NMMO 401 Continuum mechanics Winter 2015/2016 Deadline 14th January 2016

Let A be a sufficiently smooth tensor field in R?, and let v € R? be an arbitrary, but fixed vector field. Then the tensor
rot A that satisfies
(rotA) " v = rot (ATv) (1)

for all v is called the curl of the tensor field A. If we want to work with components of rot A, then it is easy to see that
implies in Cartesian coordinate system
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1. Show that the following identities hold
rot (Vu) =0,

div (rotA) =0
for any smooth vector field u and tensor field A.

Let us now try to answer the following question. What is the condition that guarantees that a given tensor field is
generated as a symmetric part of a gradient of a vector field? That is whether there exists a vector field U such that

= % (VU +(vu)').

Recall that we are already able to answer the question whether a given tensor field F is generated as a gradient of some
vector function. If the domain is simply connected, the necessary and sufficient condition reads

rot F = 0.

Show that in the present case, the necessary and sufficient condition for being generated as a symmetric part of the
gradient of a vector field reads

rot ((rot )T) =0. (3)
(We again assume that the domain of interest is simply connected.) You can proceed as follows.
1. (Necessary condition) Assume that there exists a vector field U such that VU = 4+ | where is the symmetric part

of the gradient and is the skew symmetric part of the gradient. Show that in such a case we have

rot == (V(rotU)) " .
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and condition follows immediately.

2. (Sufficient condition) Fulfillment of and the fact that the domain is simply connected implies that there exists a
vector field @ such that (rot )" = Va. Let A denotes the skew-symmetric matrix associated to vector a. (Identity
Asw = a X w holds for any w.) Show that

rotAq = (diva)l — (Va)" (4a)
and that
diva = 0. (4b)
Now construct the tensor field g as
0 =def + Aaa

and show that this tensor field has a potential, that is there exists a vector field U such that VU = + A, which
completes the proof. (You may find formulae useful in the course of the proof.)

3. (You do not need to answer this question.) Given a tensor field that satisfies the compatibility condition

rot ((rot )T> = 0in a simply connected domain, is it possible to uniquely determine U such that = (VU + (VU)T) ?

If not, is it possible to fully characterize the arising ambiguity in the specification of U? (In other words, is it possible
to say that two different U generating the same differ at most by a certain class of motions?)



