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1. Introduction 

Most of the available exact solutions in finite elasticity pertain to incompressible 
materials. These include the so-called controllable or universal deformations, the 
associated quasi-equilibrated motions (including radial oscillations of hollow cylinders 
and spheres), and some propagating wave solutions (see, for example, Truesdell and 
Noll [1]). There are very few exact solutions available for compressible materials, 
other than those involving homogeneous deformations. One exception is the solution 
[2] for a transverse circularly-polarized harmonic plane progressive wave, which has 
the unusual feature that the strain invariants associated with the nonhomogeneous 
motion are constant in space and time. A somewhat similar solution involving a 
spatially nonuniform oscillatory shearing motion, for which the strain invariants are 
spatially uniform but time-dependent, is presented here. Such a motion can be sustained 
in a compressible or incompressible homogeneous isotropic elastic solid without 
applying a body force. The spatial geometry is the same for all materials and the nature 
of the time-dependence, for a particular material, is determined by the generalized 
shear modulus. The motion is one which can be sustained in a layer by subjecting its 
two faces to rectilinear motions in different directions. A more general solution is 
discussed briefly, and it is also shown that a certain shearing motion with spatially non- 
uniform time-independent strain invariants can be sustained only in incompressible 
materials. Finally, the motions are shown to coexist with spatially uniform, time- 
dependent temperatures in thermoelastic solids, in the absence of body force and 
volume supply of heat. 

2. Preliminaries 

The response of a homogeneous istropic elastic solid to deformations from an 
undistorted reference configuration is described by a constitutive relation 

T = cd +/3B + ~,B -1, (2.1) 

where Tis the Cauchy stress tensor, 1 is the unit tensor and B is the left Cauchy-Green 
deformation tensor, defined by 

= T, (2.2) 
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F being the deformation gradient tensor. The scalars a,/3 and ~ are functions of the 
principal invariants of B, which are denoted by IB, IIB, IIIB. 

For  a homogeneous simple shear 

x =  X + K Z ,  y =  Y, z = Z ,  (2.3) 

where x, y, z and X, u Z denote the rectangular Cartesian coordinates of a particle 
in the deformed configuration, and in the reference configuration, respectively, the 
strain invariants are 

IB = II~ = 3 + K z, IIIB = 1. (2 .4)  

The nonzero stress components are 

Tx,: = a + ~, + (1 +K2) /3 ,  Tyy = a + /3 + ~,, T ~ = c ~ + / 3 + ( 1  +K2)y ,  

Tz,: = Tx~ = (/3 - 7)K,  (2.5) 

where a,/3 and 7, are functions of the invariants (2.4). In particular, the ratio T~x/K 

of the shear stress to the amount of shear is an even function of the amount of shear, 

f i (K  ~) = t3(3 + K 2, 3 + K ~, 1) - ~,(3 + K 2, 3 + K z, 1) (2.6) 

and it is called the generalized shear modulus. 
For incompressible materials, the constitutive relation (2.1) is replaced by 

T = - p l  + fiB + y B  -1 (2.7) 

where p is an arbitrary scalar and/3 and ~ are functions of the strain invariants IB and 
IIB (the invariant IIIB has the value 1 for all possible motions). The generalized shear 

modulus is defined in a manner similar to (2.6). 

3. A n  Osc i l la tory  Shearing M o t i o n  

Consider a motion 

x =  X + f ( t )  c o s k Z ,  y =  Y + f ( t )  s i n k Z ,  z =  Z ,  (3.1) 

where x, y, z are coordinates of a particle at time t and k is a constant. A routine 
calculation shows that the strain invariants are 

I~ = I I B  = 3 + k 2 f  2, IIIB = 1, (3.2) 

and so depend only on t, while the stress components are independent of x and y. 
The stress components Txz, Tyz and T~z are 

T ~  = - # ( k 2 f f ) k f  sin kz ,  

T~z = f i ( k2 f2 ) k f  cos  kz ,  (3.3) 

Tz.  = ~, + / 3  + (1 + k~f2)e,  
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so that T~ is independent of z. Accordingly, the equations of motion, with no body 
force, are satisfied if 

pj~ +/3(k2f2)k2f = 0, (3.4) 

where the dot denotes differentiation with respect to time and the density p is constant, 
in view of (3.2)3. Thus, the motion (3.l) is possible, in the absence of body force, in 

any compressible homogeneous isotropic elastic solid if the funct ionf( t )  satisfies the 
differential equation (3.4). The motion depends on a limited aspect of the material 
response, namely, the generalized shear modulus/3, and on the initial density p. It is 
evident that such a motion is also possible in an incompressible solid. 

Equation (3.4) may be integrated once to give 

p/~ = M(kbCm ~) - M(ky~),  (3.5) 

where the function M is defined by 

f 18 

M(s) = | /3(,~)d,, (3.6) 
d 0 

and fro is a constant. Thus, (3.4) generally describes a nonlinear oscillation, whose form 
is obtained by a further integration of (3.5), and with period ~- given by 

T = 2 ~ = (3.7) 
r~ f 1m {M(k2f2m) -- ~/(k2f2)} 112 

The maximum amplitude fm and the velocity f~ at the equilibrium position f = 0 are 
related through 

pf8 = M(k2f2m). (3.8) 

For  materials whose generalized shear modulus is constant 1) the oscillation is linear 
with 

f = fm cos (o)t + if); ~o = k(~/#) ~/2. (3.9) 

It should be clear that, while the motion described by (3.1) and (3.4) represents a 
free oscillation of an infinite body in that no body force is needed to sustain it, it is not 
free for a finite or semi-infinite body since appropriate surface tractions must be applied. 
For  a layer of material occupying the region 0 _< Z _< L, for example, (3.1) describes 
oscillatory motion of the faces Z = 0 and Z = L in the x-direction and in the y- 
direction, respectively, if 

lc = (n + ~), /L (n = 0, 1, 2 , . . . ) .  (3.10) 

There is a specific amplitude functionf(t) ,  found by integration of (3.5), for each mode 
n = 0, 1, 2 . . . . .  and, of course, the principle of superposition does not apply. The 
time-dependent tractions on the faces Z = 0 and Z = L can be read off from (3.3). 

1) This is true, for instance, of neo-Hookean and Mooney-Rivlin materials, which are com- 
monly used to model the nonlinear behavior of rubber. 
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For the reasons just stated this solution may not be a very useful one, but it is 
of interest as an exact solution involving finite nonhomogeneous motions of compres- 
sible or incompressible elastic solids. 

4. A More General Shearing Motion 

The strain invariants associated with the motion 

x = S + f ( t )  cos {kZ  + r 

y = Y + f ( t )  sin {kZ + r (4.1) 

z = Z ,  

are also given by (3.2). Proceeding as before leads to a coupled pair of differential 
equations for the functions f ( t )  and ~b(t); 

; (k f=)k2f + P0'-f 2) = 0 and + = 0. (4.Z) 

The second equation implies 

f2~ = A (constant) (4.3) 

and substituting in the first equation gives an equation for f ( t )  

fz(k2f2)k2f + p ( j / -  A2/ f  3) = 0. (4.4) 

This may be integrated once to give 

M ( k Z f  2) + o ( f  2 + A2/ f  2) = B (constant) (4.5) 

and it follows t h a t f i s  singular a t f  = 0 unless A = 0, which represents the situation 
discussed in the previous section. Otherwise the body does not occupy its equilibrium 
position at any time. I f f i s  constant, so that ff is linear in t, the motion (4.1) represents 
the circularly-polarized plane wave discussed previously [2]. 

5. Motions with Time-Independent Invariants 

The results of the previous sections suggest that it may also be useful to consider 
motions with strain invariants which are spatially nonuniform and constant in time. 
The motion 

x = X + g ( Z )  cos ~ot, y = Y + g ( Z )  sin wt, z = Z, (5.1) 

for example, has invariants 

IB =I IB  = 3 + g,2, IIIB = 1, (5.2) 

where the prime denotes differentiation with respect to Z (or z). The stress components 
are independent of x and y, with Tx~, T ~  and T~z given by 

Txz = I~(g'2)g ' cos o~t, 

Ty~ = tz(g'2)g ' sin o~t, (5.3) 

Tzz = = + fl + (1 +g'2)y. 
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Since T~ depends on z the motion (5.1) cannot be sustained in a compressible material 
without applying a body force. 

For incompressible materials, however, T= is given by 

T.~ = - p  + fl + (1 + g,2)~, (5.4) 

and the arbitrary pressure p allows the motion if 

~(g,2)g,}, + poJ2g = constant. (5.5) 

The more general motion described by 

x = X + g (Z )  cos {wt + ~b(Z)}, 

y = Y + g ( Z )  sin {wt + ~b(Z)}, (5.6) 

z - - Z ,  

has time-independent strain invariants and can be ~ustained in an incompressible 
material provided 

~ g ' ) '  - t~g~b '2 + poJ2g = 0 and ~g~b' = constant, (5.7) 

where t~ denotes/~(g,2 + g~ff,2). 

6. Thermoelastie Solids 

Motions of the form (3.1) and (4.1) may also coexist with a spatially uniform 
temperature field, h(t) say, in every homogeneous, isotropic, thermoelastic solid, in 
the absence of body force and heat supply. 2) The shear stress and the entropy in simple 
shear are functions of the amount of shear and of the temperature, the form of these 
functions being derived from the constitutive function which relates the Helmholtz 
free energy to the strain invariants and the temperature [1]. 

A spatially uniform temperature implies that there is no heat conduction and 
hence (since there is no heat supply) that the process is isentropic. Thus, the functions 
f ( t )  and h(t) satisfy the equations 

p f  + #(k2f 2, h)k2f = 0 and 9(k2f 2, h) = constant, (6.1) 

where ~ is the response function for the specific entropy in simple shear. 
A similar result applies for the motion (4.1) and, in particular, a harmonic, circu- 

larly-polarized, plane progressive wave may coexist with any uniform constant 
temperature and the wave speed depends, in general, on the wave amplitude and on 
the temperature. 
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2) in fact, motions (3.1) and (4.1) and spatially uniform temperature fields may be sustained in. 
fluids and isotropic solids, whose response is not elastic, without application of body force or 
radiative heat supply. A detailed treatment is given in a forthcoming paper [3]. 
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Abstract 

A finite oscillatory shearing motion is shown to be possible, in the absence of body force, 
in every homogeneous isotropic compressible or incompressible elastic solid. The spatial geometry 
is the same for all materials and the nature of the time-dependence, for a particular material, is 
determined by the generalized shear modulus. A rnotion of this type and a spatially uniform, 
time-dependent temperature can be supported in therrnoelastic solids, without application of 
body force or volume supply of heat. 

Zusammenfassung 

Es wird gezeigt, dass in Abwesenheit yon Raumkr/iften in jedem hornogenen isotropen-- 
kornpressiblen oder inkornpressiblen--elastischen Festk6rper eine endliche Schiebschwingung 
rn6glich ist. Die Raurngeometrie ist ffir alle Materialien dieselbe, und die Art der Zeitabhfingigkeit 
wird for jedes Material durch cinch verallgerneinerten Schubmodul bestirnmt. Eine Bewegung 
dieser Art und eine r~urnlich gleichf6rmige, zeitabh~ingige Temperatur lassen sich in therrno- 
elastischen Festk6rpern ohne Raurnkraft oder r~umliche W/irmcquellen aufrecht erhalten. 
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