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Following up previous work on the subsidence of a
circular load on the surface of a highly viscous fluid, the
same problem is treated for the case of a load in the form
of an infinitely long strip with parallel sides. Simple
expressions are derived for the limiting displacements as
the system approaches hydrostatic equilibrium and for the
form taken by the surface of the fluid at any time during
the motion. Curves illustrating these quantities are
plotted. It is pointed out that the subsidence.of a load on

the earth’s surface having a span comparable to that of a
continental ice sheet must produce appreciable flow at
great depth. Using the previously derived figure for the
mean viscosity of the earth it is found that with a load
2000 km wide equilibrium would be very nearly reached
in about 18,000 vears, and that loads of smaller span
would require proportionately greater time to reach the
same stage.

INTRODUCTION

N a previous paper! the problem of the motion
of a highly viscous fluid under a circular load
applied on the free surface was treated with the
particular object of determining the mean vis-
cosity of the earth from the motion of the surface
after the melting of one of the last continental
ice sheets. Although it proved possible to derive
a figure for the viscosity, the velocity distribution
within the fluid could be given only in the form
of definite integrals whose evaluation would
require numerical integration. Since it is of some
geological importance, in connection with the
mechanism of isostatic adjustment, to have a
roughly quantitative idea of the distribution of
velocities, or at least of the final displacements,
beneath a subsiding load, it was thought worth
while to consider the same problem with a dif-
ferent load distribution which gives more tract-
able expressions for these quantities. Accordingly
in the present paper we shall treat the case of an
instantaneously applied load of constant thick-
ness, having parallel sides, and whose length is
sufficiently greater than the width so that it may
be regarded as effectively infinite. As in I we
suppose that the viscosity is so great that we
may neglect the acceleration in the equations of

! N. A. Haskell, Physics 6, 265 (1935). Hereafter referred
to as I.
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motion in comparison with the terms expressing
the viscous forces, and that the displacements
remain small relative to the width of the load.
We also assume the fluid to be incompressible.

1. SoruTtioN 1IN TERMS orF DEFINITE
INTEGRALS

We refer the equations of motion to a rec-
tangular coordinate system having the plane
z=0 in the undisturbed surface of the fluid, the
positive 2 axis directed downward, and the y axis
parallel to the length of the load, and let the
width of the load be 2I. Then V, and 8/dy vanish
and the equations of motion become

3V, /9x2 4092V, /dz2=ap/ndx,  (1.11)
3V ./ 9x2+ 0%V, /82t = 0P /ndz, (1.12)
AV./0x+adV./9z=0, (1.13)

where p=p—pgz. .

Following the procedure used in I we let the
equation of the free surface be given by z={(x, ¢),
and let the pressure exerted by the load be
a(x, £). The boundary conditions are then

plx, 0, 1) +pgslx, t)
—29(8V./0z)(x, 0, t)=0(x, ) (1.21)

and 0V.,/0z+0V ,/dx) ,—o=0. (1.22)
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VISCOUS FLUID UNDER SURFACE LOAD 57

In the case with which we shall be concerned
O;x>lor <=1
o(x, y=40;t=0 (1.23)

c=const.; —l<x </, t>0.

V.= (az/m)f e—Pot 2z gin N[ sin Axd\ /A,
0
V.= (a/mn) f e~pet/2n=2z gin Al cos Ax((14+Az)/A2)dN,
0
p= (20/7r)f e P42 xz gin A cos AxdN/\,
0

{= (26/1rpg)f (1 —e—ret/20) gin A cos AxdN/A.
0

To express these in dimensionless form set
r=pglt/2n, a=x/l, B=2z/l, k=N,

vxzzan/Uly vz=277Vz//Ulr M=Pg§/6-

Then
V= (26/#)] e~ *Bgin ksin kadx/x, (1.41)
0

v, = (2/7r)[ e~/ *B gin k
Jo
Xcos ka((14+«8)/k*)dk, (1.42)

(p/o)= (2/1r)f e~ "/**F gin k cos ;_cadx/x, (1.43)
0

u= (2/7r)f (1 —e "9 sin k cos kadk/k. (1.44)
0

The components of the displacement are given

by t
Ux=f VzdtZ(a/pg)f v.d7,
0 0

f exp (—7/xk—«B—iyk)dx/ k"t =27+ ((B+dv) /A7) 2K o[ (47(B+17))¥].

By letting y=a+1 this becomes

The method of solution is the same as that
given in I and need not be repeated in detail.
The only difference is that certain trigonometric
functions replace the Bessel functions which
occur there. The solutions are

(1.31)

(1.32)

(1.33)

(1.34)

t T
U= f V dt=(o/pg) f v.dr.
0 0

Hence, with £¢=pgU/0,

£.= (2[3/7r)f (1 —e~"9)e*f gin « sin kadk, (1.51)
0

E,=(2/7r)f (1 —e7/*)e~*8 sin «
0

cos ka(1+«B)dx/x.  (1.52)

2. EVALUATION OF THE INTEGRALS

The integrals occurring in these expressions
can be evaluated in terms of Bessel functions of
the second kind for imaginary argument by the
use of the inverted form of integral No. 927.0
in Campbell and Foster’s tables.? With a slight
change in their notation this integral may be
written in the form

(2.1)

{s o}
f e~ *8(Cos Kk COS K—sint Kka SN k —Z{sin k& cos k--cos ka sin «})dr/k*t1
0

=2"t1((B+1a+1) /4r) K [ (47(B+ia+1))]=N, D (2.21)
2G. A. Campbell and R. M. Foster, “‘Fourier Integrals for Practical Applications,” Bell Sys. Tech. Pub. Mono-

2584 (1931).
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58 N. A. HASKELL

and by letting y=a—1

O
f e~ 7**8(C0os ke cOS k-+Sin ke sin k-2 {sin ka cos k—Cos ka sin «})dx/x™*!
[

(Note that N, is not the conjugate of N,(.)
By adding (2.21) and (2.22) and equating real
and imaginary parts we have the two real

=2"H((B+ia~1)/41) 2K [ (4r(B+ia—1)) )= N.O.  (2.22)
where
Ero= (25/11-)‘[ e*f sin « sin xadk, (2.53)
0

integrals

{ee]
f e~ 7/* %8 cos ka cos kdk/ k™1
0

=LIR[N, 9 +N,D] (2.31)
and

fee)
f e~ 7/* B gin ko cos kdxk/xkmH1
0

=—L[N,D4N,OT (2.32)
By subtracting we have
f e~ T/* 8 gin ka sin kdx/x"H1
0
=iR[N,©—N,®], (2.33)
j e~ /%8 cos ka sin kdx/knt!
0
=LI[N, O —=N,®]. (2.34)

Egs. (1.41) to (1.44) may then be written in
the form

0. = (8/m)RLNo™ — NotH ], (2.41)
v,=(1/m) [[NO =N,
+(B/mY I[N — N, (2.42)
p/o=1/m) I[Ny — N7, (2.43)
B=too— (D)) pm0 = bher
= (2/mILKo{ (4ir(a—1))%}
—Ko{dir(a+1))3}], (2.44)
where ,um={0; x<—1 or x>
1; —lI<x<l.
The displacements are
£2= from (B/MRIN 1O = N_y9], (2.51)
o= §u— (1/m) I[Ny — NoH ]
—(B/m I[N D —=N_P], (2.52)

frn= (2/7r)fwe*‘ﬁ sin k cos ka(14+«B8)dx/k. (2.54)
0

The integrals (2.53) and (2.54) cannot be evalu-
ated directly by setting =0 in (2.33) and (2.34),
but may be treated separately as follows.

Integral No. 632.2 in Campbell and Foster’s
tables is

+oo
f e~2rBUiI+is—iaNd f= B /7 B2+ (g—x)?]. (2.61)

—c0

Let 2rf=«, g=a, x=—1. Then

“+oo
f e—!x:ﬁ+im+ixdk=26/[62+(a+1)2]_

—

By letting x=+1

+co
f e~ 1x B+ ixamiedy — 28 82+ (a—1)7].

-0

By subtracting,

oo
J e~ !slftixe oin gdg

=B/DHLIB+ (a+1)2) 1 = {82+ (a—1)%) 7]
or

o

f e~*f sin k sin kadx= (8/2)[ {82+ («—1)2} 1
' — (B4 (121 (2:62)
Hence

Ero=4af?/m{B+ (a— 1)} {8+ (a+ 1), (2.71)

Integrating (2.62) with respect to « from 0 to o
gives
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VISCOUS FLUID UNDER SURFACE LOAD 39

f €7 sin  cos KadK/K=f e™B sin kdk/k
0 0
=@/ [ g (a7
j; a 1 ida

—fa{62+(a+1)2}“1da]-

0 .

The first integral on the right is

Jenl
f e "8 sin kdk/k
0

:f j‘ e~*f gin Kd,&ixzf {824-1}-4d8
4 B B

=tan~! (1/8).
The second and third are

f {82+ (a—1)*"da
0
= (1/8)[tan~'({(a~1)/8) +tan~*(1/8)]

an

a

f (824 (a+1)?)~1da
_ (1/8)[tan-((a-1)/8) —tan-1(1/8)].

Hence

Jm’e“"ﬁ sin k co8 xadx/ &

=3[tan"!((a+1)/8) —tan™'((a—1)/8) ]

=1 tan—1(28/(8?+a’—1)). (2.63)

ArZz/

o)
i
TS [ |

F16. 1. Asymptotic displacements beneath a constant load.

For the second part of ., the use of integral No.
632.11 of the tables gives

(¢e]
f €% sin x cos kadk
0

= (B*—a’+1)/(B2+ (a+1)1) (8 (a—1)?). (2.64)
Hence

£20=(1/m) [ tan"128/(8*+a2—1))
(2.72)

+28(82—a?+1)/ (B4 (a+ 1)) 87+ («— 1)) ].

It is easily shown that if r={(a®+p%% and
f=tan~! a/B, then for large values of »

Eam—ESIN B, £.o—E COS 6,

where £={4/7)(cos? 8)/r.

3. NUMERICAL VALUES

In Table I values of 7&,, and 7£,, computed
from (2.71) and (2.72) are given for various
values of @ and B. In Fig. 1 these values are
represented graphically, the solid lines giving the
final positions of a set of rectangular lines whose
initial positions are given by the dashed lines.
Since the system is symmetrical in the zy plane,
only one-half the field is represented.

To get a roughly quantitative idea of what
this means in the case of a continental ice sheet
on the earth let us suppose I=10% cm, take p=3
(i.e., a little less than the mean density of the

" earth), g=10% and let ¢=1.5X10% dynes ¢m™2

(approximately the pressure exerted by a sheet
of ice 1500 m thick). Then (x, 2) =108 (a, 8) and
U=0.955X10* (x§), hence with the scales used
in Fig. 1 the displacement as shown is exagger-
ated by a factor of 1310. The great persistence
with depth is noteworthy. In spite of the obvi-
ously great simplification of the problem we have
treated as compared with the actual case, it
seems clear that the isostatic compensation of
such a load must be regarded as a distortion of
the whole earth, as Daly® has contended, rather

3 R. A. Daly, “Pleistocene Changes of Level,” Am. ].
Sci. 10, 281 (1925).
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60 N. A. HASKELL

TABLE 1. Asymptotic values of the displacements (X).

N 000  0.25 0.50 0.75 1.00 1.25 1.50 1.75 200 225 2.50 275 3.00

0.00 3.142  3.142 3.142 3.142 1.571 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.25 3.121  3.115 3.040 2.854 1.570 285 .063 .022 .009 .005 .003 .002 .001
0.50 3.016 2980 2.836 2421 1.562 .700 .280 123 .060 .024 .020 014 .008
0.75 2.815 2.768 2.557 2.149 1,541 927 .504 273 154 .091 .058 041 026
1.00 2,517 2,507 2187 1963 1.507 1.044 0672 420 .264 169 112 .083 054
1.25 2.325 2267 2094 1.813 1462 1.099 782 .539 .368 253 177 135 .091
Tl 1.50 2.100 2.050 1.908 1.683 1.409 1.117 .850 .628 457 333 .243 191 133
1.75 1.900 1.860 1.746 1.567 1.348 1.107 .887 .690 538 401 304 .247 178
2.00 1.729  1.696 1.604 1462 1.285 1.093 903 730 .581 457 .359 .298 222
2.25 1.579 1.553 1481 1366 1.223 1.065 905 753 .618 502 404 343 .263
2.50 1.451 1.431 137t 1.279 1.162 1.031 .896 .763 642 .535 442 .382 .299
2.75 1.340 1.323  1.275 1.201 1.104 995 .880 765 .657 .558 471 413 331
3.00 1.244  1.230 1191 1.129 1.050 957 .859 760 .664 574 492 438 358

0.00 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.25 0.000 .062 173 480 984 4388 190 .092 .052 033 .022 .016 011
0.50 0.000 .170 .400 725 941 754 461 276 173 115 .080 .058 .043
0.75 0.000 235 492 .745 876 .800 .610 431 .301 214 156 A17 .089
1.00 0.000 .250 492 .695 .800 776 .662 523 400 .304 232 .180 141
1.25 0.000 235 452 624 719 726 .662 .564 462 371 297 .238 192
TErw  1.50 0.000 210 .400 550 .640 .665 .635 571 492 415 .345 .286 .236
1.75 0.000 183 .348 .480 .566 .603 .596 .556 .500 437 376 321 273
2.00 0.000 165 .301 418 .500 544 551 531 492 445 .394 345 .300
2.25 0.000 136 .261 .365 441 488 .505 499 475 .440 .400 .358 318
2.50 0.000 117 226 319 .390 438 461 465 452 429 .397 .363 329
2.75 0.000 .102 197 .280 .346 .393 420 431 427 412 .389 .362 333
3.00 0.000 .089 173 .247 .308 353 .382 .398 400 392 376 356 332

than as a shallow horizontal flow beneath the vertical plane, x=const., takes place. The
crust. In this connection it may be of interest quantity of matter transported across a given
to compute the depth, z5, below which one-half vertical plane above an arbitrary depth z, per
the total lateral displacement across a given unit length of the load, is

: S (/) (a+D) tan (8/(ab 1) — (a—1) tant (8/(a—1)}; a>1
o vads=talfe) [ e.as=| (3.1)
0 0 (ol/mg){(a+1) tan~t (B/(a+1))—(1—a) tan~! (B/(1—a))}; a<]1.
The total quantity is Table II gives the values of 8, corresponding to
' various values of a.
pf dz= {<Ul/g)’ a>1 (3.2) The configuration of the surface at any time,
0 (clajg); a<l. - given by (2.44), may be readily computed by

' ) ] . expressing it in terms of the Hankel function
The equation which determines Bo=zo// is then pr (x+/1), where x is real, for which tables are

(a+1) tan—1(Bo/ (a+1)) available.? Let

—(a—1) tan™'(Bo/(a—1)) =(7/2); a>1; .xlz{[%(a_l)]%; > xe=[4r(a+1)]

(3.3) ,

(a+1) tan—1(Bo/ (1)) [4r(1—=a) ] o<1

—(1—a) tan—*(Bo/(1 —a)) = (ra/2); a<l. Then '
—(2/m)I[Ko(x14/1) — Ko(xan/D) ] a>1

TaBLE 11. Depths below which one-half the total lateral p= (3.41)
displacement takes place. 1— (2/1r)I[Ko(x1\/—i) —Kg(xg\/i)]; el
Fo ’ = Ao By using the relationship K(z) = (w3/2) H,® (12),
8%8 ggg }(5)8 %gg where z is any complex number, and taking care
0.75 2.12 2.00 4.40 ?]ahnke and F. Emde, Function Tables, second

edition (1933).
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VISCOUS FLUID UNDER SURFACE LOAD 61

TaBLE I11. Surface configuration at various times.

-
a =8 3 1 3 1 3 10

0.00 0.145 0.236 0.370 0.545 0.742 0977 1.007
0.25 144 234 366 .538 .732 967  1.008
0.50 .140 .227 352 515  .697 929 1.007
0.75 130 .213 327 471 627 837 .976
1.00 .118 .185 .273 371 457" 507 500
1.25  .106 .155 217  .269  .283 177 .024
1.50 .094 139 186 217 204 082 —.006
200 .082 .116 145 152 118 .016 —.004
3.00 .067 .088 .099 .086 .045 —.005 +.002
4.00 .057 .070 071 .052 .017 —.004 .000
500 .049 .058 054 .032 006 —.002 .000

to choose the proper root of /¢ and v/ —i,° we
have I[Kolx\%)]=—(x/2)R[H®(x+/4)7] and
ITKo(xn/—9)]=(x/2)R[H:®(x+/7)]. Hence

{R[f[o(l)[x1\/i) —HoP(x20/1)]; a>1
=

(3.42)
1 — R[H D (x18/3) + Ho O (x/1)]; a<1.

5 Hy» vanishes at infinity if the imaginary part of the
argument is positive, but becomes infinite if it 1s negative.

F1G. 2. Surface configuration at various times.

This function is tabulated in Table IIT and
plotted in Fig. 2. If we use the value of 7/p=2.9
X102 found in I and the ! assumed above, then
the unit of 7 is approximately 1800 years. The
figure for r=10 then shows that equilibrium
would be very nearly reached in about 18,000
years. A load of smaller span would take a cor-
respondingly greater time, e.g., one such as a
river delta having /=100 km would require
180,000 years.
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