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Abstract. Several closed form finite strain equilibrium solutions are presented for
a special compressible isotropic elastic material which was proposed as a model for
foam rubber by Blatz and Ko. These solutions include bending of a cylindrical sector
into another sector or a rectangular block, bending of a block into a sector, expansion,
compaction or eversion of cylinders or spheres, and torsion and extension of circular
cylinders or tubes.

1. Introduction. Ericksen has examined the problems of finding all of the defor-
mations which can be supported, in the absence of body force, in all homogeneous,
isotropic, incompressible elastic solids [1], or in all homogeneous, isotropic, com-
pressible elastic solids [2]. The first category consists of all isochoric homogeneous
deformations and five families of nonhomogeneous deformations, the so-called con-
trollable or universal deformations ([1] and Singh and Pipkin {3]). The second cate-
gory consists of homogeneous deformations only, i.e., there is no nonhomogeneous
finite deformation which can be supported in every compressible isotropic elastic
solid material without applying a body force.

This latter result implies that nonhomogeneous deformations can be discussed,
for compressible solids, only in the context of a particular strain energy function, or
class of strain energy functions. Currie and Hayes [4] have suggested that Ericksen’s
results have had an unduly inhibiting effect on the study of nonhomogeneous finite
deformations. For compressible solids, in particular, the analysis of such deforma-
tions is usually very complicated even for simple forms of the strain energy function
and very few closed form solutions have been obtained.

John [5] introduced the class of harmonic materials, for which the problem of
finite plane strain simplifies considerably, and solutions of such problems have been
presented by several authors [6-10]. Abeyaratne and Horgan [11] obtained an exact
solution of the problem of pressurization of a hollow sphere of harmonic material;
see also Ogden [10]. Wheeler [12] has examined the deformation of a harmonic ma-
terial containing an ellipsoidal cavity. Chung, Horgan, and Abeyaratne [13] obtained
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exact solutions of the problems of cylindrical or spherical expansion or compaction
for a material with a special strain energy function proposed by Blatz and Ko [14] to
model the nonlinear response of foam rubber; see also Beatty [15]. Carroll [16] re-
cently presented several exact solutions for three classes of materials, one of which is
the class of harmonic materials. Haughton [17] has discussed inflation of thick-walled
elastic spherical shells composed of compressible materials, including harmonic ma-
terials. Horgan [18] has recently described how the governing equilibrium equation
for axisymmetric deformation of compressible materials in two and three dimensions
can be reduced to a pair of first-order ordinary differential equations, leading to exact
solutions of the equilibrium equation for particular materials.

In the present paper, exact solutions of several problems are found for the special
strain energy proposed by Blatz and Ko [14]. These solutions are obtained by the
semi-inverse method, and each of the deformations is a nonisochoric generalization
of a deformation which is controllable for homogeneous, isotropic, incompressible
elastic solids. Some of the solutions are quite simple (for example, the Blatz-Ko
strain energy admits pure torsion*) and some are quite complicated (for example,
the radial deformation solutions of Chung, Horgan, and Abeyaratne [13]). Although
the Blatz-Ko strain energy is a very special one (even its response to infinitesimal
deformations is special, with value % for Poisson’s ratio) it has been proposed as a
model of compressible nonlinear elastic response for foam-rubber-like material. So,
the solutions presented here are a worthwhile addition to the small set of closed form
solutions in nonlinear elastostatics.

2. Basic equations. The strain energy function for a compressible isotropic elastic
solid may be written as a function of the principal strain invariants

w=w(,l,I), (2.1)
with
I =wB=2 4+ +13,
I =twB" =22+ 220+ 2213, (2.2)
I, =detB = 2434,
Here B = FF', where F is the deformation gradient tensor, B* = (det B)B_l is

the adjoint of B and A, 4,, and A, are the principal stretches. The corresponding
response equation for the Cauchy stress tensor T is

_ ow oW\ . oW W 1
T=2I '/2[(1— - -
; o1, *har )1 ST B hor® (2.3)

where 1 is the unit tensor.
The present paper treats a very special strain energy function

_Y (L e
W= su <7§ +25," - 5> , (2.4)

*Currie and Hayes {4] identified the class of compressible isotropic elastic solids which admit pure torsion.
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for which the stress response equation (2.3) takes the simple form
T=u(1-1;"B7"). (2.5)

The strain energy function (2.4) was proposed by Blatz and Ko [14] as a model for
the nonlinear response of foam rubber. The response for a variety of stress and
strain states has been examined by Knowles and Sternberg [19]. Explicit solutions of
the problems of finite radial expansion or compaction of hollow spheres or cylinders
were presented in a recent paper by Chung, Horgan, and Abeyaratne [13].

The equation of equilibrium, in the absence of body force, is

divT = 0. (2.6)

The component form of this equation, in terms of the physical components of T in
a cylindrical polar system, is
oT,, 1 o1, 0T, 1
5 tro6 tar t e T =0,
0T, 10T, 0T,, 2
il T = 2.7
8r+rc’)0+8z+r 27
0 Tzr 10 Tz() 0 Tzz 1
or Tr a0 "oz Trle=0
The corresponding equations for a spherical polar system are

8T, 10T 1 0T, 1
v 750 T reng aéf+—.(2T~-Tee—T¢¢+°°‘9Trﬂ)=

r
8T,, 10T, 1 0T, 0 _ 23
ar T 7798 t g 8¢> [3T“9+C0t6(T"9 ¢’4’)] =0, (2:8)

5T¢r 15{/,9 1 BTM) l
ar r 08 rsinf 8¢ r

(3T, +2cot 0T,,) = 0.

3. Straightening of a cylindrical sector. A deformation with coordinate represen-
tation
x = Xx(R), y =BO, z=2Z, (3.1)

with 4 % >0,B>0,and 4> 0, describes straightening of a cylindrical sector into
a rectangular block. Here (R, ©, Z) are cylindrical polar coordinates of a particle
before deformation and (x,y, z) are its rectangular Cartesian coordinates after

deformation.
The deformation gradient tensor F, given by
dx
a’Re‘®e" R ‘,®ee+le ®e,, (3.2)

admits a polar decomposition F = VR, with rotation tensor R and stretch tensor V

given by
R=e ®e,+e,Q¢5+e Q¢ (3.3)

and dx

B
V= TREx ® & +Rey®e.‘,+ie:®e:. (3.4)

EDD / VPK/— tato rozmnoZenina slouzi vyhradné pro iiéely vzkumu a soukromého studia dritele ufivatelského konta.
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Substitution from Eq. (3.4), with
l/Z—detV B =V (3.5)

in the stress response equation (2.5), gives the principal stresses as

R (dR\’ R’ dR
Txx:'tt(l—l_B(E))’ TJ’V—#(I_FE{)’

(3.6)
7 —uf1- R 4R
zz T 'u }.3B dx :
The equation of equilibrium (2.6) reduces to
aT,,
—E =0 (3.7)
and, if faces x = constant are to be free of traction, this integrates to
T,.=0, (3.8)
o AR 1B
1/3
== (F" (3.9)
Thus, the deformation (3.1) has the form
3L g, _Be., 2=z (3.10)

4(2B)'

The constant of integration, which represents a rigid body translation, has been set
to zero.

The conditions for vanishing resultant normal forces on the faces y = constant
and z = constant are

R dR . dx
/x Tydx = ﬂ/ iBS dx)deR

R e (3.11)
1/3
= —=)'""——— | dR=0
and 2
*2 2 R dR dx
/ Tzzdx=/1/ (I—TT)d—R'dR
X, R A'Bax
kg " (3.12)
= — dR=0.
# /R ((AB) 7°B )
Integration gives
3R -R®) _ RI-R| Ry -R}
T = = > (3.13)
4(AB) 4.B 2A°B
so that the constants B and A are given by
2 1,2, 2 16(R% — R
B’ =32 (RR+RY), %= (R, ~ R)) (3.14)

27(R2 + RY)(RAP — R
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The resultant end couple M needed to hold the straightened sector is given by

M=/1L/R2T 9x iR, (3.15)
g, "dR
where L is the length of the sector, in the Z-direction, before deformation.
4. Bending of a rectangular block. A deformation with coordinate representation
r=rX), O=BY, z=1Z, (4.1)

with C—% >0,B >0,and 4> 0, describes bending of a rectangular block into a
cylindrical sector. Here (X, Y, Z) and (r, 6, z) are rectangular Cartesian coordi-
nates before deformation and cylindrical polar coordinates after deformation.

The deformation gradient tensor F, given by

dr

F= We,‘®eX+Bre9®ey+/1ez®eZ, (4.2)
admits a polar decomposition F = VR, with
R=¢ ®e,+e,Qe,te,Qe; (4.3)
and J
y
V= T ®e, + Bre,®e, +4ie, ®e,. (4.4)
Substitution from Eq. (4.4) in the stress response equation (2.5) gives the principal
stresses as
1 (dx\’ 1 dx
Trr=#(1——“<“—> ) . Tea=ﬂ<1——33‘—> ;
ABr \ dr AR dr (4.5)

1 dX
(1= g5ar)
The equations of equilibrium (2.7) reduce to the radial equation
aT,, 1
—d—’f’ + F(T"‘ —Tpe) =0. (4.6)
Substitution from Egs. (4.5); , in this equation leads to
2
axdx _ 1 (4.7)
dr dr*  3B*°

dX*Vari—l (4.8)
dr Brv3
where o > 0 is a constant of integration. A second integration gives

X = El——\/?: (\/arz —1—sec ' rva+ ﬂ) . (4.9)

Observe that this does not depend on the axial stretch 4. The stresses are obtained
by substitution from Eq. (4.8) in Egs. (4.5) and boundary conditions determine the

unknowns B, 4, a,and # in the usual manner.

A first integration gives

EDD / VPK/ = 1ato rpzmpofen;'nq ;louz"z' vjhradng" Prozfc’ely\gizkumu a soukromého studia drZitele uZivatelského konta.
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5. Bending of a cylindrical sector. A deformation with coordinate representation
r=#R), 0 =B0O, z=4AZ, (5.1)

with d' >0,B>0,and 4> 0, describes bending and axial stretching of a cylin-
drlcal sector Here (R, ©, Z) and (r, 8, z) are cylindrical polar coordinates of a
particle before and after deformation. When B = 1 and A = 1, the deformation
reduces to the case of radial expansion or compaction, treated by Chung, Horgan,
and Abeyaratne [13].

The deformation gradient tensor

F= j;;e,®eR l;re9®ee+lez®ez (5.2)
admits a polar decomposition F = VR, with
R=¢ Qe,+te,®ey+e,®e, (5.3)
and dr Br
V= JRE®et Re0®e9+lez®ez. (5.4)

Substitution from Eq. (5.4) in the stress response equation (2.5) gives the principal

stresses as
R (dR\’ R’ dR
Trr”(“ﬁ(ﬂ) ) : Tae‘”(“ﬁiﬁ?ﬁ?) ’
R dR
rose (o)

The equations of equilibrium (2.7) reduce to the radial equation (4.6) and sub-
stitution from Egs. (5. 5)1 , in this equation leads to the nonlinear second-order
ordinary differential equation

(5.5)

dRd’R (dR\® R
drdz*'(w) "D 56)
which again does not involve the axial stretch, With the change of variable [13, 18]
Rdr
t= ~7R >0 (5.7)
Eq. (5.6) reduces to the first-order equation
dt I
3rd— =4-3t- 7 (5.8)

The cubic expression on the right-hand side of this equation has one real positive
zero «, say, and a complex conjugate pair f and f, with

a+B+B=0, BB-o'=3B>, afB =48 (5.9)
Thus, Eq. (5.8) may be written as
2 dt

3B = (@ — 1) + at + ) (5.10)
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or

tdr__ B [ 1 2te | 3e ! (5.1
rdi T BPydl |a—t 2 +at+fB) 207 L+ (t+a/2))y 1)

2 2
2 - (44 2 6]
V=ﬂﬁ—-4—=3(3 +~4—>. (5.12)
Integration of Eq. (5.11) gives
) —

21+a218%) M tat+ Bp (3a 1 2t+a)

r = A——t"g(1); 1) =exp| —tan , 5.13
where A > 0 is a constant of integration. Equations (5.7) and (5.10) give

3B leg Ho - 1)(F +at + BB), | (5.14)

which leads to )
_— 3(1+c?/B%)
RH+IBY _ t g(1) (5.15)

(a— 0" +at+ pHE
with C > 0. Equations (5.13) and (5.15) are a parametric representation of the radial

deformation function #(R) in Eq. (5.1), with parameter ¢ taking values O0<t<a.
When B = 1, the function on the right-hand side of Eq. (5.8) has a zero o = 1

and Eq. (5.9) and (5.12) give BB =4 and y = i: Equations (5.13) and (5.15)
reduce to

4
r4 At +1+

6
e K=C el (s19)

(1=n% +t+4)
with
g(t) = exp \/— "‘2\7551 (5.17)

which is the solution obtained by Chung, Horgan, and Abeyaratne [13].

6. Eversion of a cylindrical sector. A deformation

r=iR), 0=©, z=-iZ, (6.1)
with & <0 and >0, describes eversion of a cylindrical sector. The deformation
gradlent

dr r

F_dR e, ®ep+ Reo®ee—ﬂvez®eZ (6.2)

admits a polar decomposition F = VR, with
R=—e Qe,+e0e—¢ 8¢ (6.3)
and

v, ®e + = Le,@e,+le,@¢,. (6.4)

dR" R

EDD/ VPK/ ~ tato rqgm{zqienim_z slouzi g)’:hradne' pro ucely vyzhkumu a soukromého studia driitele uZivatelského konta.
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Substitution from Eq. (6.4) in the stress response equation (2.5) gives the principal

stresses as
R dR .3 R’ dR
T”='u(l+/l(d_)> T99=u<1+ 3dr>

(6.5)
T 1+ — R dR
zz =4 13 a’r
The radial equation of equilibrium reduces to
dRd’R  ,dR3 R’ _
REBER (P -5 =0, (6.6)
which is the same as Eq. (5.6), with B = 1. The change of variable
_Rdr
t=——op > 0 (6.7)
reduces Eq. (6.6) to the first-order equation
b%:—@+Mﬁ—H4L (6.8)
which may be integrated to give
4 A-t+4 0! 2t—1
r A~——ht; htzexp( > 6.9
(117 (1) (1) J_ 73 (6.9)
where A4 (> 0) is a constant of integration. Equations (6.7) and (6.8) give
dt
3RdR (t+1)(t ~t+4), (6.10)
which leads to ;
R—p_ tH) (6.11)

(t+ D)2 —t+4)
Equations (6.9) and (6.11) are a parametric representation of the solution for cylin-
drical eversion, with parameter ¢ > 0. This solution is simply that obtained by
Chung, Horgan, and Abeyaratne [13], with ¢ replaced by —z.

7. Eversion of a spherical sector. A deformation

r=#R), 0=1-0, ¢=0, (7.1)
with 4% <0, describes eversion of a spherical sector. The deformation gradient
dr r
F= 7R e e, — R(e0®ee—ed)®e¢) (7.2)
admits a polar decomposition F = YR, with
R=-e @e,—e,Qeq+e, Q¢ (7.3)
and
dr r
Ve=-— dRer®e R(e0®e0+e¢®e¢). (7.4)
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Substitution from Eq. (7.4) in the stress response equation (2.5) gives the principal
stresses as

R® (dR\? R*dR
T,=u (1 + 7 (g;) ) ) Tyg=Tyy=H (1 + Fz;‘) . (7.5)

The equations of equilibrium (2.8) reduce to the radial equation
daT 2

7# + 7(Trr - TOH) =0, (76)
or 2 3
3 2dRd°R 3 [(dR 4
3rR W?d?ﬁ-er(W) -2R =0, (1.7

which is the same as the equation obtained by Chung, Horgan, and Abeyaratne [13]
in the case of radial expansion or compaction (;‘,% >0).
The change of variable

R dr
= '—7—ﬁ >0 (78)
leads to the first-order equation
3r—Z—£ =—{t+ 1)(2t2 -2t +35). (7.9)

Proceeding as in the previous section leads to a parametric representation of the
deformation, with parameter ¢ > 0, which is obtained from the solution in [13] by

replacing ¢ by —¢, viz.

S g2 ZMES ) RS g ngn N AL)
(t+1) (t+1Y°Q2r -2t+5)
with
k() =exp (—2 tan”' 2t3_ 1) . (7.11)
8. Torsion and extension of a circular cylinder or tube. The deformation
r=FR), §=0+DZ, z=AZ, (8.1)

with 4% > 0,D > 0, and A > 0, describes torsion of a cylinder, with twist D

a—R- 0 .
per unit undeformed length, accompanied by uniform axial stretch and by radial

deformation. The deformation gradient tensor is

F= g%e,‘®eR+—]rie9®ee+/1e_,®ez+Dre0®ez. (8.2)
. - — T
A routine calculation gives the physical components of B™! = (F ) F in the
(r, 8, z) system as ,
(482 0o 0
—1 1 DR
B'=| 0 & -8 (8.3)
0 _ DR 14D’R

EDD / VPK/— tato rozmnoZenina slouZi vyphradné pro tiéely vyzlkiemu a soukromého studia dritele uZivatelského konta.
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Substitution from Eqgs. (8.2) and (8.3) in the stress response equation (2.5) gives
the physical components of Cauchy stress as

R (dR\? _ uDR*dR

T””(“I?(Ef”’ To:= 207
R®dR

TM:”(l_F?ﬁ)’

R(1+D*R*) dR
TZZ:#(I—_(—T_)F):_)’ Tr{}:O.
Since these depend on the radial coordinate r only, it follows that only the in-plane
stresses T, and T,, enter in the equations of equilibrium. Furthermore, these
stresses are unaffected by the torsion (for a Blatz-Ko material), i.e., they are the
same as those in Eq. (5.5), ,, with B = 1. It follows that a material with strain
energy (2.4) admits a deformation of form (8.1) with the radial deformation given
by Egs. (5.16) and (5.17).

In particular, it follows that Blatz-Ko materials admit pure torsion, or torsion
superposed on homogeneous axisymmetric stretch

r=aR, 6=0+DZ, z=AZ. (8.5)
This has also been observed by Beatty [15]. The stress components are given by (8.4)
and (8.5) as
1 UDR
O R |
1
T,, = 1-—, T =0,
a6 U ( /16!4) zr (86)
1+ D*R?
Tzz=#(l_W)’ Ty =0.
If the lateral stretch o is given by
a=1"" (8.7)
then the stress components (8.6) reduce to
_ =5 2,2 _ uDR
T.=u(1-27"1+DRY), Ty, =S5 5.9

Trr = T(;‘(} = Tzr = Tr@ = O’
and so the lateral surface of a solid circular cylinder or a hollow tube can be rendered

traction-free when (8.7) holds. The resultant normal force T on the ends of a hollow
cylinder of inner and outer radii R, and R, is given by Eq. (8.8) | as

aR
T= 27r/ Trdr = SR - B (207 <47 - DR 4 R). (89)
aR,

In particular, the normal force needed to support pure torsion (A=1) is a compres-
‘ve force :

T=2

auD (R — RY). (8.10)
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The relationship between the amount of twist and the axial stretch, when there is no
resultant axial force, is obtained by setting 7 =0 in Eq. (8.9), giving

5/2 12,2
P =14 3D"(R; + Ry). (8.11)
The twisting moment is given as
aR,
M= 27r/ T, dr = "2 (R} - RY) (8.12)
aR 21

Thus, if the axial stretch A is specified then the torsional rigidity MD- 1§ constant.
Furthermore, when A = 1, (8.10) and (8.12) yield the result

|T| =DM, (8.13)

a universal relation between applied twisting moment and compressive thrust. The
result (8.13) was also obtained by Beatty [15]. On the other hand, if there is no
resultant normal force on the ends, then elimination of 4 from Egs. (8.11) and
(8.12) gives a nonlinear relationship between M and D.

9, Bending and shearing deformations. The result obtained in the previous section
suggests that it may be worthwhile to examine, for the Blatz-Ko strain energy (2.4),
nonisochoric generalizations of the five families of nonhomogeneous deformations
which are known to be controllable deformations for all homogeneous, isotropic,
incompressible elastic solids [1, 3].

Family 1.
x =x(R), y=C0+DZ, z=FEO+FZ, (9.1)
with ix
(CF - DE)zm > 0. 9.2)

This deformation describes straightening and stretching of a cylindrical sector, to-
gether with shearings in the y- and s-directions. A routine calculation gives the

Cartesian components of the deformation tensor B! as

(CF — DE)*(4&)? 0 0
B = (CT}_D—EF 0 PR+ E*  —FDR*-CE|. (93)
0 _FDR*—CE C*+D'R’

The Cauchy stress is obtained by substituting from Eq. (9.3) in the stress response
equation (2.5). The equation of equilibrium again reduces to the form (3.7), lead.mg
to an equation of form (3.9) with 4B replaced by CF —DE . Thus, the deformation

(9.1) takes the form
x=3(cr-pE)"R",  y=CO+DZ, s—E@+FZ.  (94)

Family 2.
r=HX), §=CY+DZ, z=EY+FZ, (9.5)

EDD / VPK/ = tato rozmno¥enina slouzi vyhradné pro icely vpekumu a soukromého studia drZitele uZivatelského konta.
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with
(CF = DE)— > 0. (9.6)
This deformation describes bending and stretching of a rectangular block, together

with torsional and axial shearings. A routine calculation gives the physical compo-
nents of B™' in the cylindrical system as

(CF — DE)* (44 0 0
B'lzrc;"l—pf)f 0 By _CEDE) ., (9.7)
0 ~CE+DE  C? 4 D?

and the stress is obtained by substituting from this equation in Eq. (2.5). The
equations of equilibrium again reduce to the radial equation (4.6), and the stress
components T, and T,, are those in Egs. (4.5) L2 with

rr
p= Cf_DE ‘DEZ . a=yEr+FL (9.8)
E*+F
The deformation is therefore given by Egs. (4.9), (9.5), and (9.8).
Family 3.

r=FR), §=CO+DZ, z=E®+FZ, (9.9)
with d
r

(CF = DE) > 0. (9.10)

This deformation may describe extension and radial expansion or compaction of
cylinders, eversion or bending of cylindrical sectors, and torsxonal and axial shearing.
A routine calculation gives the physical components of B™ " in the (r, 8, z) system
as

(CF — DE)*(4R)? 0 0 .
_1 1 0 R4 E? _ FDR2‘+CE
= Cr-DE7 R
0 —EDR+CE  * 1 D’R

Substitution from this equation in the stress response equation (2.5) gives the physical
components of the Cauchy stress tensor. In particular, the components T, and T,
which are the only components to appear in the equation of equilibrium (4.6), are

given as

B R dR.3 B R(F’R*+ E*)dR
Tr*"“(l r(CF—DE)(W)>’ T“““(“WW ‘
(9.12)
Thus, the equation of equilibrium reduces to
dRd*R dRs (F*R*+E*R

3R—

ar a7 Y ar" T cF —pEpR - o1
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This equation may be reduced to a first-order equation by a change of variable (5.7) or
(6.7) only if E =0, i.e., when there is no axial shearing. In this case, the deformation
is given by Eqgs. (5.13) and (5.15), with B = C, for 4% > 0, and the solution for
eversion and torsional shearing is obtained by substituting ~¢ for ¢.

Family 4. The controllable isochoric deformations in Family 4 describe spherically
radial expansion or compaction, or eversion. These have been examined for the
Blatz-Ko strain energy function, by Chung, Horgan, and Abeyaratne [13], and in
Sec. 7.

Family 5. A deformation of form
r=#R), 0=BO+f(R), z=2MZ, (9.14)

describes radial deformation, bending, azimuthal shearing and uniform axial stretch-
ing of a cylindrical sector. This deformation may also be written in inverse form
as

z
1‘.
A routine calculation gives the physical components of B~! in the (r, 8, z) system
as

R=R(r), ®=—11§(6—F(r)), Z= (9.15)

2 T IRy 2
(Y + &4 -E% 0

Br
—1 2 2
B = a1 L ol (9.16)
0 0 4

Equations (2.5) and (9.16) give the Cauchy stress components as

R dR.dR, R} dF B
T=,u<1 [(W) + ('d‘T) ])s TOZ*O’

~ B dr 7
R® dR
T00=‘u<1—'m2—;’—> N Tzr=0’ (9.17)
R dR _ pR’ dRAF
Tzz:#<1—ﬁ7; ; W= g2 dr dr
The equations of equilibrium (2.7) reduce to Eq. (4.6) and
dr, 2
o+ 2Ty, =0, (9.18)
and substitution from Eq. (9.17) , leads to
. 3
d—Rﬁi—]: = -4 s (9.19)
dr dr R~

where A is a constant of integration. Substitution from Eqs. (9.17), , and (9.19) in
the radial equation of equilibrium gives a nonlinear second-order ordinary differential
equation for the function R(r), so that Blatz-Ko materials can sustain deformations
of the form (9.14). However, this equation is reduced to a first-order equation by the
change of variable (5.7) only if 4 = 0, in which case the deformation (9.14) differs
from (5.1) only by a rigid rotation.

EDD / VPK/— tato rozmnaZenina slousi vphradné pro ucely vizkumu a soukromého studia drzitele uZivatelského konta.
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