16 Fundamental Equations §7
§7. The equations of equilibrium for isotropic bodies

Let us now derive the equations of equilibrium for isotropic solid bodies. To do so, we
substitute in the general equations (2.7)

00,4/0x, + pgi = 0
the expression (5.11) for the stress tensor. We have

0oy Eo 6u,,+ E a_u;,‘
x, (1+0)(1-20)0dx, 140 0x,

_ 1[0y, +6u,‘
=S o, ox, I

we obtain the equations of equilibrium in the form
E 9%y N E %y
2(1 +0)0x,2  2(1 +0) (1 — 20) 0x,0x,

Substituting

+pg; = 0. (7.1)

These equations can be conveniently rewritten in vector notation. The quantities 82u;/dx, 2
are components of the vector Au, and du,/0x, = div u. Thus the equations of equilibrium
become

Au+

2(1
graddivu = —pg {4 a)

5 7.
1-20 E 2

It is sometimes useful to transform this equation by using the vector identity
graddivu = Au+ curl curlu. Then (7.2) becomes

f.=
graddivu— ? curl curlu
2(1 —o)

(1 +0)(1 —20)

pg S P (7.3)

We have written the equations of equilibrium for a uniform gravitational field, since this
is the body force most usually encountered in the theory of elasticity. If there are other
body forces, the vector pg on the right-hand side of the equation must be replaced
accordingly.

A very important case is that where the deformation of the body is caused, not by body
forces, but by forces applied to its surface. The equation of equilibrium then becomes

(1 -20)Au+graddivu=0 (7.4)
or
2(l —o)graddivu— (1 — 20)curl curlu = 0. (7.5)

The external forces appear in the solution only through the boundary conditions.
Taking the divergence of equation (7.4) and using the identity

div grad = A,
we find
A diva =0, (7.6)

ie. divu (which determines the volume change due to the deformation) is a harmonic
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function. Taking the Laplacian of equation (7.4), we then obtain
AAu=0, (7.7)

i.e. in equilibrium the displacement vector satisfies the biharmonic equation. These results
remain valid in a uniform gravitational field (since the right-hand side of equation (7.2)
gives zero on differentiation), but not in the general case of external forces which vary
through the body.

The fact that the displacement vector satisfies the biharmonic equation does not, of
course, mean that the general integral of the equations of equilibrium (in the absence of
body forces) is an arbitrary biharmonic vector; it must be remembered that the function
u(x, y, z) also satisfies the lower-order differential equation (7.4). It is possible, however, to
express the general integral of the equations of equilibrium in terms of the derivatives of an
arbitrary biharmonic vector (see Problem 10).

If the body is non-uniformly heated, an additional term appears in the equation of
equilibrium. The stress tensor must include the term

— Ko(T — To)du
(see (6.2)), and do;,/0x, accordingly contains a term
— KadT/0x; = — [Ea/3(1 — 20)]0T/0x;.
The equation of equilibrium thus takes the form

l-0 3(1-20

3—(1:1—) graddivu— 2(—(1:)-) curlcurlu = o grad 7. (7.8)
Let us consider the particular case of a plane deformation, in which one component of
the displacement vector (u;) is zero throughout the body, while the components u,, u,
depend only on x and y. The components u,,, u,,, u,, of the strain tensor then vanish
identically, and therefore so do the components a,,, g,, of the stress tensor (but not the
longitudinal stress o, , the existence of which is implied by the constancy of the length of

the body in the z-direction).t
Since all quantities are independent of the coordinate z, the equations of equilibrium (in
the absence of external body forces) do;,/0x, = O reduce in this case to two equations:

I 0 do do

= i PR T 7
6x+6y "6x+0y g {72

The most general functions o, o,,, g,, satisfying these equations are of the form
g, = 0%y/3y?, 0,y = —0%y/0xdy, 6,0 /0x3, (7.10)

where y is an arbitrary function of x and y. It is easy to obtain an equation which must be
satisfied by this function. Such an equation must exist, since the three quantities o,,, g,,,
o,, can be expressed in terms of the two quantities u,, u,, and are therefore not
independent. Using formulae (5.13), we find, for a plane deformation,

O +0,, = E(u, +u,)/(1+0)(1 —20).

t The use of the theory of functions of a complex variable provides very powerful methods of solving plane
probiems in the theory of elasticity. See N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of
Elasticitv, 2nd English ed., P. Noordhoff. Groningen 1963.
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But

Ou, Ou, .
Oyt 0y, =0 “x,+u,,—g+a—y=dwll,
and, since by (7.6) div u is harmonic, we conclude that the function y satisfies the equation
ALy =0, (7.11)

i.e.itis biharmonic. This function is called the stress function. When the plane problem has

been solved and the function y is known, the longitudinal stress g, is determined at once
from the formula

0. = 0E(u,, +uy)/(1 +0) (1 —20) = a(0,, +0,,),

or
o,, =0y (7.12)

PROBLEMS

PROBLEM 1. Determine the deformation of a long rod (with length [) standing vertically in a gravitational
field.

SOLUTION. We take the z-axis along the axis of the rod, and the xy-plane in the plane of its lower end. The
equations of equilibrium are do,;/0x; = 00,:/0x; = 0, da,;/0x; = pg. On the sides of the rod all the components
g, except g,, must vanish, and on the upper end (z = [) o,, = g,;, = a,, = 0. The solution of the equations of
equilibrium satisfying these conditions is a,, = — pg(l — z), with all other g, zero. From o;, we find u, to be u,,
= u,, = opg(l —2)/E,u,, = — pg(l —2)/E, u,, = u,, = u, = 0,and hence by integration we have the components
of the displacement vector, u, = opg(l —z)x/E, u, = apg(l - 2)y/E, u, = — (pg/2E){I* — (I — 2)* — a(x* + y?)}.
The expression for u, satisfies the boundary condition u, = 0 only at one point on the lower end of the rod. Hence
the solution obtained is not valid near the lower end.

PROBLEM 2. Determine the deformation of a hollow sphere (with external and internal radii R, and R,) with
a pressure p, inside and p, outside.

SoLUTION. We use spherical polar coordinates, with the origin at the centre of the sphere. The displace-
ment vector u is everywhere radial, and is a function of r alone. Hence curlu = 0, and equation (7.5) becomes
graddivu = 0. Hence
i 1 d(r*u)
divu = < o
or u = ar +b/r’. The components of the strain tensor are (see formulae (1.7)) u,, = a —2b/r>, upy = uy, =
a+ b/r®. The radial stress is

= constant = 3a,

E E 2E b
o, = m {(1 — o)y, +20up} = ———a

1-26 14ar’
The constants a and b are determined from the boundary conditions: ¢,, = —p, atr = R,, and g,, = —p, at
r = R,. Hence we find

a_P:RR—Psz’.l‘ZU b R’R*(py—py) 140
" RP-R,? E '’ R:P=R5 2E..

For example, the stress distribution in a spherical shell with a pressure p, = pinsideand p, = O outside is given
by
P PR,> (l Rz’) A PR,? (1+R1’)
=253\l F )  Gw=0=o5—3|1+55)
R;*-R;? r TR CRP=RPN 2
For a thin spherical shell with thickness h = R, — R, € R we have approximately

u= pRz(l = ﬂ)/th, Ogg = Ogg = ipR/h! 61' = ipl
where 4,, is the mean value of the radial stress over the thickness of the shell.
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The stress distribution in an infinite elastic medium with a spherical cavity (with radius R) subjected to
hydrostatic compression is obtained by putting R, = R, R, = o0, p; =0, p, = p:

R? R?
a,,=—p(l—,—,—), a,,=a“=—p(l+27>.

At the surface of the cavity the tangential stresses gy = 044 = — 3p/2, i.c. they exceed the pressure at infinity.

ProBLEM 3. Determine the deformation of a solid sphere (with radius R) in its own gravitational field.

LUTION. The force of gravity on unit mass in a spherical body is -gr/R. Substituting this expression in
place of g in equation (7.3), we obtain the following equation for the radial displacement:

E(l1-0) d (1 d(r*u) r
(1 +0)(1 —20) d—;(r_‘ dr ) et 3
The solution finits for r = 0 which satisfies the condition a,, =0 for r = R is
gpR(1 =20)(1+0) [3—0 1r?
T 10E(I—0) '(1 +o 'F)'
It should be noticed that the substance is compressed (u, <O0) inside a spherical surface of radius

R\/ {(3—0)/3(1 +0)} and stretched outside it (u, > 0). The pressurc at the centre of the sphere is
(3—0)gpR/10(1 —0).

PrOBLEM 4. Determine the deformation of a cylindrical pipe (with external and internal radii R, and R)),
with a pressure p inside and no pressure outside.t

SoLUTION. We use cylindrical polar coordinates, with the z-axis along the axis of the pipe. When the pressure
is uniform along the pipe, the deformation is a purely radial displacement u, = u(r). Similarly to Problem 2, we
have

1d
diva = - —(—r—‘-‘z = constant = 2a.
r dr

Hence u = ar + b/r. The non-zero components of the strain tensor are (see formulae (1.8)) u,, = du/dr = a —b/r?,

u, = u/r = a+b/r*. From the conditions g,, =0 at r = R;, and 0,, = —p at r = R,, we find
pR,2  (1+0)(1-20) pR,*R;? 1+0
a= A A = —_—  —
R, —R,? E R,*-R,*> E

The stress distribution is given by the formulae

pR,? (1 Rz‘) PR,? (1 +Rz’)
a"=——— — — . [} = e—— — .
R;*=R,? r? " R,2—R,? r?
Oy = zpo’zlz/(RZz - Rlz)-

PrROBLEM 5. Determine the deformation of a cylinder rotating uniformly about its axis.

SOLUTION. Replacing the gravitational force in (7.3) by the centrifugal force pQ*r (where Q is the angular
velocity), we have in cylindrical polar coordinates the following equation for the displacement u, = u(r):

E(l —o) d (l d(ru)) 5

_— — |- = —pQ?r.
(14+0)(1 =20)dr \r dr

The solution which is finite for r = 0 and satisfies the condition g,, =0 for r = R is
e pQ(1 +0)(1 —20)
~ B8E(l-0)

r((3—-20)R*-r?).

PROBLEM 6. Determine the deformation of a non-uniformly heated sphere with a spherically symmetrical
temperature distribution.

t In Problems 4, 5 and 7 it is assumed that the length of the cylinder is maintained constant, so that there is no
longitudinal deformation.



