
NMMO 401 Continuum mechanics Winter 2020/2021 Homework problems

Deadline: Thursday 7th January 2021
Consider a homogeneous isotropic elastic solid with the Helmholtz free energy in the form

ψ = ψ(θ,B). (1)

We already know that the Cauchy stress T tensor is related to the derivative of the Helmholtz free energy via the formula

T = 2ρ
∂ψ

∂B
B. (2)

1. Since the material is isotropic, the Helmholtz free energy must be in fact a function of the invariants of B,

ψ = ψ(θ, I1, I2, I3), (3)

where the invariants are given by the formuale

I1 =def TrB, I2 =def
1

2
((TrB)2 −TrB2) , I3 =def detB.

(Recall that we have the representation theorem for scalar isotropic functions.) Show that if we use (3) in (2), then the
formula for the Cauchy stress tensor reads

T = β0I + β1B + β−1B
−1, (4a)

where

β0 =def 2ρ(I2
∂ψ

∂I2
+ I3

∂ψ

∂I3
) , (4b)

β1 =def 2ρ
∂ψ

∂I1
, (4c)

β−1 =def −2ρ I3
∂ψ

∂I2
. (4d)

Note that the corresponding formulae are in the most textbooks on solid mechanics written in a slightly different form.
The reason is that the Helmholtz free energy is frequently defined as the Helmholtz free energy per unit volume, while
we have defined the Helmholtz free energy as the energy per unit mass.

2. Some people prefer to write (1) as
ψ = ψ(θ, J,B),

where J =def detF and

B =def
B

J
2
3

.

This decomposition is motivated by the fact that J is related to the volume-changing part of the deformation, while B
characterises the volume-preserving part of the deformation. (Check that detB = 1.) Show that in this case the
counterpart of (2) is

T = ρJ ∂ψ
∂J

I + 2ρ(∂ψ
∂B

B)
δ
,

where Aδ =def A − 1
3
(TrA) I denotes the traceless part of the corresponding tensorial quantity.

Deadline: Thursday 17th December 2020

1. Let TR and T denote the first Piola–Kirchhoff tensor and the Cauchy stress tensor respectively. Show that

DivTR = (detF)divT,

or, in detail, that
DivX TR(X, T ) = (detF(X, t)) (divx T(x, t))∣x=χ(X,t) ,

where F denotes the deformation gradient and χ(X, t) is the deformation. (Hint: Direct differentiation is not a good
idea, try the intergal formulation thereof!) Show that if we fix T = I, then the identity reads

Div cof F = 0.

This identity is usually referred to as the Piola’s identity.

2. [Optional] Show that the equation Div cof F = 0 is the Euler–Lagrange equation for the functional Ψ(χ) = ∫V (t0) detFdV.

Deadline: Thursday 10th December 2020
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1. We know that the stress–strain relation for an isotropic solid in the linearised setting reads

� = λ (Tr �) I + 2µ�,

where the linearised strain tensor is defined as � = 1
2
(∇U +∇U⊺). Show that the balance of momentum is in this setting

reduced to the following evolution equation for the displacement U ,

ρR
∂2U

∂t2
= (λ + µ)∇divU + µ∆U .

(We do not consider body forces.)

Deadline: Thursday 3rd December 2020

1. We have investigated the deformation of a right circular cylinder of length L and radius R by the force F , see Figure 1.

Using the already known formula for the displacement field, show that

−
∆R
R

∆L
L

= λ

2 (λ + µ)
,

where ∆L denotes the change of the length of the cylinder in the direction of the z-axis, and ∆R denotes the change of
the radius of the cylinder. The constant ν =def

λ
2(λ+µ) is referred to as the Poisson’s ratio.

R

x

y

L

eϕ̂

er̂ eẑ

−F

z

F

Figure 1: Deformation of a right circular cylinder.

Deadline: Thursday 26th November 2020

1. Assume that the specific Helmholtz free energy is a function of the principal invariants of B, that is

ψ = ψ(θ, I1(B), I2(B), I3(B)).

Show that this structural assumption implies that

∂ψ

∂B
B = B∂ψ

∂B
.

Deadline: Thursday 19th November 2020

1. Consider the energetic equation of state for the calorically perfect ideal gas e(η, ρ). (The equation of state has been

identified in the previous homework, I recall that we have obtained e(η, ρ) = cV,refθref ( ρ
ρref

)
γ−1

e
η

cV,ref .) Show that the

specific Helmholtz free energy ψ for the calorically perfect ideal gas is given by the formula

ψ(θ, ρ) = −cV,refθ (ln( θ

θref
) − 1) + cV,refθ (γ − 1) ln( ρ

ρref
) , (5)

where ρref and θref are some constants. (Temperature and density at a reference state.)

2. [Optional – Easy but useful for those of you who are starting with thermodynamics.] Show that the general formulae

pth(θ, ρ) = ρ2 ∂ψ

∂ρ
(θ, ρ),

cV(θ, ρ) = −θ∂
2ψ

∂θ2
(θ, ρ),

and the Helmholtz free energy in the form (5) give the expected formulae for the thermodynamic pressure pth and for
the specific heat at constant volume cV (as functions of temperature and density), namely the formulae

pth = cV,ref (γ − 1)ρθ,
cV = cV,ref .
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3. [Optional – A little bit more difficult exercise, just for those of you who are really interested in the subject matter.]
Consider a viscous compressible heat conducting fluid in a thermodynamically isolated vessel Ω. (Not necessarily a
calorically prefect ideal gas.) The governing equations are

dρ

dt
+ ρdivv = 0,

ρ
dv

dt
= div (−pthI + λdivv + 2µD) ,

ρcV
dθ

dt
= −θ∂pth

∂θ
divv + 2µD ∶D + λ (divv)2 + div (κ∇θ) ,

and the boundary conditions are

v∣∂Ω = 0,

κ∇θ ●n = 0.

Clearly, one solution of these governing equations (with the given boundary conditions) is the spatially homogeneous
rest state [ρ̂, θ̂, v̂], where ρ̂ and θ̂ are some constants and v̂ = 0.

a) Write down the governing equations in the neighborhood of this spatially homogeneous rest state, and linerise
these governing equations. More specifically, rewrite the density, temperature and velocity as

ρ = ρ̂ + ρ̃,
v = v̂ + ṽ,
θ = θ̂ + θ̃,

and formally find the linearised equations for the perturbation [ρ̃, ṽ, θ̃]. (That is neglect all terms that are nonlinear
in [ρ̃, ṽ, θ̃].) For example, the balance of mass is manipulated as follows,

dρ

dt
+ ρdivv = ∂ρ

∂t
+ v ● ∇ρ + ρdivv = ∂

∂t
(ρ̂ + ρ̃) + v̂ + ṽ ● ∇(ρ̂ + ρ̃) + (ρ̂ + ρ̃)div (v̂ + ṽ)

= ∂ρ̃
∂t

+ ṽ ● ∇ρ̃ + (ρ̂ + ρ̃)div ṽ ≈ ∂ρ̃
∂t

+ ρ̂div ṽ,

where in the last equality we have neglected the terms that are nonlinear in the perturbation.

At the end you should obtain the following system of linearised governing equations for the perturbation.

∂ρ̃

∂t
+ ρ̂div ṽ = 0,

ρ̂
∂ṽ

∂t
= div(−( ∂pth

∂θ
(θ, ρ)∣

θ=θ̂, ρ=ρ̂
θ̃ + ∂pth

∂ρ
(θ, ρ)∣

θ=θ̂, ρ=ρ̂
ρ̃) I + λdiv ṽ + 2µD̃) ,

ρ̂cV (θ̂, ρ̂) ∂θ̃
∂t

= −θ̂ ∂pth

∂θ
(θ, ρ)∣

θ=θ̂, ρ=ρ̂
div ṽ + div (κ∇θ̃) .

b) Using the governing equations for the perturbation, show that the following equality holds

1

2

d

dt

⎛
⎝
ρ̂∫

Ω
∣ṽ∣2 dv + 1

ρ̂

∂pth

∂ρ
(θ, ρ)∣

θ=θ̂, ρ=ρ̂
∫

Ω
ρ̃2 dv + ρ̂

cV (θ̂, ρ̂)
θ̂

∫
Ω
θ̃2 dv

⎞
⎠

= −∫
Ω
λ (div ṽ)2

dv − ∫
Ω

2µD̃ ∶ D̃dv − ∫
Ω
κ∇θ̃ ● ∇θ̃ dv.

(The equality is obtained by “testing” the governing equations with ṽ and θ̃ and the integration by parts. Recall
the boundary conditions!)

c) Assume that want the spatially homogeneous rest state to be stable, that is we want the perturbations to decay in
∥⋅∥L2(Ω) as t → +∞. (This is definitely a good property – any pertrubation to a rest state in a themodynamically

isolated vessel should eventually die out.) Show that this behaviour can be expected provided that we require

cV (θ̂, ρ̂) > 0,

∂pth

∂ρ
(θ, ρ)∣

θ=θ̂, ρ=ρ̂
> 0.



NMMO 401 Continuum mechanics Winter 2020/2021 Homework problems

d) Show that the conditions introduced above can be rewritten in terms of the following conditions on the specific
Helmhotz free energy,

∂2ψ

∂θ2
(θ, 1

ρ
) < 0,

∂2ψ

∂( 1
ρ
)

2
(θ, 1

ρ
) > 0.

This observation shows us that the stability of the rest state is intimately related to the convex-
ity/concavity of the specific Helmholtz free energy.

Deadline: Thursday 12th November 2020

1. Using the assumption that the internal energy e is a function of the density ρ and the yet unknown quantity referred
to as the entropy η, that is e = e(η, ρ), we were able to show that the quantity η has all the desired properties provided
that e = e(η, ρ) satisfies partial differential equations

∂e

∂η
(η, ρ) = θ, (6a)

ρ2 ∂e

∂ρ
(η, ρ) = pth. (6b)

Let us assume that our substance of interest is the calorically perfect ideal gas. We know that the equation of state for
this substance reads

pth = cV,ref (γ − 1)ρθ, (7a)

where cV,ref is a positive constant (specific heat at constant volume) and γ is a positive constant greater that one
(adiabatic exponent). Symbol θ denotes the absolute temperature. (This is the way how one writes the equation of
state PV = nRT in the continuum mechanics setting. We pretend that we do not know anything about atoms, hence
we can hardly use concepts such as “molar mass” or “molar gas constant” and so forth.) Further, we also know that
the internal energy of the substance is proportional to the temperature

e = cV,refθ. (7b)

Note that in the last equation we write e as a function of the density and the temperature, that is it should read
e(ρ, θ) = cV,refθ. As you probably know, the relations (7) are outcomes of experiments, see Gay-Lussac, Boyle, Charles
and Joule expansion.

Now use characterisations (7) and solve the partial differential equations (6) for the internal energy e as a function of
the entropy and the density. Once you find the function e(η, ρ), find also explicit formula for the entropy as a function
of the temperature and the density, η(θ, ρ). You should obtain something like

η(θ, ρ) = cV,ref ln [ θ

θref
( ρ

ρref
)

1−γ
] .

Deadline: Thursday 5th November 2020
Let q(x, t) ∈ R3 be a vector field in R3. Let χ ∶ B0 ⊂ R3 ↦ Bt ⊂ R3 be the deformation function, and let s(t) be a surface
transported by the medium, that is s(t) = χ(S(t0), t0), where S(t0) denotes the position of the surface at time t = t0.

1. Show that the time derivative of the flux of q through a material surface s(t), that is of the integral ∫s(t) q ●nds, where

n denotes the normal to the surface s(t), reads

d

dt
∫
s(t)

q ●nds = ∫
s(t)

(dq

dt
+ q divv − Lq) ●nds,

where the symbol d
dt

denotes the material time derivative, and L denotes the gradient of the Eulerian velocity field
L =def ∇v.

2. Show that the formula for the time derivative of the flux of q through a material surface s(s) can be equivalently
rewritten as

d

dt
∫
s(t)

q ●nds = ∫
s(t)

(∂q
∂t

+ rot (q × v) + v divq) ●nds.

Hint: All you need to do is to repeat the derivation of Reynolds transport theorem, but this time for the surface integral.
Deadline: Thursday 29th October 2020

https://en.wikipedia.org/wiki/Gay-Lussac%27s_law
https://en.wikipedia.org/wiki/Boyle's_law
https://en.wikipedia.org/wiki/Charles%27s_law
https://en.wikipedia.org/wiki/Joule_expansion
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1. Consider the deformation χ given by the following formulae

r = f(R),
ϕ = Φ,

z = Z.

This means that the deformation χ is given as a function that takes a point with the coordinates [R,Φ, Z] in the
reference configuration—with respect to the cylindrical coordinate system—and returns the position of that point in
terms of cylindrical coordinates in the current configuration, see Figure 2.

Show that the deformation gradient F is given by the formula

F = df

dR
er̂ ⊗ER̂ +

f

R
eϕ̂ ⊗EΦ̂ + eẑ ⊗EẐ .

that is

F =
⎡⎢⎢⎢⎢⎢⎣

df
dR

0 0

0 f
R

0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

In other words, show that if we have a vector V = VR̂ER̂ + VΦ̂EΦ̂ + VẐEẐ in the reference configuration and a
corresponding vector c = vr̂er̂ + vϕ̂eϕ̂ + vẑeẑ in the current configuration, then the relation between the components of
the vectors reads

⎡⎢⎢⎢⎢⎢⎣

vr̂

vϕ̂

vẑ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

df
dR

0 0

0 f
R

0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

VR̂

VΦ̂

VẐ

⎤⎥⎥⎥⎥⎥⎥⎦

.

(Recall that by the vector we mean an infinitesimal line segment placed at the given point or a tangent vector to a
curve.) Since we have already found the formula using an insight into the geometrical meaning of F, I would like to
ask you to solve the problem by a brute force approach.

Since the formula for the deformation gradient in the Cartesian coordinate system reads

F = ∂χ
x̂

∂X
ex̂⊗EX̂+∂χ

x̂

∂Y
ex̂⊗EŶ +∂χ

x̂

∂Z
ex̂⊗EẐ+∂χ

ŷ

∂X
eŷ⊗EX̂+∂χ

ŷ

∂Y
eŷ⊗EŶ +∂χ

ŷ

∂Z
eŷ⊗EẐ+∂χ

ẑ

∂X
eẑ⊗EX̂+∂χ

ẑ

∂Y
eẑ⊗EŶ +∂χ

ẑ

∂Z
eẑ⊗EẐ ,

then in principle you need to use the chain rule to transform the derivatives, for example

∂χx̂

∂X
= ∂

∂X
(r cosϕ) = ∂r

∂X
cosϕ−r sinϕ

∂ϕ

∂X
= ( ∂r

∂R

∂R

∂X
+ ∂r

∂Φ

∂Φ

∂X
+ ∂r

∂Z

∂Z

∂X
) cosϕ−r sinϕ( ∂ϕ

∂R

∂R

∂X
+ ∂ϕ
∂Φ

∂Φ

∂X
+ ∂ϕ

∂Z

∂Z

∂X
) ,

and then also transform the basis accordingly, for example

EX̂ = cos ΦER̂ − sin ΦEΦ̂,

EŶ = sin ΦER̂ + cos ΦEΦ̂,

EẐ = EẐ .

At the end you should recover the formula we have already derived at last lecture.

Deadline: Thursday 22nd October 2020

1. Show that the formula for the rate of change of infinitesimal surface element ds reads as follows,

ḋs = ((divv) I − L⊺)ds.

2. Show that

∂I1(A)
∂A

[B] = TrB,

∂I2(A)
∂A

[B] = (TrA) (TrB) −Tr (AB) ,

∂2I1(A)
∂A2

[B,C] = 0,

∂2I2(A)
∂A2

[B,C] = (TrC) (TrB) −Tr (CB) ,

∂2I3(A)
∂A2

[B,C] = (detA) (Tr (A−1B)Tr (A−1C) −Tr (A−1BA−1C)) ,
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X x
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Y

EΦ̂ ER̂

Φ

[R,Φ, Z]
[r, ϕ, z]

eϕ̂

ϕ

r
R

x = χ(X, t)

Figure 2: Problem geometry.

where I1(A), I2(A) and I3(A) denote the principal invariants of matrix A, that is

I1(A) =def TrA,

I2(A) =def
1

2
((TrA)2 −Tr (A2)) ,

I3(A) =def detA.

Deadline: Thursday 15th October 2020

1. Let ϕ, ψ, u, v and A be smooth scalar, vector and tensor fields in R3. Show that

div(ϕv) = v ● (∇ϕ) + ϕdivv,

div(u × v) = v ● rotu −u ● rotv,

div (u⊗ v) = [∇u]v +udivv,

div (ϕA) = A (∇ϕ) + ϕdivA.

Further, show that

∇(ϕψ) = ψ∇ϕ + ϕ∇ψ,
∇(ϕv) = v ⊗∇ϕ + ϕ∇v,

∇(u ● v) = (∇u)⊺ v + (∇v)⊺u,
rot(ϕv) = ϕ rotv − v ×∇ϕ.

2. [Optional – I recommend this exercise for those who have never worked with the Levi–Civitta symbol] Let v be a
smooth vector field. Show that

rot (rotv) = ∇(divv) −∆v.

3. Let A be a sufficiently smooth tensor/matrix field, and let A be (at every point x) a symmetric matrix. Show that

rot ((rotA)⊺) = [∆ TrA − div (divA)] I + {∇(divA) + [∇(divA)]⊺} − ∇(∇TrA) −∆A.

(This identity is the counterpart of the identity rot (rotv) = ∇(divv) −∆v for tensor fields.)

Deadline: Thursday 8th October 2020
Let us assume that we know that

εijkεlmn = det

⎡⎢⎢⎢⎢⎢⎣

δil δim δin
δjl δjm δjn
δkl δkm δkn

⎤⎥⎥⎥⎥⎥⎦
.

1. Show that
εijkδlm = εjkmδil + εkimδjl + εijmδkl

2. Let us assume that a ∈ R3 is a unit vector, that is ∣a∣ = 1, and that u,v,w, t ∈ R3 are arbitrary vectors. Show that

(u × v) ● (t ×w) = (u ● t) (v ●w) − (u ●w) (v ● t) .
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Note that this identity implies that

∣u × v∣2 = (u × v) ● (u × v) = ∣u∣2 ∣v∣2 − (u ● v)2
.

Show that vectors (I − a⊗ a)u and a ×u have the same length, that is

∣(I − a⊗ a)u∣ = ∣a ×u∣ ,

where I denotes the identity matrix.

3. [Optional – I recommend this exercise for those who have never worked with the Levi–Civitta symbol] Show that

εijkεijn = 2δkn ,

εijkεimn = δjmδkn − δjnδkm .


