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Taking into account rotational symmetry as well as the notation for the problem
we can write down the Navier-Stokes equations (3.36) as:
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Fig. 5.12. Flow in the neighbour-
hood of a disk rotating in a fluid

at rest

Velocity components: u-radial, v-circum-
ferential, w-axial. A layer of fluid is car-
ricd by the disk owing to the action of
viscous forces. The centrifugal forces in the
thin Jayer give rise Lo secondary flow which
is directed radially outward

b. Other exact solutions 103

The no-slip condition at the wall gives the following boundary conditions:

z=10 : =0, v=ruw, w0, ]
z = oo: u=0, v=20. ] (5.49)
We shall begin by estimating the thickness, 8, of the layer of fluid ‘carried’ by the
disk [23]. 1t is clear that the thickness of the layer of fluid which rotates with the
disk owing to friction deereases with the viscosily and this view is confirmed when
compared with the results of the preceding examples. The centrifugal force per unit
volume which acts on a fluid particle in the rotating layer at a distance » from ihe
axis is equal to e 7 w2 Hence for a volume of area dr - ds and height, 8, the centri-
fugal force becomes: g7 w2 3 dr ds. The same clement of fluid is acted upon by a
shearing stress 7, pointing in the direction in which the Auid is slipping, and forming
an angle, say 0, with the circumfercntial velocity. The radial component of the
shearing stress must now be cqual to the centrifugal force, and henee

Tpsin0drds =prw?ddrds
or
To8inl=prew2).

On the other hand the circumfercntial component of the shearing stress must be

proportional to the velocity gradient of the cireumferential velocity at the wall. This
condition gives

Tw €08 0~ pirwf§.

Eliminating 7, from these two equations we obtain

02~ 2 tan 0.
w
If it is assumed that the direction of slip in the flow near the wall is independent of
the radius, the thickness of the layer carried by the disk becomes

s~1/ X

w !

which is identical with the result obtained in the case of the oscillating wall on p. 04,
Further, we can write for the shearing stress at the wall

To~erw'd~proyrw.
The torque, which is equal to the product of shearing stress at the wall, arca and
arm becomcs

M~t,RP~oRowve, (5.50)
R denoting the radius of the disk.

In order to integrate the system of equations (5.48) it is convenient to introduce
a dimensionless distance from the wall, { ~2/d, thus putting

w

t=z]2. (5.51)
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Further, the following assumptions arc made for the velocity components and pres-
sure

uw=rawkF({); v=rwd{); w=VrwH{) (5.52)
p=pk)=prwP).

Inserting these equations into eqns. (5.48) we obtain a system of four simultancous
. 1 M i .
ordinary differential equations for the functions F,G, H, and I:

QF |- H' =0
F:yFH— G —F'=0 5
QFG+HG G =0
PP+HH —H" =0,

M |4 P .
The boundary conditions can be calculated from eqn. (5.49) and are:

=0: F =0, G =1, H=0, =0
=c0: F=0, G=0.

The first solution of the system of eqns. (5.53) by an appro'xim::d,e meth?d was giYell
by a method of numerical integrationt. They are plott.e(l in Fig. 5.13. The starting
values of the solution indicated in Table 5.2 were given by E.M. Sparrow and
J. L. Gregg [32].

[~ Itig. 5.13.  Velocity distribution
= near a disk rotating in a flnid at rest.
Jo 35 40
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Tn the case under discussion, just as in the example involvi.ng a_sl.agr.ml,l.on
point, the velocity field js the first to be evnhmtcd‘ 1;r0m the cquation o! co{nh{p\ut){
and the equations of motion parallel to the wall. '_[1.1_0 pressure dlstrilbut]on is founc
subsequently from the equation of motion perpendicular to the wall.

1 Jl;lq ;lolut,ion was obtained in the form of a power series near { = 0 and an ?symptotm series
for large values of ¢ which were then joined together for moderate values of .
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Table 5.2. Values of the functions needed for the description of the fl
fluid at rest calculated at the wall and at a large distance from the w
Sparrow and J. L. Gregg [32]

=2 V% 28 ez - n r

0 { 0-510 0-6159 ] 0

ow of a disk rotating in a
all, as calculated by E. M.

0 0 0-8845 0-3912

It is seen from Tig. 5.13 that the distanec from the wall over which the peripheral
velocity is reduced to half the disk velocity is g5 A ]/v/w . It is to be noted from
the solution that when § a }/v/ka‘) is small, the velocity components # and v» have
appreciable values only in a thin layer of thickness ]/;/;n . The velocity component s,
normal to the disk is, at. any ratle, small and of the order }/r w . The inclination
of the relative streamlines near the wall with respeet to the circumferential direction,

if the wall is imagined at rest and the fluid is taken to rotate at a large distance
from the wall, becomes

— (%foz)y _ _ FO)__0s10
tan ¢y = <av]az ),=o =G0 ~ g6 — 0828,

or

by = 39-6° .

Although the calculation is, strictly speaking, applicable to an infinite disk only,
we may utilize the same results for a finite disk, provided that its radius R is large
compared with the thickness § of the layer carried with the disk. We shall now
evaluate the turning moment of such a disk. The contribution of an annular disk
element of width dr on radius 7 is dM = — 27 r dr 7 7,4, and hence the moment
for a disk wetted on one side becomes

R
Jl[=——2:ft/r21,¢dr.
6

Here 1,4 = pu(9v/82), denotes the circumferential component of the shgaring stress.
IFrom eqn. (5.52) we obtain

T =07 V2?2 (0).

Hence the moment for a disk wetted on both sides becomes

2M=-—mng R (v G"(0) = 0616 1 o R (vw®)'/2 . (5.54)

It is customary to introduce the following dimensionless moment coeflficient,

2M

Cp= ‘l ewt jE (5.55)
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This gives 97/ (0) /2
Onw=—""rp 5 >

or, defining a Reynolds number based on the radius and tip velocity,

’ o, . ll
and introducing the numerical value — 2 7 G'(0) = 3-87, we obtain finally

3-87 ;
CM:AV?‘_—" (556)

it wi casure-
Fig. 5.14 shows a plot of this equation, curve (1), and compla,(;';ast;:,e:;uti}; Iglxe;s;lent
mgr'lts. [39]. For Reynolds numbers up to about R =}ge>< O e e o
reement betweon theory and experiment. l}t hxgh.er dy.no O
!ll)gcomes turbulent, and the respective case is considere 1[11 ,t ﬂp. X Older
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The quantity of liquid which is pumped outwards as a result of the centrifuging
action on the one side of a disk of radius 1 is

Q:2nR/wudz.
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Calculation shows that
@ =08857 R2Yyw = 08867 R? o) R—1/2 (5.57)

The quantity of fluid flowing towards the disk in the axial direction is of equal
magnitude. It is, further, worthy of note that the pressure difference over the layer
carried by the disk is of the order @ v w, i. e., very small for small viscositics. The
pressure distribution depends only on the distanco from the wall, and there is no
radial pressure gradient.

A generalised form of the preceding problem has been studied by M. G. Rogers
and G. N. Lance [28] who assumed that the flujd moves with an angular veloeity
2 =sw at infinity. With this assumption, the second equation (5.53) becomes
modified to

PP FH Q2 P 52— ,
and the second boundary condition for the function G(Z) must be roplaced by
(#(0co0) == s . In this connexion a comparison should be madoe with the case of rotating
flow over a fixed disk given in Sec. XIa. Numerical solutions for rotation in the
same sense (s > 0) can be found in [26]). When the rotations are in opposite senses
(5 <2 0), physically meaningful solutions can be obtained for s < —~ 0-2 only if uniform
suction at right angles to the disk is admitted.

The problem of a rotating disk in a housing is discussed in Chap. XXI.

It is particularly noteworthy that the solution for the totating disk as well as
the solutions obtained for the flow with stagnation are, in the first place, exact
solutions of the Navier-Stokes equations and, in the second, that they are of a
boundary-layer type, in the sense discussed in the preceding chapter. In the limiting
case of very small viscosity these solutions show that the influence of viscosity
extends over a very small layer in the neighbourhood of the solid wall, whereas
in the whole of the remaining region the flow is, practically speaking, identical
with the corresponding ideal (potential) case. These cxamples show further that

the boundary layer has a thickness of the order ]/ ¥ - The one-dimensional examples
of flow discussed previously display the same boundary-layer character. Tn this
connexion the reader may wish to consult a paper by G. K. Batchelor [2] which
discusses the solution of the Navier-Stokes cquations for the case of two co-axial,
rotating disks placed at a certain distance apart, as well as a paper by K. Stewartson
[34]. An extension of the preceding solution to the case of uniform suction is due
to J. T. Stuart ([92] in Chap. X1V) and to B. M. Sparrow and J. L. Gregg (see p. 3
in [32]). The latter contains also an analysis of the case with homogencous blowing.
The limiting case of very vigorous blowing was discussed by . K. Kuiken [18]

12, Flow in convergent and divergent channels. A further class of exact solutions of the
Navier-Stokes equations can be obtained in the following way: Let it be assumeod that the
family of straight lines passing through a point in n plane constitute the streamlines of a flow.
Let the velocity differ from line to line, which means that it is assumed to be a function of the
polar angle $. The rays along which the velocity vanishes can then be regarded as the solid
walls of a convergent or a divergent channel. The continuity equations ean be satisfied by assuming
that the velocity along every ray is inversely proportional to the distance from the origin. Hence
the radial velncity u has the form u ~ Fp)fr, or, il Fis to be dimensionless,



