 the tangent planes to the surfaces r = const., 0 = const. and z = const., which pass through
 this point, taken in pairs.

 Then, trr = t.' cos2 S + tyy sin2 q[ + 2ty. sin 0 cos, ,
 too = tx, sin2 q + ty, cos2 0 - 2txy sin 0 cos 0,

 tzz = tZ'Zn,
 tzz =t zz 2 (4-2)

 to = ty,S cos 0 - t2, sin 0,

 tzr = tyz, sin + tz cos

 and tro == (ty - ..) sin 0 cos 0 + txyC(cos2 q - sin2 0).

 Since, in the deformation, the point (r, 0,z) moves to (r+s, + , z+w),

 u =(r+s)cos f-r and v=(r+s)sinm4. (4-3)

 Substituting from (4.1) and (4.3) in (4.2), we have

 t = E[( (1 +Sr)2+ + 2 +p,

 too = iE(r+S)2 0.2r+2(j+55)2+ Z+p

 t E[W 2 +PW (1 + WZ 2+p t = 1 [ w+ + (l+w)2 +,
 t Eu4-z~ WzjE+rb, [ (4-4)

 tZ = 3 E(r+s) [3r%Wr+ WO(1 +00) + (1 +Wz) ],

 tzr = E [r(1 +Sr) + WSO+ (1 +Wz)]

 and tre = E(r+s) [(1 +sr) r+r20(1 +0) +szz]

 513
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 R. S. RIVLIN ON LARGE ELASTIC

 5. THE EQUATIONS OF MOTION

 The equations of motion, in the co-ordinate system (x", y", z"), at the point (r, 0, z) in the
 cylindrical polar co-ordinate system, take the form (Rivlin I948, I, ? 20)

 du" dxr dp dr dp dr dp = pX+ EV2U1/ + P, dT d p

 dP2 - + 3EV + +"x" + dp + dy -dp (5.1)z"
 PP p Xf ifd duv .dy" dvy.dz"
 and d2w it "- dr d dp dr dp dT dp

 and ~w= pZ + v a P.& +IE+2V ,? dt2 Z 3 a,E x" + w'd, dy" dw" -dz"

 X", Y" and Z" are the components, in the directions of the axes x", y" and z" respectively,
 of the body forces, per unit mass, acting on the material at the point (r, 8, z). p is the density
 of the material.

 If R, 0, Z are the components of the body forces, per unit mass, parallel to the axes
 (x', y', z') of the rectangular, Cartesian co-ordinate system whose origin is at (r, 8, z), then

 R = X", -Y" and Z= Z", (5-2)

 for these axes (x', y', z') and the axes (x", y", z") are coincident at the point (r, 0, z).
 Using the relations (2-5), we have

 p _ p dp I dp and d, p (5 3)
 dx" - dr' dy" r d dz" z z'

 Also, for the point (r, 0, z)

 u = u", v = v" and w = w"

 sd2u" d2 d2v d2v 2w d 2w
 so that -dt2- dt2' dt2 dt2 an d t2 - dt2 (5

 dr/ldu, dr/duy,,, etc., can be expressed in terms of ur, ,r etc., by means of the relations (2-9).
 Thus, for example, from (3-1) and (2-9),

 d,T y l+y v,
 duiT w 1+ w. W_ 1+ tz

 +U+ VZ 1+-+-v0 v,
 r r

 _ 1 ~~~~~- ^ (. (5-5)
 -wo 1+wz

 Now, in the fixed, rectangular Cartesian co-ordinate system (x", y", z"), the operator V2
 is given by d2 d2 92

 V2 - x2 +-- 2 dx2 dy 2 dz"2?

 In the cylindrical polar co-ordinate system, it is given by

 V2 d2 d+ 1 2 2 (5d6)
 dr2r-dr+r2d02+ z2'

 514
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 DEFORMATIONS OF ISOTROPIC MATERIALS. III 515

 du" du du" du du" du
 Now, from (2.8), =r dr' d = d-v dz = d'

 dv" dv dv" dv dv" dv (
 dr dr' d =dO d- d'

 dw" dw dw" dw dw" dw

 dr dr ' d0 d0' dz dz'

 From the first of equations (2.7), we have

 S2u' = S2u1 cos (81 -0) - 2v1 sin (1 - 0) - u, sin (08 - 0) 608

 - v, cos (0 - 0) 801 - 6u sin (8 - 0) 801 - vI cos (0 - 0) 680

 -u1 cos (801-0) (081)2 + vlsin (018-0) (80)2.

 In the limit as 01 - 0, this yields

 2U" =82u- 22v S0- u(80)2.

 Similarly, 62v" and 2w" can be obtained from the remaining two equations of (2-7). We then

 have 82U" = 2U-28v80-U((80)2, 2v" = 82v+28u80-v(80)2 and 82w" = 82w.
 d2u" d2u d2u" d2u dv d2u" d2U

 Whence, d2 d - d___

 d2v" d2v d2v" d2V du d2v" d2v
 -2' ~ ~ J v -8+2<z2= z2> (5.8) dr2 dr2' dO2 2 d82+2dv, d2 d2 (58)

 ad w02W" d2w d2W" d2W d2W" d2w and
 r2 dr2' d02 d82' dz2 dz2'

 Making use of the relationships (5-6), (5-7) and (5-8), we have

 1 1 2 U
 V2u" = U rrU + UOr+ 8- V-2 +Uzz,

 1 1 2 v

 V2v" = vrr+ vrr+oo+ U o-v0+2z > (5.9)

 and V2w = w 1+ w+2 + r" r r+Wr WOO + Wzz.

 Introducing the results (5-2), (5 3), (5-4), (5-5) and (5.9) into equations (5-1), the equa-
 tions of motion become, in cylindrical polar co-ordinates,

 F/u I u1 \ dp ldp

 I~ [( - u-1) ?= [-i - (1 + wz wo vz- +

 +rw vr- r +- v)] dz

 k F! wuz-! (uo-v) (l+w d)1z r+[( 1+Ur) (1 +wz)-uzwrl U
 Lrz~~~r j~dr r ~d8O~ ~ (5-10)

 +[- (U-V) Wr-- - rW0(1 +Ur) d and = u-v) v-( +[uvdz

 and y= (uo -)vz- 1+ vo uz [vr- (1 +- u[) vz] 1

 +[(l+ur)(l+U+ v8)- r(u-v)] , r r r dz'

This content downloaded from 195.113.30.252 on Wed, 04 Jan 2017 12:48:47 UTC
All use subject to http://about.jstor.org/terms



 516 R. S. RIVLIN ON LARGE ELASTIC

 where = P dt2-pR -Eur+ + Ur? 2 U r2 +Z r r

 2V 21 v -( 1 1 2u,
 Pd p2uPOEVrr VrU+ -+ r2 r + vZ) (5.11) flP r r-PO- r

 and w P1/ 1 _ 1 , \ 7 Pan WPt2rr + Wr + r2 Wo + W .

 6. THE BOUNDARY CONDITIONS

 In the rectangular, Cartesian co-ordinate system (x",y",z"), the boundary conditions
 take the form (Rivlin 1948, I, ? 20)

 SE-[(1 + ) cos (x"' v) + yt4tCOS (y, V) + 8Zw? cOS (ZN, V)]-Xt ',

 dr or dr dr - -PB [ cos (x", i) +d cos (y, v) +- cos (z", v) ,

 ?E[~v, cos (x", v) +- (1 +') cos (y", v) +7 cos (z", v)] - 17
 (6'1)

 dr Or dr
 - f COS (x, ) cos (xy ) + cos (y v + cos (z, )]

 and L E[Wv COS (X, V) + Wi yt 0 (/ ) +l (1 +tz) COS (Z.) -) Z. '
 dr dr dr

 --P L. cos (x, v) + dw cos (yv +, cos (z v)]

 v is the direction of the normal to the surface in the undeformed state of the body at the
 point considered.
 (x", v) is the angle between the direction of x" and v. (y", v) and (z", v) are similarly
 defined.

 Xt7, Yv and Z' are the components parallel to x", y" and z" respectively, of the surface force,
 per unit area of the surface measured in the undeformed state. At the point (r, 8, z),

 (x v) = (r, v), (y, v) = (0, v) and (z", v) (z, v), (6-2)

 where (r, v), (0, v) and (z, v) are the angles between v and the directions of the axes x', y'
 and z' respectively, which pass through (r, 8, z).
 Also, since at the point (r, 8, z) the axes (x", y", z") and (x', y', z') coincide,

 R= X', O Y' and Z,v=Z, (6-3)

 where R^, Ov and Z, are the components of the surface force per unit area parallel to x', y'
 and z' respectively.
 Introducing into (6-1) the relations (2-9), (6-2), (6-3) and such relations as (5.5), the

 boundary conditions become, in the cylindrical co-ordinate system,
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 DEFORMATIONS OF ISOTROPIC MATERIALS. III 517

 + E[ Ur) cos (r, v)+ - (u -v) cos (O, v) +zcos (z,v)]-R

 [( +u+ v) (1 +wz) wovz cos (r, v)
 +{VzWr Vr(1 +Wz)}cos (0, v)

 + lwovr--1wrXq-Uq-lvo)}COS(Z,V) +E v Co rr( ?+}v)) cos (z, )]

 E [Vrcs (r, v) ( +? I )cos (0, v) +vzcos (z, v)] -

 =- [{(-wuz- ) (uO+v) ( +wz) cos (r,) (64)
 +{(1 +Ur) (1 +z)-uzWr}COS (0,v)

 +(r ( -V) Wr -o(l + Ur) cos (z, v)]

 and E Wr cos (r, ) +W wCos (, v) + (l+wz)cos (z, v) -Z

 -- [(- r (uo-V) v-(1 + U vo uz Cos(r,v)

 *+ {Uz r - (1 + Ur) Vz} cos (0, v)

 +{(1 + Ur)(1--r+V)-r (Uo-V) vr) cos (z, v)]

 If part of the surface of the body, whose deformation is considered, has, in the undeformed

 state, the form of a cylinder with the z-axis as axis,

 cos (r, v) =1 and cos (, v) cos (z, v) = .

 The boundary conditions (6.4) then become, over this surface,

 3E(1 Ur)- Rv u-- -p +1 -+ u wZ)- 1W

 Ev- =P[WOrZ-r (U++-V) +WZ)

 Over this plane, the boundary conditions (6W4) become

 I-lE -- =-P W?g r wo- (U- 1 + r + u), i3EV- 0 = -0 (U-r) W'--'(l +1') r (6 6)

 ?Ev- - I Wo (6'6)
 r r

 and iE(1+w)-Z VandO. 24. A. 64-[(l+Ur)(1 rU+V l (uo-V) r r r A 6

 VOL. 240. A. 64
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 518 R. S. RIVLIN ON LARGE ELASTIC

 7. DEFORMATION POSSESSING CYLINDRICAL SYMMETRY

 If the deformation possesses cylindrical symmetry about the z-axis, then u, v, w and p
 are independent of 0; i.e.

 u = v= w = 0 and dp/d = 0.

 Introducing this into (3-1), the incompressibility condition becomes

 1 +Ur -v/r UZ

 = vr 1+ (ur) - 1 (7-1)
 wr 0 l+w,z

 The equations of motion (5-10) become

 / , u\, dp U d\9p a (l+ -r)(l + z) W +r ) - p

 --Wr(7.2) /-r (+1 z) --rWr : (7.2) r r / rrr dr r

 and y=[_ vZt v-(l?u\ 1 + 8 +[( ~u,j1 + ) (1 + r) + v dz p

 and = dt2- PZ+-E (Wrr+r+ r

 The boundary conditions (604) become

 1.r[(1u+Ur) cos (r, v) _-os (8, v) +iu cos (z, v)]-R,,

 E[v cos (r, v) + (1 +r) cos (8, ) + v1 cos (z )] -r 1

 where pR - 1E Urr + u -;72 + uzz

 The boundary conditions (--4) becom

 --p[ (1 +i Wz cos ( v) +{(1 + U) (1 +wz)-p RW- COS (r r v)--wrEcos (z, )
 and

 The boundary cond'itions (6.4) become

 E[wr(+cos (r, v) -+ (1 +w) cos (, v)] -Z

 =E [ - r vz( 1 + ) uz} cos (r, v) + vr(1+ ur v} cos (, v) )

 +{(l+-r) (l+ )+ Vr}cos (Z,P)].
 (7-4)
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 DEFORMATIONS OF ISOTROPIC MATERIALS. III

 If, further, a part of the surface of the body is cylindrical in the undeformed state and has
 its generators parallel to the z-axis, then, for this surface, equations (7.4) become

 E(l +)-Rp (l + (1 +wz),

 1Er-O = --p- r (1 -wz) > (5)

 and EWr Zv -1[-v j (l+)u

 Again, if part of the surface is plane in the undeformed state and normal to the z-axis,
 the boundary conditions for this surface become

 JEuz-R =-p[-w(l+)]

 P-0jW=-p[- r] (7-6)

 and ?E(l +w )-Z,=-p[(1 +Ur)(l ++vr].

 PART B. SOLUTIONS OF SOME SIMPLE PROBLEMS

 8. THE TORSION OF A RIGHT-CIRCULAR CYLINDER

 As an example of the application of the formulae deduced in the foregoing pages, the
 problem of the torsion of a right-circular solid cylinder of incompressible, neo-Hookean
 material, by forces applied to its plane ends, will be considered. Let us assume that in its
 undeformed state, i.e. under the action of no external forces, the cylinder has a length I and
 radius a. We choose our cylindrical polar reference system (r, 0, z) in such a way that its
 z-axis coincides with the axis of the cylinder and its origin is at the centre of one of the ends

 of the cylinder. The curved surface of the cylinder is then part of the surface r = a and the

 plane ends form parts of the surfaces z = I and z = 0.
 Now, consider the torsional deformation of the cylinder, in which planes normal to the

 z-axis remain plane and suffer only a pure rotation about the z-axis through an angle q
 proportional to their distance from z = 0, i.e.

 = rz, (8-1)

 where f is a constant. It is noted that the body will then remain cylindrical in form.
 It can readily be shown that such a deformation can be supported by surface tractions
 applied to the ends of the cylinder only.
 In the deformation, the displacement (u, v, w), defined as in ? 2, of a point which is at

 (r, 0, z) in the undeformed state, can readily be seen to be given by

 u -- -r(l --cos ) = --r(l --cos Pz),
 v = rsin = rsin rz (8.2)

 and w = 0.
 64-2
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 Since the deformation is cylindrically symmetrical about the z-axis, the incompressibility
 condition is given by (7*1). Introducing into the expression for r the values of u, v and w
 given by (8.2),

 cos -z - sinz -rsinz
 = sin osz cosz rcos

 0 0 1

 = cos2 z+ sin2 irz 1.

 So, the incompressibility condition is automatically satisfied by a deformation given by (8 2).
 Introducing (8 2) into equations (7.2) and (7.3), and restricting the argument to the

 case of equilibrium, where d2u/ldt2 = d2vldt2 d2w/ldt2 == 0, it is seen that the equations of
 motion for this case become

 dp dp ap a cos rz, = sinz and = d (8-3)

 where a --pR + i Eq 2r cos / z,

 IB = -pO+ ?Er2r sin /z f (8.4)
 and y = -pZ.

 If we make Z = 0, then dp/ldz = 0 (from the last of equations (8 3) and the last of equations
 (8.4)), i.e. p is a function of r only. The first two of equations (8.4) are then simultaneously
 satisfied if R = = 0.

 Thus, if the body forces R, 0, Z are zero throughout the volume of the material, the
 equations of motion are satisfied, providedp is a function of r only. The form ofp, as a function
 of r, can be found from the first two of equations (8-4). These become, putting R = 0 = 0,

 Ei/2r = dp/dr.

 This yields p = 6EV2r2+ const. (8.5)

 The boundary conditions (7.5) over the curved surface of the cylinder become

 E cos Rz-R _ =-p cos z,,

 -E sin rz- 0 =-p sinz (8.6)
 and -Z, 0.

 If the surface tractions on this cylindrical boundary are zero, i.e. RV = @O = Z, 0, these
 three conditions can be simultaneously satisfied ifp = -E.
 Introducing this value ofp on the cylindrical boundary r = a into equation (8*5), we find
 that the constant there has the value (- E- E12a2).

 Thus p - E#(a2-r2)- . (8-7)

 The boundary conditions (7-6) over the plane end z = I of the cylinder become

 31Efr sin irl-Rv = 0,

 3Efr cos rl- = 0 (8-8)
 and ?E--Zv -p

 520

This content downloaded from 195.113.30.252 on Wed, 04 Jan 2017 12:48:47 UTC
All use subject to http://about.jstor.org/terms



 DEFORMATIONS OF ISOTROPIC MATERIALS. III

 Thus, introducing the expression forp given in (8.7), we have

 R, =- -Efr sin rl,
 0, =3Efr cos li (8.9)

 and Z =--E2(a2-r2)J
 It should be borne in mind that the surface tractions R,, 0, and Zy at a point of the surface

 are defined as being in the radial, azimuthal and axial directions respectively, at that point,
 in the undeformed state of the material. It is of advantage for the practical interpretation
 of the results to replace Ry, OQ and Z, by the components Ry, OQ and Z^, parallel to the radial,
 azimuthal and axial directions respectively, at the corresponding point of the deformed body.
 Now, the axial directions are not altered by the deformation and the displacement of

 each point lies in a plane at right angles to this axial direction. Therefore

 Z; =,. (8-10)

 Since the plane end of the cylinder considctered turns through an angle il in the deforma-

 tion, Ry = Rvcos /1+ sin l and O - O cos l/-R, sin *1. (8.11)

 Substituting in (8-10) and (8-11) from (8-9), we obtain

 R ==0, o =1E/r and Z - E(a2-r2). (812)
 Thus the deformation described by equations (8-2) can be supported by the following

 set of surface tractions applied to the plane end of the cylinder:
 (i) an azimuthal tangential traction increasing linearly from zero at the centre to 'EVa

 at the periphery; and
 (ii) a normal compressive traction increasing from zero at the periphery to IE/2a2 at

 the centre.

 These tractions are of course measured per unit area of the surface to which they are
 applied measured in the deformed state. However, in the deformation we are considering
 the area of an element of the end surface of the cylinder does not change.

 The azimuthal forces have the nature of a couple. The total moment of this couple which
 must be applied to produce a torsion 1 is

 frO^ 2rrdr f- ?Er227rrdr
 Jo o

 = E~a4l. (8.13)

 We note that it is proportional to the torsion produced.
 The total compressive force which is exerted is

 f -Z; 2trrdr = f%EIl2(a2-r2) 2rrrdr Jo Jo

 _ _1rE? 2a4. (8.14)
 We note that this force is proportional to the square of the torsion produced and therefore
 is negligibly small for very small torsions. Thus, vanishingly small torsions can be produced
 by a torsional couple proportional to the torsion, in accordance with the results of the
 classical theory of the torsion of a cylinder of incompressible, Hookean material.

 64-3
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 If Xl is the angle, in radians, through which one end of the cylinder is turned relative to
 the other,

 Introducing this relation into the results (8*13) and (8.14), we see that the total couple which
 must be applied has moment 4

 =T rE- a4 (8.15)

 and the total compressive force = 7TrE() a4. (8-16)

 The stress at any point of the deformed cylinder can be obtained from equations (4-4)
 by putting by putting s=-0, Z=l0 z and w=0.
 Also, since the value ofp throughout the cylinder is given by (8-7), this expression can also
 be introduced into equations (4-4).

 We obtain

 trr i2(a2r2), to = 3Ei2r2-E E (a2-r2), t =-12(a2r2) 7
 t E--?ErT, tzr 0 and tr 0. j

 The stress system is seen to be equivalent to a shearing stress toz (= 3Efrt) together with
 a normal stress t,o (= -E2r2), acting azimuthally, and a superposed negative hydrostatic
 pressure of amount - 6E2 (a2 - r2).

 The forces which must be applied to the ends of the cylinder to produce the simple torsion,
 given by (8-1) or (8 2), have been calculated in detail as regards their distribution over these
 ends. However, we can invoke Saint Venant's Principle to generalize this result in the case
 of a right-circular cylinder whose diameter is small compared with its length. Thus, provided
 the external forces are applied over, or close to, the ends of the cylinder and the total tor-
 sional couple and compressive force are given by (8.13) and (8.14) respectively, the torsion
 produced in the cylinder, at distances from the ends large compared with the diameter of
 the cylinder, will be given by (8-1) or (8-2). It must be borne in mind, however, that it has
 only been proved that this torsion represents a possible equilibrium state under the deduced
 system of forces and in view of the non-linearity of the equations of motion and boundary
 conditions for an incompressible, neo-Hookean material and the results obtained
 in Part II of this series, the possibility of alternative equilibrium states should r<>
 be borne in mind. Analogous remarks will apply to the examples discussed
 in ?? 9 and 10 of this paper, but will not be repeated there.
 It has already been pointed out (Rivlin 1948, I, ? 11) that vulcanized

 rubbers behave approximately as incompressible, neo-Hookean materials.
 The system of forces (8-12) could be applied to a rubber cylinder by bonding

 on to its plane ends two metal plates and rotating these relative to each other L ?_ J
 through an angle il, while restraining their motion so that they remain FIGURE 1
 parallel and a distance l apart. To do this the torsional couple (8-13) and
 compressive force (8-14) will have to be applied to the cylinder. If the compressive force is
 not applied and we consider for the moment that the metal plates are flexible, the rubber
 cylinder will tend to take up a form such as that shown in axial section by the full line in
 figure 1. The dotted line in the figure represents an axial section of the cylinder before
 deformation. The volumes before and after deformation must be equal.
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 9. SIMULTANEOUS EXTENSION AND TORSION OF A RIGHT-CIRCULAR CYLINDER

 In this section, we shall investigate the forces necessary to produce a combined uniform
 extension and torsion of a right-circular cylinder. Let us assume, as in ? 8, that planes normal
 to the z-axis remain plane and suffer a translation w parallel to the z-axis, given by

 w=(A-)z, (9-1)
 where A is a constant.

 Suppose now that the cylinder is subjected to a uniform torsion, i.e. planes normal to the
 z-axis are rotated in their own plane through an angle 0 given by

 f-- =/rAz. (9-2)

 As a result of the deformation described by (9-1), the cylinder undergoes a radial con-
 traction s, which, since the material is incompressible, is given by

 r2z = (r+s)2Az;
 i.e. r+ss = r//A.

 The displacements u, v, w in the axial system x', y', z' (defined as in ? 2) are now given by

 u==-r (l-cos/Az), v= -sinnfAz and w= (A-l)z. (9.3)

 It can readily be seen that the incompressibility condition (7.1) is satisfied for the
 displacement (9-3), by direct substitution.

 We now proceed to find the system of body and surface forces which is necessary to produce
 the deformation (9-3), as in ? 8.

 The equations of motion (7.2) become

 dp ap and dp a = /A cos lAz, f = A sin Az and Y- (9-4) dr7 dr A 2dz'

 where a = --pR + E/t2Arcos kAz, f ,= -pO + E2Ar sin Az and y = -pZ.

 As in ? 8, we see that the equations of motion (9 4) can be simultaneously satisfied by taking
 dp/dz = 0 and R = 0 - Z = 0, i.e. no body forces are acting, provided that

 dpldr = 'Ef'Ar;

 i.e. p = -6E2Ar2 + const. (9-5)

 The boundary conditions (7-5) over the cylindrical portion of the surface yield

 R = Or = Z- 0

 over this surface, taking p = - El/A on the surface.
 Introducingp -= -E/A, when r = a, into (9-5), we have

 p=- 6El2(a2- -2) 3E (9.6)

 The boundary conditions (7 6) for the plane end of the cylinder, which in the undeformed
 state forms part ofz = 1, become

 R =--ElrA'rsin mA, O = ? EAi r cos Al and Z = 1EA+ (9.7) 3 3YY" ,- 3Un iA. 3
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 Introducing the value ofp given in (9 6), and employing relations (8-11), in which 1l is
 replaced by Abl, we obtain

 R = 0, 0Q = ?EVr and Z, = 1EA- ---6E2(a2-r2) (9-8)

 It is thus seen that the combined simple extension and torsion of the cylinder can be
 produced by the combination of a couple and normal force applied to the ends of the
 cylinder.

 10. TORSION OF A HOLLOW CYLINDRICAL TUBE

 We shall now consider the torsion of a hollow, cylindrical tube of length I and internal
 and external radii b and a respectively, in the undeformed state. The axis of the tube is
 considered to coincide with the z-axis. Suppose this tube is subjected to a simple torsion
 defined as in ? 8 by

 Then, as before, u, v and w are given by equations (8-2). The incompressibility condition
 is automatically satisfied and the equations of motion (8-3) are satisfied for zero body
 forces, i.e. R = 0 Z= 0, if

 dz=0 and dl- E?2r; dz r -3

 i.e. p =- ^E2r2 +const. (10*1)

 The boundary conditions (7.5) over the curved surface r =b become

 1E cos iz + R =P -Pb cos z,

 ?E sin z + y - Pb sin lz (10-2)
 and Z, -0=
 where pb is the value ofp on r = b.
 The boundary conditions (7-5) over the curved surface r = a become

 1E cos rz-R == -pa COs r,

 ?E sin z-Q = -Pa sin nz f (10-3)
 and Z,- 0,

 where Pa is the value ofp on r = a.
 We shall now consider two separate cases.

 Case 1. Pa = -E.

 Then, from (10-3), R- = 0@- = Z = 0, over the surface r = a and, from (10.1),

 p = -E2(a2- r2) - E. (10.4)
 Then, Pb = -E2(a2 -b2) -E.

 Substituting this value in (10.2), we have

 R= -Ei2(a2-b2) cos lz, Q E -&E2(a2- b2) sin fz and Z,= 0.

 524
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 Now, with the notation of? 8, we have

 Rv - E?2(a2-b2), 0;=0 and Z - 0, (10.6)
 over the surface r = b.

 It can readily be seen, as in ? 8, that the surface tractions acting on the plane ends of the
 cylindrical shell are again given by (8.12).

 Case 2. p= --E.
 In this case, we see, from (10.2), that R-= 0 = Zv= 0 over the surface r= b. Also,

 from (10-1), p= -E2(b2--r2)-E. (10.7)
 Then, Pa - E 2(b2-a2) - E.

 Substituting this value in (10.3), and proceeding as in Case 1, we have

 R, =E 2(a2-b2), 2; = 0 and Z = 0, (10.8)
 over the surface r- a.

 Again, it can readily be seen, as in ? 8, that, in Case 2, the surface tractions acting on the
 plane ends of the cylindrical tube are given by expressions similar to (8-12) in which a is
 replaced by b.

 In Case 1 the force system which must be exerted on the inner surface of the tube is a
 constant normal force acting outwards and could be produced by creating an appropriate
 positive pressure of gas inside the tube as compared with that outside the tube. If the gas
 pressures inside and outside the tube are equal, then the tube will tend to collapse under
 torsion.

 It is of interest to note that if one end of a rubber tube is forced over the end of a glass tube

 and the other end of the rubber tube is turned in its own plane, so that the rubber is in torsion,

 it will tend to slip further over the glass tube owing to the absence of the normal traction
 Z^, given by (8.12), on its end.

 In a similar manner, it can be shown that if the tube is subjected to a combined simple
 extension and torsion, similar to that of the cylinder in ? 9, so that the deformation is described

 by (9-3), the forces exerted on the ends of the tube are given by (9 8), or a similar expression
 in which a is replaced by b, and normal surface tractions of magnitude -16E/r2(a2- b2) per
 unit area of surface, measured in the undeformed state, acting along the positive direction
 of r, must be exerted on either the inner or outer curved surface of the tube. The area of
 either of these curved surfaces changes by the factor Al in the extension and not at all in
 the torsion and consequently the normal surface traction which must be exerted has the
 magnitude EE/2A(a2-b2) per unit area, measured in the deformed state.

 This work forms part of a programme of fundamental research undertaken by the Board
 of the British Rubber Producers' Research Association.

 REFERENCE

 Rivlin, R. S. 1948 Phil. Trans. A, 240, Part I, p. 459; Part II, p. 491.

 525

This content downloaded from 195.113.30.252 on Wed, 04 Jan 2017 12:48:47 UTC
All use subject to http://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15
	image 16
	image 17

	Issue Table of Contents
	Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 240, No. 823, Feb. 24, 1948
	Large Elastic Deformations of Isotropic Materials. III. Some Simple Problems in Cylindrical Polar Co-Ordinates [pp.509-525]



